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In this paper, veering phenomena in the nonlinear vibration frequencies of a

cantilevered cracked plate are investigated, and an efficient method for estimating

these frequencies is proposed. Of particular interest is the vibration response in

parameter regions where the natural frequency loci show veerings. For a representative

finite element model, it is shown that the veerings due to crack length variation involve

the switching of mode shapes and modal interactions. The nonlinearity caused by the

crack closing effect is then introduced, and its effect on the vibration response near the

veerings is discussed. The nonlinear forced response analysis is carried out using a

hybrid frequency/time domain method, which is based on the method of harmonic

balance. The nonlinear vibration response near loci veerings and crossings due to the

variation of crack length is investigated in detail. Finally, a novel method for estimating

the nonlinear resonant frequency is introduced by generalizing the concept of bilinear

frequency approximation, and the method is validated with the results of nonlinear

forced response analysis for several veering regions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the natural frequencies of cracked elastic structures differ from their healthy counterparts.
A comprehensive literature survey of research activities regarding the vibration problems of various structures with cracks
is found in the work by Dimarogonas [1]. In this paper, linear and nonlinear vibration of a cantilevered rectangular plate
with a crack is investigated. The primary focus of this study is the vibration response near the eigenvalue loci veerings and
crossings that occur as the crack length or location is varied. This work was motivated by an observation of closely spaced
nonlinear resonant frequencies with similar mode shapes, in the nonlinear frequency response of a turbine engine rotor
with a cracked blade [2].

Eigenvalue loci veerings, also known as avoided crossings, or eigenvalue avoidance, are observed in plots of eigenvalues
versus a system parameter. In particular, a veering refers to a region in which two eigenvalue loci approach each other and
almost cross as the system parameter is changed, but instead of crossing they appear to veer away from each other, with
each locus then following the previous path of the other [3]. Although this phenomenon was initially regarded as an
‘‘aberration’’ caused by approximation methods applied to the original infinite-dimensional eigenvalue problems [4], it was
shown by Perkins and Mote [5] that the phenomenon can be observed for continuous systems. Since then, several
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researchers have noted and investigated the relation between veerings and mode localization phenomena [6–8]. In
conjunction with the localization, it is known that the veerings are associated with coupling between the modes, which is
typically seen as the mixed mode shapes near the veering regions. There can also be a mixing between modes in different
physical domains, such as electrical and mechanical domains [9]. These phenomena have also been investigated for the
damaged structures, such as two-span weakened column [10], and cables with damage [11].

For vibration problems of cracked rectangular plates, variations in natural frequencies and mode shapes due to crack
length variations have been known for a long time. The initial contribution to the study of vibration problems of cracked
rectangular plates was made by Lynn and Kumbasar [12], who calculated the vibration frequency drop of plates due to
cracking by numerically solving the Fredholm integral equation of the first kind. Petyt [13] also investigated the variation of
frequency of fundamental mode due to crack length by experiments and a finite element method (FEM). Those
contributions were followed by a number of investigations based on plate vibration theory, including those by Stahl and
Keer [14], Hirano and Okazaki [15], Solecki [16], and Yuan and Dickinson [17]. Although the trajectories of frequencies
versus crack length appear in these articles, the veering regions and associated dynamics of the cracked plates near those
regions were not highlighted. Liew et al. [18] applied a domain decomposition method to obtain the out-of-plane vibration
frequencies of cracked plates, and they not only confirmed the results found by Stahl and Keer [14] and Hirano and Okazaki
[15] but also considered a wider range of crack length ratio. It is noted that they examined a plate with a centrally located
internal crack and reported frequency crossings instead of veerings. In other words, for this case they observed that two
approaching eigenvalue loci would intersect as crack length increased, which is also known as crossover. More recently, Ma
and Huang [19] also reported variations in natural frequencies and associated mode shapes due to changes in crack length
for a square plate with an edge crack, based on experiments and finite element analysis. As was mentioned by many others,
Ma and Huang stated that the nonlinearity due to the crack closing effect has to be considered for the in-plane bending case,
but crack closing was neglected in their study because their work focused on the out-of-plane bending vibration.

In the studies of cracked rectangular plate vibrations reviewed above, the in-plane bending vibration was not considered
and thus the crack closing effect was not examined. In contrast, the issue of crack closing effect naturally arose in the studies
of vibration problems of cracked beams, for which in-plane bending vibration is typically of primary research interest. For
the study of cracked Bernoulli–Euler beams, a pioneering contribution was made by Christides and Barr in their application
of the Hu–Washizu–Barr variational principle to the cracked beam problem [20]. Further extension was made by Shen and
Pierre for Bernoulli–Euler beams with symmetric cracks [21] and single-edge cracks [22]. A generalization to the theory was
made by Chondros et al. [23]. However, in these studies, the nonlinear effect was not considered. Gudmundson [24] pointed
out that measured natural frequencies of a beam with a fatigue crack differ from those calculated without considering the
crack closing effect. He also addressed the significance of the crack closing effect for accurately predicting the frequency
shifts due to cracking. The crack closing effect is also known to cause phenomena that appear only in nonlinear response
cases, such as superharmonic and subharmonic resonances [25,26] and period doubling bifurcations [27,28].

One of the methods to estimate the (primary) resonant frequencies of the cracked beams is the application of the
bilinear frequency approximation. This was initially introduced for calculating the effective resonant frequencies of
piecewise linear oscillators (e.g., [29]), and it has been used for approximating the effective vibration frequency of multi-
DOF piecewise linear systems (e.g., [30]). It has also been used for estimating the natural frequency of cracked beams
[31,32,28]. Chati et al. [33] extended the concept of the bilinear frequency to study the vibration of a cracked beam using a
multi-DOF oscillator model. They assumed that if the crack is sufficiently shallow, the actual and bilinear mode shapes are
close to each other, and thus the frequency can be approximated by the bilinear frequency. Most of the methods reviewed
above assume that the crack has only two states—closed or open. This assumption is accurate when the relative motion of
the crack surfaces is simple, such as the in-plane bending vibration of cantilevered beams. However, in general, the motion
of crack surfaces is more complicated, and there may be more than two states. For example, crack closing may proceed
gradually and/or occur at different regions on the crack surfaces at different times.

The closing crack was also modeled by equivalent linear model by Kisa and Brandon [34], with the assumption that the
stiffness change due to a crack can be expressed as a linear combination of the stiffness matrix of uncracked beam and that
due to cracking and contact. An emerging approach for dealing with this issue is the application of nonlinear normal modes
[35–37]. However, the applicability of this approach is still limited to simple structures or simplified vibration problems,
due mostly to its computational costs for constructing the nonlinear normal modes.

With regard to the veering phenomena for nonlinear structural systems, very little is known about how the
nonlinearities influence the response near the veering regions. Lacarbonara et al. [38] investigated nonlinear modal
interactions of an imperfect beam near veering regions, the nonlinearities of which are quadratic and cubic nonlinearities
due to large-amplitude vibration, through perturbation and bifurcation analyses. They observed distinguishing features in
the response, such as mode localization due to nonlinear coupling and frequency-island generation, which illustrates the
richness of the dynamics in veering regions for nonlinear structural systems.

In this paper, the vibration of cracked cantilevered plates in frequency veering regions is investigated. As reviewed above,
veering phenomena have not been studied thoroughly for cracked structures, in either the linear or nonlinear dynamics
regime. Regarding the vibration of cantilevered cracked plates, the research reviewed above focused only on the out-of-plane
vibration, and crack closing effects were intentionally neglected. On the other hand, studies of cracked beams have focused on
in-plane bending in most cases. Thus, the crack closing effect on the vibration response has been investigated in many studies
of cracked beams. However, veering and modal interaction phenomena between in-plane and out-of-plane vibration modes
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Fig. 1. Finite element model of the cracked plate.
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have not been studied in this context. Moreover, in general, the veering phenomena in nonlinear structural systems have not
been studied well. Therefore, in this paper, first the eigenvalue loci veering due to cracking is examined using a cracked
cantilevered plate example without considering the crack closing effect. The crack closing effect is then included and
associated nonlinear resonant frequencies are identified. A novel method for accurately estimating the nonlinear resonant
frequencies is then introduced, by generalizing the concept of bilinear frequency approximation that utilizes the results of
linear eigenvalue analyses of the system. The method is validated by comparing the results with those calculated by the
nonlinear forced response analysis. Furthermore, the applicability of the method near the veering regions is discussed, and
the effects of the crack closing on the resonant frequencies are discussed in detail for some specific veering regions.

This paper is organized as follows. In Section 2, the cracked plate vibration problem and the finite element model are
introduced. In Section 3, the linear free response of a cracked plate is considered using a finite element model of a three-
dimensional cantilevered plate with a planar surface-breaking crack that runs parallel to the cantilevered edge, and the
associated frequency veering and crossing phenomena are shown. In Section 4, a solution technique for the nonlinear forced
response analysis, called the hybrid frequency/time (HFT) method, is briefly reviewed. The nonlinear forced response
calculation is then carried out and the effects of nonlinearity to the response in the neighborhood of representative veering
regions are discussed in detail. In Section 5, the method for estimating the nonlinear resonant frequency is introduced as a
generalization to the bilinear frequency approximation. Finally, conclusions are summarized in Section 6.
2. Cracked plate model

In this paper, the vibration of a cantilevered rectangular plate composed of linear isotropic elastic material is considered.
The plate is discretized with a standard finite element method, and the deformation is assumed to be infinitesimally small.
In this study, nonlinearities other than the one due to intermittent contact at the crack surfaces are not considered. Namely,
the governing equation of the cracked plate is

M €uðtÞ þ C _uðtÞ þ KuðtÞ ¼ bðtÞ þ fðuÞ; M;C;K 2 Rn�n; u;b; f 2 Rn (1)

where u is the displacement vector, M, C, and K denote the mass, damping, and stiffness matrices, bðtÞ denotes the time-
dependent external force, and fðuÞ denotes the nonlinear force caused by the intermittent contact at the crack.

A finite element (FE) model of a cantilevered plate with a transverse crack is shown in Fig. 1, where h ¼ 1:5� 10�1 m,
l ¼ 6:0� 10�2 m, t ¼ 3:0� 10�3 m. The material model is steel with Young’s modulus E ¼ 200 GPa, density
r ¼ 7800 kg=m3, and Poisson’s ratio n ¼ 0:3. The FE model is composed of 6750 brick linear elements and has
approximately 28,000 DOF. This FE model is used for all the numerical results in this paper, and the generation of the FE
model as well as component mode synthesis were performed with the commercial code ANSYS [39].
3. Linear free response analysis

3.1. Natural frequency variation due to variations in crack location and length

First, in order to visualize the variations in the natural frequencies for crack parameter variations, which are closely
related to the variations in the nonlinear resonant frequencies, the underlying linear system is studied in this section.
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Fig. 2. First 15 natural frequencies versus (a) crack location ratio hc=h for lc=l ¼ 0:40 and (b) crack length ratio lc=l for hc=h ¼ 0:50.

A. Saito et al. / Journal of Sound and Vibration 326 (2009) 725–739728
Namely, the nonlinear contact force fðuÞ in Eq. (1) is ignored, and for the FE model shown in Fig. 1, eigenvalue analysis was
performed for various values of lc=l and hc=h. The results for the first 15 natural frequencies for two representative cases are
shown in Fig. 2.

First, Fig. 2a shows the results where the crack length was fixed at lc=l ¼ 40 percent, and the crack location was varied as
1:33 � hc=h � 97:3 percent. As can be seen, the changes in the natural frequencies due to the variation in hc=h are quite
complicated, and multiple loci veerings and crossings are observed. In order to examine the individual veering regions,
some cases with realistic crack length ratio, lc=lo60 percent, are discussed below. For example in Fig. 2a, starting around
hc=h ¼ 15 percent, modes 10 and 11 approach each other, but rather than crossing they veer away near hc=h ¼ 19 percent
with high curvature. Second, the crack location was fixed at hc=h ¼ 50 percent, and the crack length was varied, the results
of which are shown in Fig. 2b. The most notable distinction from the case in Fig. 2a is that the natural frequency variation
due to crack length change is monotonic, i.e., as lc=l increases, all natural frequencies tend to decrease. Although the
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Fig. 3. Magnified veeering/crossing regions and associated mode shapes: (a) 10th and 11th modes for lc=l ¼ 0:40 and (b) fifth and sixth modes for

hc=h ¼ 0:50.
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amount of frequency drop is dependent on the mode of interest, this is due to the fact that the stiffness of the plate
decreases monotonically for all modes as the crack length increases.
3.2. Mode shape variation due to variations in crack location and length

In order to see the veering regions more closely, and to see the variations in the mode shapes, representative cases are
shown in Figs. 3 and 4. Fig. 3a shows the veering between the modes 10 and 11 for lc=l ¼ 40 percent, where 1:33 �
hc=h � 40 percent. An important characteristic of the loci veering is the mode shapes associated with the natural
frequencies on each locus before veering are interchanged during the veering in a continuous manner [5]. This is illustrated
in Fig. 3a, which shows that mode shapes 10 and 11 become mixed and then appear to begin switching as the crack location
ratio is increased through the veering region. On the other hand in Fig. 3b, the region for the mode shape switching
between modes five and six is narrow, and it appears to be a loci crossing. This can be explained by considering that mode
five (before switching) corresponds to the second out-of-plane bending mode whereas mode six (before switching)
corresponds to the first in-plane bending mode, and there is little or no coupling between these modes due to their
geometric dissimilarity. Fig. 4 shows another veering region due to crack length variation, for modes seven and eight with
crack location hc=h ¼ 0:63. For this case, both mode mixing and switching can be observed in a more continuous manner
than the cases observed in Fig. 3.
4. Nonlinear forced response analysis

In the previous section, the interchanging of modes as well as mode coupling were observed in frequency veering and
crossing regions. However, only natural frequencies of the linear system were considered. The nonlinearity due to contact
of the crack surfaces was neglected. In this section, a method to calculate the nonlinear resonant frequencies of the cracked
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Ω1

Ω2

Fig. 5. Plate divided into two substructures.
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plate is described. The method is then applied to the calculation of nonlinear resonant frequencies in veering/crossing
regions, and their characteristics are discussed.

4.1. Component mode synthesis

In order to generate a reduced-order model, the plate is separated into two components (substructures) O1 and O2

along the crack path, as shown in Fig. 5, and a hybrid-interface method of component mode synthesis (CMS) [40,41] is
employed. The CMS methods have been widely used for the vibration analysis of systems such as friction-damped systems
[42–44], build-up structures [45], and cracked structures [34,46]. This process is advantageous over the direct application
of FE analysis because it provides improved computational efficiency while maintaining direct access to the dynamics of
the crack-surface DOF. Furthermore, it has good accuracy relative to the original FE model over the frequency range of
interest. The accessibility to the nodes on the crack surfaces is essential to the proper calculation of the boundary condition
at the crack surfaces, which is modeled as contact/impact forces in the formulation described in Section 4.2. Namely,
the dynamics of the FE degrees of freedom are projected onto constraint modes Wc , inertia relief attachment modes Wa

(if rigid-body motion exists), and a truncated set of free-interface normal modes Uk. Interested readers may consult, e.g.,
Craig [47], for the detailed formulation of each mode set.

Let the displacement vector u be partitioned into boundary DOF, ub, and interior DOF ui. By denoting the inertia relief
attachment coordinates and a truncated set of free-interface modal coordinates as qa and qk, the linear projection is
expressed as

ub

ui

" #
¼

I 0 0

Wic Ŵa Ŵk

 ! ub

qa

qk

2
64

3
75 (2)

where Ŵa ¼ Wia �WicWba, Ŵk ¼ Uik �WicUbk, I is the identity matrix, Wic is the boundary partition of Wc , Wia, and Wba
denote the interior and the boundary partitions of Wa, and Uik and Ubk denote the interior and the boundary partitions of
Uk. Denoting Eq. (2) with a compact notation, u ¼ Wq, the application of Eq. (2) to Eq. (1) yields a smaller number of
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equations, i.e.,

M0 €qþ C0 _qþ K0q ¼ b0 þ f0ðqÞ (3)

where M0 ¼ WTMW, C0 ¼ WTCW, K0 ¼ WTKW, b0 ¼ WTb, and f0 ¼ WTf. The superscript ‘‘0’’ is omitted for convenience in the
subsequent formulations.

4.2. Hybrid frequency/time domain method

For the calculation of steady-state response to harmonic excitation, an extension to the alternating frequency/time-
domain method [48], which is based on the concept of the method of harmonic balance [49], is employed in this study.
Because of its computational efficiency and accuracy, this type of method has been developed and applied to forced
response problems for various nonlinear systems, such as friction damped systems [44,43,50,51] and cracked shafts [52]. In
particular, the hybrid frequency/time-domain method developed by Poudou et al. [42,53,54] and the authors [46] is applied
in this paper. Namely, the method assumes that the steady-state vibration response of q in Eq. (3), as well as the external
force b and the nonlinear force due to intermittent contact f are approximated as truncated Fourier series, i.e.,

q ¼ Re
Xnh

k¼0

ðQ c
k � jQ s

kÞ e
jkot

 !
(4)

b ¼ Re
Xnh

k¼0

ðBc
k � jBs

kÞ e
jkot

 !
(5)

f ¼ Re
Xnh

k¼0

ðFc
k � jFs

kÞ e
jkot

 !
(6)

where 2p=o is the fundamental frequency, nh is the number of non-zero harmonics, and j ¼
ffiffiffiffiffiffiffi
�1
p

. Note that Q c
k and �Q s

k
are the vectors of real and imaginary parts of kth Fourier coefficients of q, where superscripts c and s denote cosine and sine
components of the vibration, respectively. The same notation is applied to Bc

k, Bs
k, Fc

k, and Fs
k. Substituting Eqs. (4)–(6) into

Eq. (3) and considering the orthogonality of harmonic functions, it results in a nonlinear algebraic equation with respect to
the Fourier coefficients for kth harmonic number, i.e.,

KkQ k ¼ Bk þ FkðQ Þ (7)

where Q 0 ¼ Q c
0, B0 ¼ Bc

0, F0 ¼ Fc
0, K0 ¼ K, Q k ¼ ½ðQ

c
kÞ

T; ðQ s
kÞ

T�T, Bk ¼ ½ðB
c
kÞ

T; ðBs
kÞ

T�T, Fk ¼ ½ðF
c
kÞ

T; ðFs
kÞ

T�T, and

Kk ¼
�ðkoÞ2Mþ K ðkoÞC
�ðkoÞC �ðkoÞ2Mþ K

 !
(8)

for k ¼ 1; . . . ;nh. Assembling Eq. (8) for all k ¼ 0;1; . . . ;nh,

KQ ¼ Bþ FðQ Þ (9)

where K is a pseudo-block diagonal matrix with Lk on its diagonal blocks for k ¼ 0; . . .nh, Q ¼ ½Q T
0; . . . ;Q

T
nh
�T,

B ¼ ½BT
0; . . . ;B

T
nh
�T, and F ¼ ½FT

0; . . . ; F
T
nh
�T. Eq. (9) can then be solved with nonlinear algebraic equation solvers. For the

numerical examples shown in this paper, the Hybrid Powell method [55] was employed.

4.3. Results of forced response analysis

In this subsection, the result of nonlinear forced response analysis for the cantilevered cracked plate is presented,
with the methods described in Sections 4.1 and 4.2. The damping was chosen to be C ¼ aMþ bK where a ¼ 1:22 and
b ¼ 8:16� 10�9, which result in damping that is approximately equivalent to modal (structural) damping ratio z ¼
1:00� 10�4 (g ¼ 2:00� 10�4) within the frequency range of 1900 � f � 2000 Hz. Vectors of harmonic forcing, the
resultant of which is equal to 1 N, is applied to the nodes on the tip face of the plate to excite the modes of interest.
The number of harmonics was chosen as nh ¼ 9, which showed convergence in the resonant frequency predicted in the
frequency response for the modes of interest. A representative result of a convergence study in terms of the number of
harmonic numbers is shown in Fig. 6 for the sixth mode with hc=h ¼ 0:5 and lc=l ¼ 0:167. For the case shown in Fig. 6, the
predicted resonant frequency converged within 0.003 percent relative error. Representative results are shown in Fig. 7
where hc=h ¼ 0:5, lc=l ¼ 0:167 for Fig. 7a, and lc=l ¼ 0:2 for Fig. 7b. Fig. 7a shows the resonant peaks corresponding to
modes five and six, which correspond to the third out-of-plane bending and the first in-plane bending modes, respectively,
whereas the order of the modes is interchanged in Fig. 7b.



ARTICLE IN PRESS

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
0

1

2

3

4

5

6
x10-4

Frequency [Hz]

M
ax

. a
m

pl
itu

de
 o

f 
vi

br
at

io
n 

at
 th

e 
tip

 n
od

es
 [

m
]

Fig. 6. Convergence on the forced response results of the sixth mode (in-plane bending) for hc=h ¼ 0:5 and lc=l ¼ 0:167; ——, nh ¼ 9, - - - - -, nh ¼ 7, – – –,
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5. Bilinear frequency approximation

5.1. Formulation

As an alternative way of predicting the nonlinear vibration frequencies, the bilinear frequency approximation is
generalized for the analysis of three-dimensional cracked structures, and an analysis framework based on reduced-order
modeling as well as prediction of mode switching during the veering regions is proposed in this section. The resonant
peaks predicted by the forced response to harmonic excitation is then compared with those calculated by the bilinear
frequency approximations.

The bilinear frequency was originally introduced as the effective vibration frequency of a piecewise linear, single-DOF
system and defined as (e.g., Ref. [29]),

ob ¼
2o1o2

o1 þo2
(10)

where ob is the bilinear frequency, o1 is the natural frequency of one of the linear systems associated with the piecewise
linear system, and o2 is that of the other linear system of the piecewise linear system. This expression is the exact solution,
for the frequency of free oscillation of the piecewise linear single-DOF oscillator with vanishing clearance/gap at the
equilibrium. The application of Eq. (10) to a multi-DOF piecewise linear system is rather straightforward if there is only one
pair of linear systems. However in the cases of cracked plates formulated with multiple DOF on crack surfaces, it involves
multiple piecewise linear systems, or a conewise linear systems [35]. Hence an assumption has to be made such that the
cracked system has only two linear systems corresponding to two states, i.e., the crack is open or closed. These are
designated as states 1 and 2, respectively, in the following formulation. The definition of the states 1 and 2 is a natural
extension to that proposed by Chati et al. [33], which was applied to the analysis of in-plane bending vibrations of a cracked
beam. Namely, with the assumption of the open state, there is no connection between the nodes on one crack surface and
the nodes on the other surface (Fig. 8a), allowing the inter-penetration of the crack surfaces. On the other hand with the
closed state, the relative DOF along the direction that is perpendicular to the crack surfaces are fixed to be zero, whereas the
other two DOF of each node are allowed to move freely in the plane tangent to the constrained direction (Fig. 8b). In other
words, the crack surfaces are allowed to slide with respect to each other, which is consistent with the assumption
employed in the formulation in Section 4.2. Associated mathematical formulation is given as follows.

For a given crack length, eigenvalues of Eq. (1) for undamped case with open crack assumption are obtained as

K/ ¼ o2
1M/ (11)

where / is the eigenvector and o2
1 is the associated eigenvalue. On the other hand, the eigenvalues and eigenvectors for the

other case, namely the case with allowing sliding of crack surfaces, are obtained by imposing appropriate constraints on
Eq. (11) as follows. Let A and B denote the crack surfaces facing each other, by assuming that the amplitude of vibration is
much smaller than the finite element mesh size on the crack surfaces, it is possible to identify the finite element nodes that
may be in contact during the vibration cycle. Hence such pairs of nodes are numbered and a set Ccp is defined where all
numbers that denote the contact pairs are included. Defining gn as the gap between the nodes on the surfaces A and B for
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Fig. 7. Results of nonlinear harmonic response analysis for hc=h ¼ 0:5: (a) lc=l ¼ 0:167, ——, fifth mode (out-of-plane bending), - - - - -, sixth mode (in-

plane bending) and (b) lc=l ¼ 0:200, - - - - -, fifth mode (in-plane bending), ——, sixth mode (out-of-plane bending).

Fig. 8. Constraints for bilinear frequency calculation: (a) open (no constraints) and (b) closed (sliding).
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the nth contact pair, the constraints to be imposed on the nodes of nth contact pair are expressed as

gn ¼ ðunÞA � ðunÞB ¼ 0; n 2 Ccp (12)

where ðunÞA and ðunÞB denote the displacements of the nodes on the surface A and B, projected onto the normal direction
pointing outward from the surface A or B. It is noted that appropriate coordinate transformation must be applied to the
displacement vector based on the normal vector at each node, in order to correctly calculate gn. It should also be noted
that the motion of the nodes in tangential plane that is perpendicular to the normal direction is not constrained at all by
Eq. (12), i.e., the nodes are free to slide with each other on the tangential plane. This also indicates that the crack surfaces
are assumed to be frictionless, which is widely employed assumption for the vibration problem of cracked beams
and plates. Applying the constraints Eq. (12) to the eigenvalue problem Eq. (11), a constrained eigenvalue problem is
obtained as

K NT

N 0

" #
/

k

" #
¼ o2

2

M 0

0 0

� �
/

k

" #
(13)

where N is the matrix of coefficients that are associated with Eq. (12) and the appropriate transformation matrix, and k is
the vector of Lagrange multipliers of size jCcpj. One method to solve this indefinite eigenvalue problem is to use an
eigenvalue solver for indefinite systems. Another method is to first eliminate the redundant equations due to the constraint
equations Eq. (12), and the resulting positive definite eigenvalue problem is then solved by an eigenvalue solver for definite
systems. It should be noted that this methodology can easily be incorporated with the reduced-order modeling framework
described in Section 4.1 as the motion of the nodes on the crack surfaces in the three-dimensional space can be captured
with the reduced-order model.

With the eigenvalue problems Eqs. (12) and (13), the ith bilinear resonant frequency obi of the cracked plate is
approximated based on Eq. (10):

obi ¼
2o1io2i

o1i þo2i
(14)

where o1i and o2i denote the frequencies of the ith mode of the states 1 and 2. It is emphasized that the index i does not
denote the index of eigenvalues, but it denotes the index of the eigenvectors of the non-cracked plate. Namely, the
eigenvectors of the non-cracked plate are indexed based on their natural frequencies, i.e., for non-cracked plate, the
eigenvalues are ordered as o1 � o2 � � � � � oN�1 � oN where N is the size of the non-cracked plate model, and
corresponding eigenvectors are labeled as ½/1;/2; . . . ;/N�1;/N�. The reason for introducing this ordering will become
apparent shortly. The bilinear frequency obi for a given crack length is calculated by using the natural frequencies of the
corresponding ith mode of the states 1 and 2.

The advantage of this method is that the frequency of the nonlinear response is obtained without calculating the
associated response shapes, thus it only involves eigenvalue extraction of two linear systems. However, as mentioned, this
method is known to be accurate for systems with a relatively short crack. In addition, a drawback of this method is that the
choice of proper pairs of o1i and o2i is not apparent with the presence of a veering or crossing, because the mode shapes
associated with the natural frequencies switch their orders. A way to overcome the latter problem is to track each mode by
observing the correlation between the modes during the variation of crack length or crack location. In this paper, the modal
assurance criterion (MAC) [56] is employed as the measure of correlation.

Denoting the crack length as p (¼ lc), it is noted that N and k are dependent on p. That is, N ¼ NðpÞ and k ¼ kðpÞ. The
eigenvector is also dependent on p, or / ¼ /ðpÞ, and the correlation between the ith mode shape of the system with p ¼ p0
and the jth mode shape with the perturbed crack length p ¼ p0 þ Dp can be characterized by

MACk
ij ¼

j/k
i ðp0Þ

T/k
j ðp0 þDpÞj2

k/k
i ðp0Þk

2k/k
j ðp0 þ DpÞk2

; k ¼ 1;2 (15)

where / is the eigenvector of the system defined by Eq. (13), the subscripts i and j denote the indices for modes, the
superscript k indicates the state, and MACk

ij takes the value between 0 and 1, which, respectively, correspond to no
correlation, and consistent correlation between /iðp0Þ and /jðp0 þ DpÞ. Namely, the ith eigenvector is tracked based on the
value of MAC throughout the variation of the crack length (p), such that the correct natural frequencies for the ith
eigenvector in Eq. (14) can be calculated.

In order to better clarify the behavior of the natural frequencies of the system with open and sliding boundary
conditions, as well as the bilinear frequencies, the above-mentioned analysis framework was applied to the reduced-order
model of the cracked plate with hc=h ¼ 0:50. As an example, the veering region between the fifth and sixth modes are
shown in Fig. 9. As was shown in Section 3.2, the modes of interest are the in-plane and out-of-plane bending modes. In
Fig. 9, two significant insights into the behavior of the frequencies are shown. The first is that the existence and location
vary between the cases with open and sliding boundary conditions, and bilinear frequency. For the case with sliding
boundary condition, the veering between fifth and sixth modes does not exist. On the other hand for the open boundary
condition case, the loci of fifth and sixth modes approach and veer away where 10 � lc=l � 15 percent. Therefore the
bilinear frequency also has the veering region due to that for the open boundary condition, but slightly shifted toward
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Fig. 9. Comparison between natural frequencies with open and sliding B.C.’s, and bilinear frequencies for the system with hc=h ¼ 0:50: (a) the fifth and

sixth natural frequencies of the system with sliding and open B.C.’s, and bilinear frequencies: - - -�- - -, sixth mode with sliding B.C.; - - -�- - -, fifth mode

with sliding B.C.; – – � – –, sixth natural frequency with open B.C.; – – � – –, fifth natural frequency with open B.C.; —�—, sixth bilinear frequency; —�—,

fifth bilinear frequency. (b) Close-up view of the veering region for natural frequencies with open B.C. and bilinear frequencies: – – � – –, sixth natural

frequency with open B.C.; – – � – –, fifth natural frequency with open B.C.; —�—, sixth bilinear frequency; —�—, fifth bilinear frequency.
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larger crack length ratio because of the absence of the veering for the sliding boundary condition case (Fig. 9b). The second
is that the bilinear frequency is always bounded by the frequencies corresponding to the cases with sliding and open
boundary conditions, which are, respectively, the upper and lower bounds (Fig. 9a). This can also be easily verified from
Eq. (14), i.e., if o1i � o2i, then o1i � obi and obi � o2i. Furthermore, it is noted that the width between the upper and
lower bounds indicates the strength of the effect of contact nonlinearity on the resonant frequency. For instance, for the
fifth bilinear frequency that corresponds to the in-plane bending mode, the width between the bounds is much larger than
that for the sixth bilinear frequency, which corresponds to the out-of-plane bending mode. This is due to the fact that the
motion of the in-plane bending mode is greatly influenced by the existence of the contact force at the crack surfaces,
whereas the out-of-plane bending modes is not so much affected by the contact force considering that the motion of the
crack surfaces is almost perpendicular to the crack surfaces.

It is noted that there have been other approaches for obtaining approximate bilinear frequencies for multi-DOF systems,
such as the one presented in Refs. [30,34,35,57], which is based on the construction of an equivalent linear stiffness matrix.
The current implementation of the proposed method is not compatible with the equivalent stiffness matrix method, as the
linear subregions, which are the systems with the sliding B.C. and the one with the open B.C., are realized by the application
of constraints at the discontinuities. It means that the subregions have different number of DOFs, and the resulting stiffness
matrices are not the same size. This issue could be solved by first applying the modal decomposition to the matrices for
both subregions, and construct the equivalent stiffness matrix in the modal space, by adjusting the modal stiffness matrix
size by mode truncation such that size of the modal matrices of the subregions is identical. However, the resulting
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equivalent modal stiffness matrix is a diagonal matrix with bilinear frequencies on its diagonal, hence this method
produces the same bilinear frequencies as the one produced by the proposed method. It is noted that even with the
equivalent stiffness method, the matching of correct modes is still necessary to calculate the bilinear frequencies, as the
natural frequencies on the diagonal terms of modal stiffness matrices do not necessarily represent the same mode.

5.2. Comparison with the results of forced response analysis

Using the bilinear frequency approximation described above, the nonlinear vibration frequencies of the cracked plate
are calculated, and they are compared with those obtained by the HFT method. It is noted that the comparison between the
resonant frequencies obtained by forced response analysis, and the bilinear frequencies, namely the vibration frequencies
of unforced system, has been made based on the assumption that the resonant frequencies reside in the vicinity of the
frequencies associated with the nonlinear normal modes [58]. Furthermore, the resonant frequencies are assumed to be
independent of the amplitude of forcing, based on the fact that the resonant frequencies of piecewise linear systems with
the vanishing gap at the equilibrium are not dependent on vibration amplitude [29,46].

It is also noted that the HFT method is capable of calculating the gradual opening and closing of crack faces during a
vibration cycle, by considering the three-dimensional time trajectory of nodes on crack faces at the steady state. A detailed
formulation can be found in Ref. [46], and its accuracy was validated by a comparison with the results of time integration of
a FE model. The role of the HFT method here is to find the accurate frequency response results without any assumption on
the number of linear subregions, as opposed to the assumption that there are two linear subregions for the bilinear
frequency approximations.

Three representative veering regions are considered, which are the cases where (a) the interaction between the loci is
weak and the corresponding modes are: (1) in-plane and out-of-plane bending modes and (2) both out-of-plane bending
modes and (b) the interaction between the loci is strong and veering occurs in a continuous way and the associated modes
are both out-of-plane bending modes.

First, the veering between an in-plane bending mode and an out-of-plane bending mode is considered, using the modes
five and six, for hc=h ¼ 0:50, as shown in Fig. 3b. The results of forced response analysis as well as the calculation based on
bilinear frequency assumption are shown in Fig. 10a. As can be seen, the order-switching of modes can be observed even for
this nonlinear system. The most notable distinction from the linear assumption, i.e., Fig. 3b, is that the veering occurs with
longer crack length at around 20 percent in Fig. 10a, than the one at around 10 percent with the linear assumption in
Fig. 3b. This is due to the stiffening effect because of the contact/impact of crack surfaces during the vibration cycle, which
represents the dynamics of the cracked plates appropriately. Regarding the bilinear frequency approximation, a notable
result has been observed: the bilinear frequency assumption predicts the resonant frequency calculated by HFT method
quite well even for relatively large crack length ratio (lc=l � 40 percent).

Second, the veering between two out-of-plane bending modes is considered, using the modes nine and 10 for
hc=h ¼ 0:60, and the calculation results are shown in Fig. 10b. This result also shows that bilinear frequency approximates
the resonant frequencies quite well for the case of veering between out-of-plane bending modes, with relatively large crack
length. Even though the effect of nonlinearity on the vibration frequency is smaller than that on the in-plane bending
modes, as it does not involve much contact/impact between crack surfaces, this clearly indicates that the bilinear frequency
approximation can also be used for the prediction of nonlinear vibration frequencies of out-of-plane bending modes.

Third, the veering between the torsion and out-of-plane bending modes are examined, using the modes seven and eight
for hc=h ¼ 0:63 and results are shown in Fig. 10c. This veering region features a switching of modes in a continuous way, or
in other words, the mode shapes gradually change as the crack length is varied. This result shows that the bilinear
frequency approximation predicts the nonlinear vibration frequency quite well even for the modes that exhibit compli-
cated geometry due to coupling between modes. Moreover, the results show that the approximation is accurate even for
large cracks.

Lastly, it is restated here that the possibility of a non-vanishing gap at the crack faces at the equilibrium, which is known
to change the nonlinear resonant frequency, is ignored in the above formulations. Detailed discussions on the effects of gap
for the piecewise linear oscillators can be found in Refs. [35,30,36], and bilinear frequency expression for piecewise linear
oscillators with a gap can be found in Refs. [30,57]. Furthermore, the discussion on the effects of a gap at the equilibrium for
the forced vibration problems of a cracked structure was done by the authors in Ref. [46], by the use of the HFT method. It
was shown that as the amplitude of vibration increases, the nonlinear resonant frequency monotonically increases after the
amplitude of vibration exceeds a threshold, and converges to a certain value, as can be seen in Ref. [36]. Such behavior of
the nonlinear resonant frequency might be captured by the extension of the amplitude-dependent bilinear frequency
expression for piecewise linear oscillators, to the system with multiple discontinuities. However, such discussions and
formulations are beyond the scope of this paper.

6. Conclusions

In this paper, the linear and nonlinear vibration response of a cracked cantilevered rectangular plate have been
investigated. In particular, the veering phenomena for the natural frequencies of the cracked plate were investigated. It was



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40
1800

1850

1900

1950

2000

R
es

o
n
an

t 
fr

eq
u
en

cy
 [

H
z]

Crack length ratio          [%]

25 30 35 40 45 50
4300

4400

4500

4600

4700

4800

4900

5000

5100

R
es

o
n
an

t 
fr

eq
u
en

cy
 [

H
z]

0 10 20 30 40 50
2000

2500

3000

3500

4000

4500

R
es

o
n
an

t 
fr

eq
u
en

cy
 [

H
z]

Crack length ratio          [%]

Fig. 10. Comparison between bilinear frequency assumption and HFT method, and corresponding mode shapes with open B.C.: (a) hc=h ¼ 0:50, —�—,

bilinear frequency, ‘‘�’’, HFT method; (b) hc=h ¼ 0:60, —�—, bilinear frequency, ‘‘�’’, HFT method; (c) hc=h ¼ 0:63, —�—, bilinear frequency, ‘‘�’’, HFT

method.
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observed that veerings appear in plots of natural frequencies versus crack length or crack location ratio. It was shown that a
wider veering region entails continuous interchanging between the modes, whereas a smaller veering (or crossing) region
shows fast mode switching. Then, the nonlinear vibration response of the cracked plate due to contact of the crack surfaces
was considered. A hybrid frequency/time-domain method was applied to the calculation of nonlinear resonant frequencies
in representative veering/crossing regions. It was shown that the characteristics of veerings/crossings are affected to some
extent by the nonlinearity induced by the crack closing effect, although in general they are similar to those of the linear
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counterparts. Furthermore, an alternative method for estimating the nonlinear resonant frequencies was proposed by
generalizing the bilinear frequency approximation. The results of the proposed method were validated with the resonant
frequencies obtained by the nonlinear forced response analysis for three typical veering scenarios. Moreover, it was shown
that the method works even for relatively large crack length ratio.
Acknowledgment

The authors would like to thank Dr. Steven W. Shaw for his suggestion on the possibility of applying bilinear frequency
approximation for this problem.
References

[1] A.D. Dimarogonas, Vibration of cracked structures: a state of the art review, Engineering Fracture Mechanics 55 (5) (1996) 831–857.
[2] A. Saito, M.P. Castanier, C. Pierre, Effects of a cracked blade on mistuned turbine engine rotor vibration, in Proceedings of IDETC 2007, paper DETC2007-

35663, Las Vegas, NV, USA, 2007. (Also: Journal of Vibration and Acoustics—Transactions of the ASME, in press, 2009).
[3] J.R. Kuttler, V.G. Sigillito, On curve veering, Journal of Sound and Vibration 75 (4) (1981) 585–588.
[4] A.W. Leissa, On a curve veering aberration, Zeitschrift für Angewandte Mathematik und Physik 25 (1) (1974) 99–111.
[5] N.C. Perkins, C.D. Mote, Comments on curve veering in eigenvalue problems, Journal of Sound and Vibration 106 (3) (1986) 451–463.
[6] C. Pierre, E.H. Dowell, Localization of vibrations by structural irregularity, Journal of Sound and Vibration 114 (3) (1987) 549–564.
[7] C. Pierre, Mode localization and eigenvalue loci veering phenomena in disordered structures, Journal of Sound and Vibration 126 (3) (1988)

485–502.
[8] M.S. Triantafyllou, G.S. Triantafyllou, Frequency coalescence and mode localization phenomena: a geometric theory, Journal of Sound and Vibration

150 (3) (1991) 485–500.
[9] S. Vidoli, F. Vestroni, Veering phenomena in systems with gyroscopic coupling, Journal of Applied Mechanics 72 (5) (2005) 641–647.

[10] N. Challamel, C. Lanos, C. Casandjian, Localization in the buckling or in the vibration of a two-span weakened column, Engineering Structures 28 (5)
(2006) 776–782.

[11] M. Lepidi, V. Gattulli, F. Vestroni, Static and dynamic response of elastic suspended cables with damage, International Journal of Solids and Structures
44 (25–26) (2007) 8194–8212.

[12] P.P. Lynn, N. Kumbasar, Free vibrations of thin rectangular plates having narrow cracks with simply supported edges, Developments in Mechanics 4
(1967) 911–928.

[13] M. Petyt, The vibration characteristics of a tensioned plate containing a fatigue crack, Journal of Sound and Vibration 8 (3) (1968) 377–389.
[14] B. Stahl, L.M. Keer, Vibration and stability of cracked rectangular plates, International Journal of Solids and Structures 8 (1) (1972) 69–91.
[15] Y. Hirano, K. Okazaki, Vibration of cracked rectangular-plates, Bulletin of the JSME—Japan Society of Mechanical Engineers 23 (1980) 732–740.
[16] R. Solecki, Bending vibration of a simply supported rectangular plate with a crack parallel to one edge, Engineering Fracture Mechanics 18 (6) (1983)

1111–1118.
[17] J. Yuan, S.M. Dickinson, The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz method, Journal

of Sound and Vibration 159 (1) (1992) 39–55.
[18] K.M. Liew, K.C. Hung, M.K. Lim, A solution method for analysis of cracked plates under vibration, Engineering Fracture Mechanics 48 (3) (1994)

393–404.
[19] C.C. Ma, C.H. Huang, Experimental and numerical analysis of vibrating cracked plates at resonant frequencies, Experimental Mechanics 41 (1) (2001)

8–18.
[20] S. Christides, A.D.S. Barr, One-dimensional theory of cracked Bernoulli–Euler beams, International Journal of Mechanical Sciences 26 (11–12) (1984)

639–648.
[21] M.H.H. Shen, C. Pierre, Natural modes of Bernoulli–Euler beams with symmetric cracks, Journal of Sound and Vibration 138 (1) (1990) 115–134.
[22] M.H.H. Shen, C. Pierre, Free vibrations of beams with a single-edge crack, Journal of Sound and Vibration 170 (2) (1994) 237–259.
[23] T.G. Chondros, A.D. Dimarogonas, J. Yao, A continuous cracked beam vibration theory, Journal of Sound and Vibration 215 (1) (1998) 17–34.
[24] P. Gudmundson, The dynamic behavior of slender structures with cross-sectional cracks, Journal of the Mechanics and Physics of Solids 31 (4) (1983)

329–345.
[25] N. Pugno, C. Surace, R. Ruotolo, Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks,

Journal of Sound and Vibration 235 (5) (2000) 749–762.
[26] A.P. Bovsunovsky, C. Surace, Consideration regarding superharmonic vibrations of a cracked beam and the variation in damping caused by the

presence of the crack, Journal of Sound and Vibration 288 (4–5) (2005) 865–886.
[27] A. Carpinteri, N. Pugno, Towards chaos in vibrating damaged structures—part i: theory and period doubling cascade, Journal of Applied Mechanics 72

(4) (2005) 511–518.
[28] U. Andreaus, P. Casini, F. Vestroni, Non-linear dynamics of a cracked cantilever beam under harmonic excitation, International Journal of Non-Linear

Mechanics 42 (3) (2007) 566–575.
[29] S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator, Journal of Sound and Vibration 90 (1) (1983) 129–155.
[30] E.A. Butcher, Clearance effects on bilinear normal mode frequencies, Journal of Sound and Vibration 224 (2) (1999) 305–328.
[31] M.H.H. Shen, Y.C. Chu, Vibrations of beams with a fatigue crack, Computers & Structures 45 (1) (1992) 79–93.
[32] T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibration of a beam with a breathing crack, Journal of Sound and Vibration 239 (1) (2001) 57–67.
[33] M. Chati, R. Rand, S. Mukherjee, Modal analysis of a cracked beam, Journal of Sound and Vibration 207 (2) (1997) 249–270.
[34] M. Kisa, J. Brandon, The effects of closure of cracks on the dynamics of a cracked cantilever beam, Journal of Sound and Vibration 238 (1) (2000) 1–18.
[35] L. Zuo, A. Curnier, Nonlinear real and complex-modes of conewise linear-systems, Journal of Sound and Vibration 174 (3) (1994) 289–313.
[36] D. Jiang, C. Pierre, S.W. Shaw, Large-amplitude non-linear normal modes of piecewise linear systems, Journal of Sound and Vibration 272 (3–5) (2004)

869–891.
[37] S.L. Chen, S.W. Shaw, Normal modes for piecewise linear vibratory systems, Nonlinear Dynamics 10 (2) (1996) 135–164.
[38] W. Lacarbonara, H.N. Arafat, A.H. Nayfeh, Non-linear interactions in imperfect beams at veering, International Journal of Non-Linear Mechanics 40 (7)

(2005) 987–1003.
[39] ANSYS, Inc., ANSYS Release 10.0 Documentation, ANSYS, Inc., Pittsburgh, PA, 2005.
[40] R.M. Hintz, Analytical methods in component modal synthesis, AIAA Journal 13 (8) (1975) 1007–1016.
[41] D.N. Herting, A general purpose, multi-stage, component modal synthesis method, Finite Elements in Analysis and Design 1 (2) (1985) 153–164.
[42] O. Poudou, Modeling and Analysis of the Dynamics of Dry-Friction-Damped Structural Systems, Ph.D. Thesis, The University of Michigan, 2007.
[43] E.P. Petrov, D.J. Ewins, Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies, Journal

of Turbomachinery—Transactions of the ASME 128 (2006) 403–410.



ARTICLE IN PRESS

A. Saito et al. / Journal of Sound and Vibration 326 (2009) 725–739 739
[44] S. Nacivet, C. Pierre, F. Thouverez, L. Jezequel, A dynamic lagrangian frequency–time method for the vibration of dry-friction-damped systems,
Journal of Sound and Vibration 265 (1) (2003) 201–219.

[45] L. Ji, B.R. Mace, R.J. Pinnington, A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures,
Journal of Sound and Vibration 289 (1–2) (2006) 148–170.

[46] A. Saito, M.P. Castanier, C. Pierre, O. Poudou, Efficient nonlinear vibration analysis of the forced response of rotating cracked blades, Journal of
Computational and Nonlinear Dynamics—Transactions of the ASME 4 (1) (2009) 011005.

[47] R.R. Craig, Structural Dynamics: An Introduction to Computer Methods, Wiley, New York, 1981.
[48] T. Cameron, J. Griffin, An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems, Journal

of Applied Mechanics 56 (1989) 149–154.
[49] A. Nayfeh, D. Mook, Nonlinear Oscillations, Wiley, New York, 1979.
[50] C. Pierre, A.A. Ferri, E.H. Dowell, Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method, Journal of

Applied Mechanics 52 (4) (1985) 958–964.
[51] D. Laxalde, F. Thouverez, J.J. Sinou, J.P. Lombard, Qualitative analysis of forced response of blisks with friction ring dampers, European Journal of

Mechanics A—Solids 26 (4) (2007) 676–687.
[52] J.J. Sinou, A.W. Lees, A non-linear study of a cracked rotor, European Journal of Mechanics A—Solids 26 (1) (2007) 152–170.
[53] O. Poudou, C. Pierre, B. Reisser, A new hybrid frequency–time domain method for the forced vibration of elastic structures with friction and

intermittent contact, in Proceedings of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Paper
ISROMAC10-2004-068, Honolulu, Hawaii, 2004.

[54] O. Poudou, C. Pierre, A new method for the analysis of the nonlinear dynamics of structures with cracks, in Proceedings of NOVEM 2005, Saint-Raphaël,
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