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In this paper a qualitative analysis of the dynamic systems described with the second-

order differential equation with fractional order deflection function is considered. The

existence of fixed points, closed orbits and the unions of fixed points and the trajectories

connecting them is shown. The homoclinic orbit which connects a fixed point with itself

and the corresponding stable and unstable manifolds are given in the closed analytical

form. Melnikov’s procedure for defining the criteria for transversal intersection of the

stable and unstable manifolds is extended for the systems with fractional order

deflection function. The critical parameter values for chaos are obtained analytically and

proved numerically using the Lyapunov exponents. The bifurcation diagrams are plotted

for various values of fractional order and the transition to chaos by period doubling is

shown. The phase plane diagrams and the Poincare maps for certain fractional orders

are obtained. The control of chaos and the transformation to periodic motion is

considered.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper the generalized Duffing type differential equation with fractional order nonlinear term is considered

€x� xþ xjxja�1 ¼ eðg cosot � d_xÞ. (1)

The constant a41 is an integer or a fraction. For e51 the coefficients eg and ed are small parameters. The frequency of the
periodic function is o: This investigation represents the extension of previous work [1] and the generalization of [2,3] for
the Duffing equation with a strong cubic term (a ¼ 3Þ

€x� xþ x3 ¼ eðg cosot � d_xÞ. (2)

The differential equation (1) has a physical meaning. Namely (1) represents the oscillatory motion of a buckled beam
with simply supported or hinged ends for the modal displacement xðtÞ (see [4–6]). The terms on the right-hand side of
Eq. (1) correspond to the small excitation and damping force and the terms on the left-hand side are the inertial and the
restitution force, respectively. The exponent a in the fraction order power law depends on the material and bending
properties of the beam. There are many materials whose elastic properties are not linear. For example, the elastic properties
of the aircraft materials: aluminum, titanium, etc., are of Ramberg–Osgood type [7], where a is a fraction higher than 1. For
copper and copper alloys, whose elastic properties are of Ludwick type [8,9], the parameter a is a rational number which is
All rights reserved.
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determined experimentally. The constitutive models of the wood [10], polymers [11] and composite materials [12] are
presented in polynomial form where a ¼ 3 and the differential equation of beam’s motion is of Duffing type [13] with
strong cubic nonlinearity.

The vibrations of the piano hammer are also described with (1). The piano hammer is a wooden beam which is coated
with several layers of compressed wool felts. The elastic force in the hammer is nonlinear and the exponent a has the
values ranging from 2.2 to 3.5 for hammers taken from pianos and 1.5 to 2.8 for new hammers [14].

In the paper [15] the nonlinear vibrations in the vehicle are considered. The properties of the suspension and the tires
are nonlinear. The experimentally obtained value for a is about 3

2.
A vibration model of open celled polyurethane foam automative seat cushions [16,17] has the form (1). The coefficient

a is obtained experimentally and has the value 5.945.
Relation (1) describes the phenomena in electronics too. The nonlinearity of the restitution force has an important role

in micro-electromechanical systems like micro-oscillators [18], micro-filters [19], and micro-actuators [20]. The
investigations done for the micro-actuators [20] give the optimal values for a to be in the interval 4–7.

As it is seen in the previous examples the coefficient a is higher than 1 and need not be an integer. Eq. (1) is with a
fractional order term which involves the well-known Duffing equation with cubic nonlinearity (2) and represents the
generalized Duffing equation.

In this paper the criteria of chaos and the control of chaos for the system described with (1) and its dependence on the
parameter a are investigated. The criteria of chaos are obtained analytically by generalization of Melnikov’s procedure [21]
which was developed for the Duffing equation with cubic nonlinearity (2) (see [22,23]) and its modifications (for the
Duffing equation with complex function [24], Duffing equation with strong cubic and quintic term [25], a three-well
Duffing system [26], etc.). In Section 2, the homoclinic orbit for (1) is given in the exact analytical form and according to
Melnikov’s theorem [21] the rate of change of the distance between stable and unstable manifolds for small perturbations
is calculated. The parameter values producing chaotic behavior of the system are determined. The dependence of the
critical parameters value on the value of a is explicitly shown. In Section 3, for certain fractional values, the numerical
simulation of (1) is done. The phase plane diagrams and the Poincare maps are plotted. In Section 4, the existence of the
chaotic motion is proved by calculating the Lyapunov characteristic exponents. The bifurcation diagrams for these fraction
values are also plotted and the critical values for chaotic motion are numerically determined. The analytically and
numerically obtained critical values are compared and the accuracy of the analytical procedure is proved. In Section 5, the
delayed feedback control, the so-called ‘Pyragas method’ (see [27–33]), is adopted for the chaos control of the fractional
order differential equation (1). Usually, for controlling chaos in the equations of Duffing type the feed-forward (also called
non-feedback or open-loop) control (see [34–42]) is applied. The feed-forward control is based on the additional
perturbation to the system and, then, on determination of the frequency values of excitation which destroy the chaos
([23,25,26] and [36–40]). Unfortunately, the calculation of the new Melnikov’s function for the perturbed system is not an
easy task. Very often the parameters for chaos suppression are obtained numerically. At the other side, the ‘Pyragas
method’, due to its simplicity, is widely used for control chaos in lasers [43,44], magneto-elastic systems (see [45,46]), the
‘traffic models, pulse-width modulation controlled buck converters, paced excitable oscillators described by FitzHugh–
Nagumo model widely used in physiology’ [47], in Lorenz system [48], but also in coupled electromechanical systems (see
[49,50]). In this paper the method of chaos control by delayed self-controlling feedback developed by Pyragas [27–31] is
applied for (1). The theoretical considerations are tested on a few examples. The results obtained after control are
compared with those before suppressing chaos.

2. Homoclinic orbits in the unperturbed fractional order system

For the unperturbed system with fractional order displacement, when e ¼ 0, the differential equation (1) simplifies to

€x� xþ xjxja�1 ¼ 0. (3)

The system has two centers at ðx; _xÞ ¼ ð�1;0Þ and a hyperbolic saddle at ð0;0Þ. The energy function for (3) is

_x2

2
�

x2

2
þ

x2jxja�1

aþ 1
¼ K , (4)

where K is the energy constant dependent on the initial amplitude xð0Þ ¼ x0; initial velocity _xð0Þ ¼ _x0 and fractional order a

K ¼
_x2

0

2
�

x2
0

2
þ

x2
0jx0j

a�1

aþ 1
. (5)

Dependently on K , the level sets are different. For all of them it is common that they form closed periodic orbits which
surround the fixed points ðx; _xÞ ¼ ð1;0Þ or ðx; _xÞ ¼ ð�1;0Þ or all the three fixed points ð�1;0Þ and ð0;0Þ. The boundary
between these two groups of orbits corresponds to K ¼ 0, when

_x0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 1�
2

aþ 1
jx0j

a�1
� �s

. (6)
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The level set

_x2

2
�

x2

2
þ

x2jxja�1

aþ 1
¼ 0 (7)

is composed of two homoclinic orbits

G0
þðtÞ � ðx

0
þðtÞ; _x

0
þðtÞÞ, (8)

G0
�ðtÞ � ðx

0
�ðtÞ; _x

0
�ðtÞÞ, (9)

which connect the fixed hyperbolic saddle point ð0;0Þ to itself and contain the stable and unstable manifolds. The functions
x0
�ðtÞ are the exact solution of (7) for

x0 ¼ �
aþ 1

2

� �1=ða�1Þ

; _x0 ¼ 0, (10)

i.e.,

G0
þðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

a�1

r
sech

a� 1

2
t

� �� �2=ða�1Þ

;�

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

a�1

r
sech

a� 1

2
t

� �� �2=ða�1Þ

tanh
a� 1

2
t

� � !
,

G0
�ðtÞ ¼ �G

0
þðtÞ, (11)

where sech and tanh are the hyperbolic functions. Relations (10) and (11) represent the closed form analytical solution for
the homoclinic orbits of (1) for e ¼ 0. The relations are the general form of the homoclinic orbits for (1) and are valid for all
values of parameter a41; including not only all integer numbers, but also the whichever fractions.

As the special case, let us determine the homoclinic orbit for the case of cubic nonlinearity. Substituting a ¼ 3 into (10)
and (11) the homoclinic orbits for x0 ¼ �

ffiffiffi
2
p

and _x0 ¼ 0 have the form

G0
þðtÞ ¼ ð

ffiffiffi
2
p

sechðtÞ;�
ffiffiffi
2
p

sechðtÞ tanhðtÞÞ; G0
�ðtÞ ¼ �G

0
þðtÞ. (12)

Comparing (12) with the results given by Guckenheimer and Holmes [2], it is concluded, that they are the same.
Parameters of the homoclinic orbits: The homoclinic orbits form a closed curve which connects the fixed saddle point

ð0;0Þ to itself. The extreme characteristics xmax and _xmax of the homoclinic orbit are according to (10) and (7):
(�ððaþ 1Þ=2Þ1=ða�1Þ;0Þ and (�1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� 1Þ=ðaþ 1Þ

p
). In Table 1 the extreme value xmax and _xmax of the homoclinic orbit

G0
þðtÞ for various fraction values a is calculated.

Analyzing the extreme values in the homoclinic motion, it is concluded that the maximal values xmax and _xmax depend
on the coefficient of fractional order a: the higher the a; the higher the value of _xmax and smaller the value of xmax.
For higher values of a both values tend to 1. For a � 1 the maximal value _xmax tends to zero.

The time period necessary for going from xmax to _xmax in x ¼ 1 also depends on the fractional order a: Namely, rewriting
relation (7) in integral form Z t

0
dt ¼

Z x

xmax

dx

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

aþ 1
jxja�1

r , (13)

and evaluating (13) for xð_xmaxÞ ¼ 1 the following time period is obtained:

T1 ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
2

aþ 1

r

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

aþ 1

r ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
a� 1

2

r !
. (14)

In Table 2 the time period T1 for various values of a is given.
Analyzing (14) and the values given in Table 2, it can be concluded that the higher the value of a the time period T1 is

longer. Besides, from (13) is evident that independently of a; the time necessary for homoclinic orbit to reach the saddle
point, i.e., x! 0, is infinitely long, i.e., t!1: The same result is given by Guckenheimer and Holmes [2] for the cubic
nonlinearity.
Table 1

a 4/3 3/2 5/3 2 3

xmax 1:5880 1:5625 1:5396 1.5000 1:4142
_xmax 0:37796 0:44721 0:50000 0:57735 0:70711
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Table 2

a 4/3 3/2 5/3 2 3

T1 0:39768 0:48121 0:54931 0:65848 0:88137
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The homoclinic orbit separates the phase plane into two areas. Inside the separatrix curve the orbits are around one of
the centers, and outside the separatrix curve the orbits surround both the centers and the saddle point. Physically it means
that for certain initial conditions the oscillations are around one steady-state position, and for others around all the steady-
state solutions (two stable and an unstable).
2.1. Melnikov’s criteria for chaos

Let us form Melnikov’s function for (1) and G0
þðtÞ, i.e. G0

�ðtÞ given by (8) and (9)

Mðt0Þ ¼

Z þ1
�1

_x0
ðtÞ½g cosoðt þ t0Þ � d_x0

ðtÞ�dt, (15)

where

_x0
ðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

a�1

r
sech

a� 1

2
t

� �� �2=ða�1Þ

tanh
a� 1

2
t

� �
,

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

a�1

r
sech

a� 1

2
t

� �� �2=ða�1Þ

. (16)

Substituting (16) into (15) the transformed Melnikov’s function is obtained

Mðt0Þ ¼ � g
aþ 1

2

� �1=ða�1Þ Z þ1
�1

sech
a� 1

2
t

� �� �2=ða�1Þ

tanh
a� 1

2
t

� �
cosoðt þ t0Þdt

� d
aþ 1

2

� �2=ða�1Þ Z þ1
�1

sech
a� 1

2
t

� �� �4=ða�1Þ

tanh
a� 1

2
t

� �� �2

dt, (17)

i.e.,

Mðt0Þ ¼ �g
aþ 1

2

� �1=ða�1Þ

cosot0I1 þ g
aþ 1

2

� �1=ða�1Þ

sinot0I2 � d
aþ 1

2

� �2=ða�1Þ

I3, (18)

where

I1 ¼

Z þ1
�1

sinh
a� 1

2
t

� �

cosh
a� 1

2
t

� �� �ðaþ1Þ=ða�1Þ
cosot dt, (19)

I2 ¼

Z þ1
�1

sinh
a� 1

2
t

� �

cosh
a� 1

2
t

� �� �ðaþ1Þ=ða�1Þ
sinot dt, (20)

I3 ¼

Z þ1
�1

sinh
a� 1

2
t

� �� �2

cosh
a� 1

2
t

� �� �2ðaþ1Þ=ða�1Þ
dt. (21)

The first integral I1 in (19) is zero, since it is the product of an odd and an even function.
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Integral I2: Using the partial integration the integral I2 is transformed into the following form:

I2 ¼ 2

Z þ1
0

sinh
a� 1

2
t

� �

cosh
a� 1

2
t

� �� �ðaþ1Þ=ða�1Þ
sinot dt ¼

4

a� 1

Z þ1
0

sinhðxÞ

½coshðxÞ�ðaþ1Þ=ða�1Þ
sin

2ox

a� 1

� �
dx

¼ � 2

sin
2ox

a� 1

� �
½coshðxÞ�2=ða�1Þ

2
664

3
775
1

0

þ
4o
a� 1

Z þ1
0

cos
2ox

a� 1

� �
½coshðxÞ�2=ða�1Þ

dx. (22)

The first term in the integral is zero and the second has the exact analytical solution for a41 (see [51])

I2 ¼
o

a� 1

22=ða�1Þ

G
2

a� 1

� �G
1þ io
a� 1

� �
G

1� io
a� 1

� �
, (23)

where G is the Euler gamma function and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit.
Special cases:
1. For a ¼ 3; when Gð1Þ ¼ 1 and jGð1=2þ io=2Þj2 ¼ p= coshðpo=2Þ, (see [51]), the value of the integral is

I2ða ¼ 3Þ ¼ op sech
po
2

� �
. (24)

The result is equal to that obtained by the use of the method of residues (see [2]).
2. For a ¼ 2 when Gð1þ ioÞGð1� ioÞ ¼ po= sinhðpoÞ and Gð2Þ ¼ 1 (see [51])

I2 ¼
4po2

sinhðpoÞ . (25)

3. If 2=ða� 1Þ in (22) is an even integer number, i.e., 2=ða� 1Þ ¼ 2n; nX2; the exact analytical solution for the integral
I2 is given by Gradstein and Rjizhik [51]

I2 ¼
4npn2o2

ð2n� 1Þ! sinhðnpoÞ
Yn�1

k¼1

ðo2n2 þ k2
Þ. (26)

4. If 2=ða� 1Þ is an odd integer number, i.e., 2=ða� 1Þ ¼ 2nþ 1; nX1; the analytical expression of the integral I2 is

I2 ¼
22n
ð2nþ 1Þpo

ð2nÞ! cosh
poð2nþ 1Þ

2

� �Yn
k¼1

o2ð2nþ 1Þ2

4
þ

2k� 1

2

� �2
" #

. (27)

Integral I3: After partial integration and using the boundary conditions, the integral I3 simplifies to

I3 ¼
2ða� 1Þ

aþ 3

Z þ1
0

dt

cosh
a� 1

2
t

� �� �4=ða�1Þ
¼

4

aþ 3

Z þ1
0

dx

cosh4=ða�1Þ
ðxÞ

. (28)

Unfortunately, the integral (28) has not a closed form analytical solution for all values of a41: Some special cases are
considered:

1. For 4=ða� 1Þ ¼ 2n; where ð2nÞ is a whole even number and nX2, the solution of (28) is

I3 ¼
ð2nÞ

ð2nÞ2 � 1

2n�1
ðn� 1Þ!

ð2n� 3Þ!!
, (29)

where

ðn� 1Þ! ¼ 1;2; . . . ; ðn� 1Þ; ð2n� 3Þ!! ¼ 1;3; . . . ; ð2n� 3Þ.

According to (29), for the special case when a ¼ 3; i.e., (2nÞ ¼ 2; we obtain I3 ¼
2
3: This result corresponds to the value given

in Guckenheimer and Holmes [2].
2. If 4=ða� 1Þ is an odd number, i.e., 4=ða� 1Þ ¼ ð2nþ 1Þ; where nX1, the evaluation of the integral gives

I3 ¼
pð2nþ 1Þð2n� 1Þ!!

4ðnþ 1Þð2nÞ!!
, (30)

where ð2nÞ!! ¼ 2;4;6; . . . ; ð2nþ 1Þ!! ¼ 1;3;5; . . . :
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Table 3

a I2 I3
g
d

� �
c

g
d

� �
c
; o ¼ 1

4/3 24po2ð1þ 9o2Þð4þ 9o2Þ

5 sinhð3poÞ
0:34099 0:11281 sinhð3poÞ

po2ð1þ 9o2Þð4þ 9o2Þ

1:7114

7/5 5poð1þ 25o2Þð9þ 25o2Þ

24 cosh
5po

2

� � 0:36941
2:7971 cosh

5po
2

� �
poð1þ 25o2Þð9þ 25o2Þ

1:2972

3/2 32po2ð4o2 þ 1Þ

3 sinhð2poÞ
0:40635 5:9524� 10�2 sinhð2poÞ

po2ð4o2 þ 1Þ

1:0146

5/3 3poð1þ 9o2Þ

2 cosh
3po

2

� � 0:45714
0:46921 cosh

3po
2

� �
poð1þ 9o2Þ

0:83135

2 4po2

sinhðpoÞ
0:53333 0:2 sinhðpoÞ

po2

0:73521

3 po

cosh
po
2

� � 0:66667 0:94281 cosh
po
2

� �
po

0:75302
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Using the previous results and Melnikov’s theorem [21] the following is stated:
Proposition: If Mðt0Þ has a simple zero and the corresponding critical parameter value is

g
d

� �
cr
¼

aþ 1

2

� �1=ða�1Þ I3

I2
, (31)

then in the system with fractional order displacement (1) the deterministic chaos may appear for certain parameter values which

satisfy the relation

g
d
4

g
d

� �
cr

. (32)

Remark. For (31) the distance between the stable and unstable manifolds of the homoclinic point ð0;0Þ is zero and the
manifolds intersect transversely forming the transverse homoclinic orbits. The presence of such orbits implies that for
certain parameters (32) the Poincare map of the system with fractional order displacement (1) has the strange attractor and
the countable infinity of unstable periodic orbits, an uncountable set of bounded non-periodic orbits and a dense orbit
which are the main characteristics of the chaotic motion.

Relation (32) with (31) represents the analytical criteria for chaos.
In Table 3 the critical parameters for various fraction values a; and specially when o ¼ 1; are shown.
Analyzing the critical parameter (g=dÞc in Table 3 it can be concluded that it increases by decreasing the parameter a:

3. Numerical simulation

Let us consider the set of three first-order differential equations

_x ¼ y; _y� xþ xjxja�1 ¼ eðg cosot � dyÞ; _t ¼ 1. (33)

For o ¼ 1 and

ðg=dÞ
ðg=dÞc

¼ k, (34)

the system of differential equations (33) is rewritten as

_x ¼ y; _y� xþ xjxja�1 ¼ e kd
g
d

� �
c

cos t � dy

� �
; _t ¼ 1, (35)

where according to (31) the critical parameter value ðg=dÞc depends on a.
To prove the accuracy of the analytical solving procedure, the numerical simulation is done. The phase plane diagrams

and Poincare maps are plotted for certain values of a. The parameter k is varied and d is assumed as a fixed constant. Three
examples are investigated.

1. For a ¼ 2 and ed ¼ 0:3 the differential equation of motion has the form

€xþ 0:3_x� xþ xjxj ¼ 0:220563k cos t, (36)

where the critical parameter value is ðg=dÞc ¼ 0:7351 (see Table 3). In Fig. 1 the phase diagrams and the Poincare maps for
k ¼ 0:9 and 3.5 and also k ¼ 3 for initial conditions xð0Þ ¼ 1 and _xð0Þ ¼ 0 are plotted. The orbits in Fig. 1a are periodical with
period 1T. In Fig. 1b the phase diagram corresponds to chaotic motion and the Poincare map forms the strange attractor.



ARTICLE IN PRESS

Fig. 1. Phase plane diagram and Poincare map for a ¼ 2 and d ¼ 0:3: (a) k ¼ 0:9 and 3.5, (b) k ¼ 3.

Fig. 2. Poincare maps for the Duffing equation, showing stable and unstable manifolds of the saddle point near (0,0) for a ¼ 2, ed ¼ 0:3: (a) k ¼ 0:9,

(b) k ¼ 1 and (c) k ¼ 3.

Fig. 3. Phase plane diagram and Poincare map for a ¼ 4
3 and ed ¼ 0:25: (a) k ¼ 0:8 and 2.2; (b) k ¼ 1:3.

L. Cveticanin, M. Zukovic / Journal of Sound and Vibration 326 (2009) 768–779774
In Fig. 2 the Poincare maps for (36), showing stable and unstable manifolds of the saddle point near (0,0) for k ¼ 0:9, 1 and 3
are plotted. These are computed numerically. It can be seen that the first tangency appears to occur about k ¼ 1, the value
which according to (34) corresponds to the theoretically obtained value ðg=dÞc ¼ 0:7351.

2. For the fractional order a ¼ 4
3 and parameter values: ed ¼ 0:25 and ðg=dÞc ¼ 1:7114 (see Table 3), the differential

equation of motion is

€xþ 0:25_x� xþ xjxj1=3 ¼ 0:42785k cos t. (37)
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Fig. 4. Phase plane diagram and Poincare map for a ¼ 7
5 and ed ¼ 0:3: (a) k ¼ 0:95 and 1.5; (b) k ¼ 1:203.

L. Cveticanin, M. Zukovic / Journal of Sound and Vibration 326 (2009) 768–779 775
In Fig. 3 the phase plane diagrams and the Poincare maps are plotted. For k ¼ 0:8 and 2.2 the motion is periodical
(see Fig. 3a) and for k ¼ 1:3 chaotic (see Fig. 3b).

3. If the fractional order is a ¼ 7
5; the critical parameter ðg=dÞc ¼ 1:2972 and ed ¼ 0:3; the following differential equation

exists:

€xþ 0:3_x� xþ xjxj2=5x ¼ 0:38916k cos t. (38)

In Fig. 4 the phase plane diagrams and the Poincare maps are plotted for k ¼ 0:95, 1.5 and 1.203. It is obvious that for
k ¼ 0:95 and 1.5 the motion is 1T and 3T periodical, respectively (Fig. 4a). For k ¼ 1:203 the motion is chaotic (see Fig. 4b)
and the strange attractor is evident.

From the previous consideration it can be concluded that chaotic motion appears for k41: Comparing this result of
numerical simulation with the analytically obtained one (32), we see that they agree. For k41 the motion may be steady-
state chaotic.

4. The Lyapunov exponents and bifurcation diagrams

The chaotic motion of dynamic systems is usually studied numerically through the concept of Lyapunov characteristic
exponents and bifurcation diagrams. Both approaches are applied for the dynamic system (35).

Lyapunov exponents quantify the chaotic behavior of the system. For the dynamic system (35) the Lyapunov spectrum is
computed using Mathematica, as it is suggested by Sandri [52]. Varying the value of k the bifurcation x2k diagram is
obtained.

In Figs. 4–6 the bifurcation diagrams and the Lyapunov spectrums for (36)–(38) are plotted. Analyzing the diagrams the
following is concluded:
1.
 As the topological dimension of system (35) is three, the chaotic motion appears for the case when one of the Lyapunov
exponents is positive. For this nonautonomous model there is a spurious Lyapunov exponent which converges to zero.
It corresponds to the additional trivial evolution equations _t ¼ 1: The third Lyapunov exponent is negative.
2.
 The Lyapunov spectrum and the bifurcation diagram are in good agreement. Namely, the intervals of chaotic motion
plotted in bifurcation diagrams correspond to those where one of the Lyapunov exponents is positive.
3.
 The chaos is the result of the period doubling bifurcation and is manifested for k40.

4.
 In Figs. 5–7 the widening of the chaotic attractor is visible.

5.
 For a ¼ 2 and k 2 ½1:3;1:55� ^ ½2:1;2:4� ^ ½2:65;3:4� one of the Lyapunov exponents is positive and the bifurcation

diagram shows the chaos. The same correlation is seen for a ¼ 4
3 and k 2 ½1:1;1:58� and also for a ¼ 7

5 and k 2 ½1:05;1:39�:

6.
 For all of the three examples it is evident that the motion is not chaotic for ko1; i.e., for ðg=dÞo0:7351 when a ¼ 2;
ðg=dÞoðg=dÞc ¼ 1:7114 when a ¼ 4

3 and ðg=dÞoðg=dÞc ¼ 1:2972 for a ¼ 7
5: The obtained values are in good agreement

with analytical results obtained by using Melnikov’s criteria and with numerical simulations.

5. Control of chaos

The delayed feedback control, i.e., the ‘Pyragas method’ [32] is based on the idea of the stabilization of unstable periodic
orbits embedded within a strange attractor. This is achieved by making a small time-dependent perturbation in the form of
feedback to an accessible system parameter. The method turns the presence of chaos into an advantage. Due to the infinite
number of different unstable periodic orbits embedded in a strange attractor, a chaotic system can be tuned to a large
number of distinct periodic regimes by watching the temporal programming of small parameter perturbation to stabilize
different periodic orbits.

The introduced simple control law in Pyragas [27] is

FðtÞ ¼ K½_xðt � tÞ � _xðtÞ�, (39)
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Fig. 5. The Lyapunov’s spectra (a) and bifurcation diagram (b) for a ¼ 2.

Fig. 6. The Lyapunov’s spectra (a) and bifurcation diagram (b) for a ¼ 4
3.
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where K is a constant called the weight of perturbation and t is the time-delay. The system with the controlling function is

€xþ d_x� xþ xjxja�1 ¼ g cosðotÞ þ K½_xðt � tÞ � _xðtÞ�. (40)

The control procedure depends on the parameters K and t: As the system is T-periodic and the goal is to stabilize a forced
T-periodic solution, we choose t ¼ T . The weight K of the feedback is adjusted by numerical experiment.

The control procedure is applied to the three examples mentioned in the previous section. For a ¼ 2; d ¼ 0:3; k ¼ 3 the
chaotic motion is transformed into a periodical one when the control parameter is K ¼ 0:5 and the time delay t ¼ p (Fig. 8).
The chaos control is achieved with the weight of perturbation K ¼ 0:5 and the time delay t ¼ 2p in the system where a ¼ 4

3;

d ¼ 0:25; k ¼ 1:3 (Fig. 9), and also a ¼ 7
5; d ¼ 0:3; k ¼ 1:203 (Fig. 10).

The numerical experiment shows that the control procedure is seriously sensitive to the value of parameter K: In Fig. 11,
the x2K diagram for a ¼ 2; d ¼ 0:3; k ¼ 3 is plotted. It is evident that choosing an appropriate weight K of the feedback
the stabilization is achieved, the unstable periodic orbit becomes stable and the chaotic motion is transformed into
periodical one.
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Fig. 7. The Lyapunov’s spectra (a) and bifurcation diagram (b) for a ¼ 7
5.

Fig. 8. The phase plane diagrams for a ¼ 2, ed ¼ 0:3 and k ¼ 3 before (grey curve) and after chaos control (black curve).

Fig. 9. The phase plane diagrams for a ¼ 4
3, ed ¼ 0:25 and k ¼ 1:3 before (grey curve) and after chaos control (black curve).

Fig. 10. The phase plane diagrams for a ¼ 7
5, ed ¼ 0:3 and k ¼ 1:203 before (grey curve) and after chaos control (black curve).
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Fig. 11. The x2K diagram for a ¼ 2, ed ¼ 0:3, k ¼ 3.
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6. Conclusion

The following can be concluded:
1.
 In dynamical systems with fractional order displacement, and small damping and excitation, and where the homoclinic
orbit exists, it is shown that chaos may appear.
2.
 For the system with fractional order displacement the exact analytical formulation of the homoclinic orbit is obtained.
The homoclinic orbit strongly depends on the fractional order a: The homoclinic orbit of the cubic Duffing oscillator is
one special case and can be obtained from the general analysis given.
3.
 Melnikov’s procedure adopted for systems with fractional order displacement gives analytical criteria for chaos
depending on the relationship between the (d=gÞ and the critical (d=gÞc parameter value. The exact analytical critical
parameter values (d=gÞc can be obtained dependently on fractional order a:
4.
 The numerical simulation shows the dependence of the motion type (periodic and chaotic) on the variation of
parameter values. The phase plane diagrams and the Poincare maps for certain parameter values give the results which
were expected according to the analytical procedure.
5.
 The Lyapunov exponents and the bifurcation diagrams show the period-doubling bifurcation and the transformation
from periodic to chaotic motion and vice versa. The results obtained show the correctness of the analysis.
6.
 In systems with fractional order displacement chaos control by means of delayed self-controlling feedback is
investigated, and motion is transformed from chaos to periodicity.
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