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Previously we put forward a thermomechanical model for the description of the process

of chip formation. Now, this model is supplemented with the differential equation of the

oscillating workpiece. The chip formation may provide an excitation within the

machine-tool-workpiece system. Taking this interaction into consideration is expedient

during the design of the machining technology, in order to avoid harmful vibrations.

From this point of view, the chip formation can be considered as an oscillator. We

analyse the expanded model and point out that the vibrations of the workpiece may

lead to rather complex motions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Oscillations of cutting machine-tool-workpiece systems have occupied the attention of theoreticians and technologists
for more than 80 years. Armarego and Brown [2] compiled a thorough overview of the topic in 1969, based on Tobias’
fundamental work [1] and that of several other researchers. Tlusty [3] collected even more references. This topic is still a
high priority in machine production research.

Doi [4] perceived the importance of self-induced vibrations during cutting as early as in 1937. The three forms of this
phenomenon are as follows:
(a)
 The built-up-edge was first examined in detail by Ernst and Martellotti [5], who pointed out that the edge continuously
builds up and tears off, generating periodic variations in the cutting force. The frequency of the evolving oscillations is
77–200 Hz, as shown by Shteinberg [6] 60 years ago.
(b)
 Chip segmentation (Fig. 1) was described first by Piispanen [7]. Landberg [8] examined the phenomenon experimentally,
but the detailed analysis was carried out by Albrecht [9]. It is worth highlighting the contribution of Komanduri et al.
[10], too. The overview [11] compiled by Komanduri is also interesting because of the published pictures taken of
typical chips. The frequency of the excitation due to this phenomenon was in the range 200–4000 Hz.
(c)
 Discontinuous-chip formation was analysed in detail by Field and Merchant [12]. Other interesting contributions to this
field are Recht’s [13] highly cited paper and Shaw’s manuscript about machinability [14]. This chip type can be
considered as a limiting case of chip segmentation. Thus, Albrecht’s estimation [9] of the frequency range can be
applied, leading to 103

� 1:5� 104 Hz. This approach was verified by Komanduri in several papers (e.g. [15]), who
traced back the chip formation process to the characteristics of the material of the workpiece.
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Fig. 1. Formation of segmental chip.
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The aforementioned phenomena are all closely related to the material of the workpiece. Besides these cases, the elasticity
of the machine-tool-workpiece system may also lead to vibrations.

In the case of regenerative chatter, the undeformed chip thickness cut at time t is influenced by the real chip thickness
one revolution earlier, i.e., at t � T , where T is the period of rotation. The variation of the chip thickness is the consequence
of the oscillations of the tool and the workpiece. Shi and Tobias [16] even took into account the multiple regenerative effect,
i.e., that the instantaneous chip thickness may depend on the displacement of the tool at instants t � T , t � 2T , etc., too.
Stépán [17] described the nonlinear regenerative chatter of machine tools with a delayed differential equation. His results
were verified experimentally in the case of thread cutting [18]. Gradisek et al. estimated the coarse-grained entropy for the
detection of the vibrations during turning [19], while in another paper [20], examined the nonlinear, non-regenerative
model of the cutting process. Also, a method was introduced for the analysis of the time series obtained from
measurements [21]. Johnson [22] examined a model with combined short delays and regenerative delays, based on the
cutting model proposed by Doi and Kato [23]. These results make possible the predictive control of cutting [24]. Rusinek
et al. [25] analysed the effect of the surface profile of the workpiece on the regenerative vibrations. Kalmár-Nagy and Moon
[26] even took into account the displacements of the tool holder in two directions and the torsion of the tool for the
theoretical examination of regenerative phenomena during turning.

Besides the theoretical analysis, the measurement of vibrations of the machining system is also a topic of great interest.
Minis and Berger [27] developed their measurement system on the assumption that the cutting process is a closed loop-
like dynamical system. Since Grabec [28] pointed out in a nonlinear, 2DoF system—omitting the regenerative effect—that
chaotic vibrations may occur during cutting, several research groups have performed experiments in this area. Lin and
Weng [29] considered a 1DoF model with regenerative effect, and examined the stability of the process, taking into account
the dependence of the cutting force on the cutting speed and chip thickness. They also examined a 2DoF model numerically
with multiple regenerative effects, and found chaotic dynamics [30].

Among several other contributions, Berger et al. [31] examined the cutting process with delayed differential equations,
while Gans [32] analysed Grabec’s results. Moon and Abarbanel [33] and Bukkapatman et al. [34] proved experimentally
that machine tool vibration can be chaotic. Rusinek et al. [35] examined the amplitude of the evolving—sometimes
resonant—vibrations in a 2DoF, non-regenerative model. Berger et al. [36] showed with the help of the false nearest
neighbours (FNN) method that the acceleration of the tool tip is chaotic during the cutting of ductile steel. They also found
that the chaotic attractor can be embedded in a four-dimensional (4D) space, thus, its dimension is less than four. Recently,
Litak [37] and Litak et al. [38] studied the regenerative chatter phenomenon. In the latter paper, nonlinear time series
analysis was applied, just as in [39], by Sen et al., where the dynamics of the cutting process was examined according to a
2DoF model. Comparing the Litak model and the classic delay differential equation model, Wang et al. [40] examined the
possibility of the elimination of chaos and large amplitude oscillations. They found that this goal is feasible.

The common feature within the aforementioned contributions is that thermal effects are not taken into account.
However, these effects have a great influence on the characteristics of the material of the workpiece, and consequently, on
the cutting process itself. The continuum mechanical cutting model, introduced by Burns and Davies [41] already takes into
account the thermal processes. The calculations were verified both experimentally and numerically, but the vibrations
were not examined.

2. Four-dimensional model of chip forming

In the present contribution, we model the chip segmentation and discontinuous-chip formation in the case of non-
regenerative chatter. The excitation of these vibrations is related to the variation of the material characteristics of the
workpiece at different cutting speeds and varying temperatures.



ARTICLE IN PRESS

τ2

h1

Δuh1

δ

vΦ
Φ

v

chip

tool

workpiece

Φ
2

0

1

δ
h

L

σ

α = Φ

z

wu

Fig. 2. Simplified model of the shear zone.
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During the cutting of metals, the strain-hardening of the material and the thermal softening due to the deformation heat
may often lead to thermoplastic instability [15]. The chip forming is either periodic in this case or—under certain
circumstances—an aperiodic, chaotic process. The periodic chip formation (Fig. 1) may provide an excitation within the
machine-tool-workpiece system. Taking this interaction into consideration is expedient during the design of the machining
technology, in order to avoid harmful vibrations. From this point of view, the chip formation can be considered as an
oscillator. Previously, a thermomechanical model was put forward for the description of the process of chip formation
[42,43], that is based on the simplified technological model, shown in Fig. 2. The shear zone was divided into three layers:
deformation layers 1 and 2, and thermal conduction layer 0; each being of thickness d. The following constitutive equation
was used:

Fiðti; TiÞ ¼
_giðtÞ
_eF
¼

Ti þ 1

C þ 1
exp

ti � 1þ aðTi � CÞ

bðTi þ 1Þ
ði ¼ 1;2Þ (1)

in this model [44]. Here _gðtÞ denotes the deformation velocity in the shear zone at time t, _eF is the mean deformation
velocity in the case of continuous chips, while Ti and ti denote the temperatures and plastic shear stresses in the layers.
This Arrhenius-type equation describes the effect of thermal softening and deformation velocity on the shear stress, in the
shear zone of the workpiece. Here we used the so-called velocity-modified temperature Tm ¼ Tð1� k logð_gTFÞ þ k logð�FTÞÞ

that was introduced by MacGregor and Fisher [45]. The coefficient k is a constant characteristic of the material, which
is—according to their measurements—k ¼ 0:008� 0:045. The thermal softening is characterized by the constant
n ¼ �Dt=DTm. In Eq. (1), a ¼ nTw=tF, where Tw is the absolute temperature of the workpiece, tF is the mean shear
stress [7] in the shear zone during the formation of continuous chips, and b ¼ ka. C denotes the absolute temperature TF of
the shear zone during the formation of continuous chips.

The derivation of the aforementioned model can be summarized as follows: the plastic shear stress ti ði ¼ 1;2Þ occurring
in the shear zone of size h1 is in mechanical balance with the normal stress s acting on length L (see Fig. 2). Thus,
sL ¼ t2h1. The normal stress s causes an elastic deformation Du in the chip, parallel with the u direction. Thus,
s ¼ EDu=h1, i.e., _s ¼ ðE=hÞ _u sinF. Here E denotes the Young modulus. The relative velocity can be calculated as
_u ¼ vF;Tool � vu;Material ¼ v cosF� d_g. Since the velocity of plastic shear deformation is _g ¼ v=d, the consideration of two
deformation layers—denoted by 1 and 2 in Fig. 2—implies _u ¼ d_eFð1� _g1=_eF � _g2=_eFÞ. According to the mechanical
balance,

_t2 ¼
ELv

h2
sin2F cosF 1�

_g1
_eF
�
_g2
_eF

� �
. (2)

For the sake of simplicity, we introduced a nondimensional time t̂ ¼ t=K and nondimensional shear stress t̂i ¼ ti=tF.
According to the generally accepted approximation of the cutting theory, this latter quantity can be considered as a
material constant. Using the new time scale and the notation

Fi ¼
_gi
_eF

, (3)

the equation of mechanical balance leads to the differential equation

_t2 ¼ 1� ðF1 þ F2Þ. (4)

We found that

t1 ¼ pt2 þ s (5)
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if K ¼
tFh2

ELv sin2 F cosF
and (6)

p ¼ 1þ ð
ffiffiffi
3
p

d=hÞ sinF, (7)

where the constant s depends on the initial conditions.
Besides the deformation bands 1 and 2, we introduced a ‘quasi’ layer (denoted by 0 in Fig. 2), too, where no plastic

deformation occurs, but this layer plays an important role in the thermal processes. The variation of the material’s heat
content (cr _T, where c means heat capacity and r is density) during chip formation is composed of three elements, as was
shown in [46]:
�
 mechanical power rti _gi, ði ¼ 1;2Þ, where r is energy ratio ðr � 0:95Þ,

�
 thermal conduction only occurring on the boundary surfaces of the layers; here we can use the simplified form of the

differential equation of thermal conduction 4lðTi � Ti�1Þ=d
2
ði ¼ 0;1;2Þ, where in the quasi-layer ði ¼ 0Þ, Ti�1 ¼ Tw,
�
 the material progressing in direction w (Fig. 2) with velocity vc ¼ v sinðFÞ conducts heat itself, which is crðTi � TwÞ=vc

ði ¼ 0;1;2Þ.

Using these components, and introducing the dimensionless temperature T̂ i ¼ ðTi � TwÞ=Tw, we compiled the differential
equations of temperature variation for the three layers 0,1 and 2. Consequently, the energy balance equations for these
layers assume the following dimensionless forms (here we already discarded the hat symbol):

_T0 ¼ zðT1 � 2T0Þ � xT0, (8)

_T1 ¼ Zt1F1ðt1; T1Þ � zð2T1 � T2 � T0Þ � xðT1 � T0Þ, (9)

_T2 ¼ Zt2F2ðt2; T2Þ � ðxþ zÞðT2 � T1Þ (10)

with the system parameters

Z ¼ rKvtF cosF
crdTw

; x ¼
Kv sinF

d
; z ¼

4Kl

crd2
, (11)

where l denotes the thermal conductivity. Parameters p, x, and Z characterize the geometry, the mechanical conditions,
and the intensity of energy conduction, respectively. All of these three parameters are independent of the cutting speed v,
since the expressions of x and Z contain the Kv product. The expression of parameter z contains two time scales: the
mechanical time scale K and the thermal time scale l=ðcrÞ. The behaviour of the system strongly depends on the relation of
these scales. As we will show later, the mathematical model may lead to fundamentally different solutions at different
values of z, as has also been experienced in practice.

Thus, the mathematical model of chip formation consists of the autonomous differential equations (4) and (8)–(10),
together with the constitutive equation (1). The parameters are given by Eqs. (6), (7), and (11). The usual initial conditions
are t2ð0Þ ¼ 1 and Tið0Þ ¼ 0 (i ¼ 0, 1, and 2), which leads to s ¼ 1� p.

3. Expansion of the 4D model to varying cutting speed

The cutting speed may vary during machining. The most obvious example for such processes is flat turning, but taper-
turning, so-called ‘back turning’ and special polygon-turning also lead to variations in the cutting speed, which can be
expressed as v ¼ v0f ðtÞ, where v0 is a reference value. In nondimensional form, we obtain

v̂ ¼ v=v0 ¼ f ðtÞ ¼ f ðKt̂Þ. (12)

Substituting v ¼ v0f ðtÞ into Eq. (2), we arrive at the new form of Eq. (4):

_t2 ¼ f ð1� ðF1 þ F2ÞÞ. (13)

Expression (6) of the time scale K does not change with the substitution v ¼ v0. Since the expressions of the system
parameters Z and x contain the velocity v, the substitution v ¼ v0f is also necessary here. Thus, the energy balance
equations also change to the following:

_T0 ¼ zðT1 � 2T0Þ � fxT0, (14)

_T1 ¼ fZt1F1ðt1; T1Þ � zð2T1 � T2 � T0Þ � fxðT1 � T0Þ, (15)

_T2 ¼ fZt2F2ðt2; T2Þ � ðfxþ zÞðT2 � T1Þ. (16)

Thus, in the case of varying cutting speed, the mathematical model of chip formation consists of the constitutive equations
(1), together with the differential equations (13)–(16). The constants, the system parameters and the initial conditions
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remain unchanged. We complement this system in the following sections with the differential equation describing the
oscillations of the workpiece. The extended model—which is analysed in this paper from the point of view of the design of
technology—describes the periodic and aperiodic behaviour of the machine-tool-workpiece system.

4. The elastic, vibrating system

The machine-tool-workpiece system performs elastic vibrations as the cutting force varies. The natural frequencies of
the cutting machine are usually higher than that of the tool or the workpiece. Thus, the elasticity of the machine has no
significant effect on the dynamics and can be neglected. In the following we assume that one end of the beam-shaped
workpiece is fixed in the chuck of the turning machine.

The velocity of the motion related to the oscillation of the workpiece and/or the tool is added to the cutting velocity.
Thus, the resulting cutting velocity cannot be considered as constant, even in the case of simple turning with a constant
revolution number n. This variation affects the chip formation. The workpiece is modelled as a beam with one end fixed,
and the principal cutting force is applied at the other end of the beam. The oscillation of this 1DoF system can be described
by the well-known differential equation

mr €zþ
z

k
¼ Fv, (17)

where mr denotes the equivalent mass of the workpiece or tool, reduced at the point of action of the force, and k (m/N) is
the spring constant. The principal cutting force Fv can be approximated as

Fv � cFtF where

cF � ðcotanFþ cotanrFÞq. (18)

t denotes the shear stress in the shear zone in plastic state, while q denotes the area of the cross section of the cut layer
[47]. rF is the angle of ‘internal friction’, which can be defined in the shear zone, and can be expressed by the angle of
friction r̄ between the workpiece and the tool. Usually rF ¼ p=2� ðF� aþ r̄Þ, while in our case rF ¼ p=2� r̄, i.e.,
cotanrF ¼ tan r̄ ¼ m, where m denotes the usual Coulomb coefficient of friction. cF � 2 if the area of the cross section of the
cut layer is q ¼ 0:73 mm2, the corresponding angles are F ¼ 30� and rF ¼ 45�, and tF is measured in MPa.

Characteristic of such technological problems, the point of action of the force usually approaches (or rarely, moves away
from) the fixed end of the workpiece during turning. Consequently, the spring constant k decreases, and may assume a
rather small value during the final part of the process. This variation is slow, and we assume in our model that k ¼ const. To
rewrite the equations in a dimensionless form, we introduce the notation

z ¼ L0ẑ, (19)

where the appropriate choice of L0 is

L0 ¼
2tF
mr

K2. (20)

Discarding the special symbols showing the dimensionless nature of the quantities, we obtain

€zþ Az ¼ t, (21)

where

A ¼
K2

kmr
. (22)

According to what we have mentioned above, the final value of A may be several times larger than its initial value. The
equivalent mass mr of the beam is approximately mr � m=3 for the workpiece fixed at one end.

The period of the free oscillations of the beam can be obtained as

Tper ¼
2pffiffiffi

A
p ¼ 2p

ffiffiffiffiffiffiffiffiffi
mrk

p
K

, (23)

while the angular natural frequency is

o ¼
ffiffiffi
A
p

K
. (24)

We can estimate the order of magnitude of A, based on a cutting experiment [48]. The angular frequency was
o ¼ 2p � 1800 rad=s, which corresponds to Tper ¼ 1=1800 ¼ 5:56� 10�4 s.

Consequently,
ffiffiffi
A
p
¼ 1800 � 2pK ¼ 1:1304� 104K , for example at K ¼ 1:769� 10�4, we obtain A ¼ 4. The velocity of the

workpiece, related to the oscillation is denoted by _z. According to Fig. 3, this velocity must be subtracted from the
circumferential velocity v—i.e., from the nominal cutting speed—to obtain the effective cutting speed vef . In the extremal
case, when _z is equal to the circumferential velocity, no chip is produced.
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The function f, that expresses the variation of velocity, can be given in dimensionless form as follows:

f ¼ 1�
_z

v0

L0

K
¼ 1�

_z

V0
, (25)

where the dimensionless form of the reference (nominal) cutting speed v0 is

V0 ¼ v̂0 ¼
Kv0

L0
¼

mrv0

2tFK
. (26)

Consequently, A and V0 are related to each other:

AV0 ¼
Kv0

2tFk
. (27)

5. Model of chip formation as an oscillator during the turning process

The two models are combined if we substitute Eq. (25)—using Eq. (5)—into Eqs. (13)–(16), and consider that the stress t
in Eq. (21) is equivalent to the stress t2 introduced in the 4D model of chip formation. The resulting set of equations is the
following at speeds vi ¼ f iv0:

_t2 ¼ f i 1�
_z

V0

� �
ð1� ðF1 þ F2ÞÞ, (28)

_T0 ¼ zðT1 � 2T0Þ � f i 1�
_z

V0

� �
xT0, (29)

_T1 ¼ f i 1�
_z

V0

� �
ðZðt2pþ 1� pÞF1ðt1; T1Þ � xðT1 � T0ÞÞ � zð2T1 � T2 � T0Þ, (30)

_T2 ¼ Zf i 1�
_z

V0

� �
t2F2ðt2; T2Þ � f i 1�

_z

V0

� �
xþ z

� �
ðT2 � T1Þ, (31)

€z ¼ t2 � Az. (32)

If the deformation of the tool was modelled instead of the deformation of the workpiece, the same equations could be used,
with the z-axis reversed.

6. Discussion. Application for the oscillations of a typical workpiece

It can be checked using the cutting examples described in [9,10] that the vibrations of the elastic machining system have
a considerable influence on the process. This fact has been demonstrated—among several other experiences—by [48]. Here
we would like to show that our expanded model describes this phenomenon, indeed. Three realistic technological
examples are considered, which are related to our earlier examples [9,10]. The system parameters of the 4D model were
a ¼ 0:3, b ¼ 0:012, C ¼ 1, p ¼ 1:03, and—at the cutting speed v1 � v0 ¼ 3:6 m=s (f 1 ¼ 1), leading to periodic
solutions—x ¼ 4:8, Z ¼ 4:4, and z ¼ 3:4. The time scale was K ¼ 1:64� 10�4 s. We also examined the system at two
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additional cutting speeds. At v2 ¼ 0:58 m=s (f 2 ¼ 0:58=3:6 ¼ 0:16) we obtained chaotic solutions, while at v3 ¼ 0:3 m=s
(f 3 ¼ 0:3=3:6 ¼ 0:083) we obtained fixed point solutions.

Let the turned workpiece be a beam of size +40� 200 mm, with tF ¼ 900 MPa. The equivalent mass of this beam is
approximately mr � 0:662 kg, with spring constant k ¼ 1:0616� 10�7 m=N, and eigenfrequency n � 600 Hz. Using these
values, the nondimensional constant A and velocity V0 in Eq. (21) can be expressed; according to (20), (22), and (26),
L0 ¼ 0:0732, A ¼ 0:383, and V0 ¼ 8:07.

6.1. Modification of the stable periodic solution of the original 4D model

The solution of the oscillator model, described in Section 4, can be seen in Figs. 4 and 5, at cutting speed v1 ¼ 3:6 m=s.
The so-called principal cutting force—which is parallel with the cutting speed—can be obtained using (18):
Fv ¼ 2tF ¼ 1800 N. The static deflection of the beam is zstat ¼ Fvk � 1:9� 10�4 m ¼ 0:19 mm under this force. As it can
be seen in Fig. 4a, the initial amplitude of the evolving oscillations is ẑ � 2:2. The real value of this amplitude is
z ¼ L0ẑ ¼ 0:16 mm. This value is a little less than the static deflection. As it is clearly visible, the amplitude increases
initially, but the motion becomes stationary at about t ¼ 2000 (Figs. 4b and 5a).

According to Fig. 5a, the amplitude is approximately ẑ � 21 in this state, which corresponds to very large deflections of
1.5 mm. Thus, the originally periodic process of chip formation may lead to harmful oscillations in the case of certain
workpieces with critical geometry. This fact is well known in engineering practice, so this result provides evidence of the
applicability of our model. The eigenfrequency n � 600 Hz of the workpiece and its harmonics at n � 600k Hz (k ¼ 1;2; . . .)
are clearly visible in the power spectrum of the oscillations (Fig. 5b), together with another large peak at about 14 000 Hz.
Thus, the motion became quasiperiodic as the oscillations of the workpiece and the chip formation process superimposed.
Note that if the two subsystems are not combined but the numerical simulations are performed independently with
t2ð0Þ ¼ 1, the amplitudes remain constant with z ¼ 2:7 that corresponds to 0.19 mm.

6.2. Modification of the aperiodic (chaotic) solution of the original 4D model

At the cutting speed v2 ¼ 0:58 m=s, the solution of the original 4D model was chaotic, with Lyapunov exponent l �
634 1=s [10]. We also experienced chaotic behaviour during the initial part of the numerical simulation in the expanded
Fig. 4. Simulation results at v1 ¼ 3:6 m=s: (a) increasing amplitudes, (b) stationary oscillation of t2.

Fig. 5. Quasiperiodic oscillations at v1 ¼ 3:6 m=s: (a) stationary oscillation of z, (b) power spectrum.
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system, at f 2 ¼ 0:16 (Fig. 6a). There is still a peak in the spectrum at n � 600 Hz, but this is not dominant, and there are
many more frequencies in the spectrum than in the previous case (Fig. 6b). To characterize the chaotic behaviour, we
analysed the time series obtained by numerical simulation. First, we detected the maxima of t2 and plotted each value
against the previous value (Fig. 7a). The geometric structure that can be seen in the figure is the projection of the chaotic
attractor. Since the phase-space is six-dimensional with the variables t2, T0, T1, T2, z, and _z, it cannot be plotted in full
detail. However—according to Taken’s embedding theorem [49]—if m delayed values of a single variable of a time series
are considered, we obtain another m dimensional space, where the image of the chaotic attractor will be topologically
similar to its original image in the real 6D phase-space. This is why the structure shown in Fig. 7a is actually a 2D projection
of the attractor. The position vectors in this reconstructed phase-space assume this form:

rn ¼ ðtmax
n�ðm�1Þ; t

max
n�ðm�2Þ; . . . ; t

max
n�1 ; t

max
n Þ. (33)

Our primary goal is to show that the types of the solutions may change if the vibrations of the workpiece are included into
the model. Thus, from this point of view not the exact values of the Lyapunov exponents are important; we are searching
for evidence for the exponential divergence of trajectories. One of the most frequently used algorithms for the estimation of
the Lyapunov exponents is Wolf’s method [50]. Unfortunately, this algorithm and its modified versions do not allow one to
test for the presence of exponential divergence, but just assume its existence. This is why we used the TISEAN software
package, designed for nonlinear time series analysis [51,52], to examine the divergence of nearby trajectories, based on the
time series of the maxima of t2.

The algorithm used for the calculation of the maximal Lyapunov exponent is the following: one chooses a point rn0
in

the m dimensional embedding space and selects all neighbours with a distance smaller than e. The distance of these points
will increase as the function of the relative time Dn ¼ n� n0. Repeating this process for N values of n0, one obtains the
average rate of expansion:

Sðe;m;DnÞ ¼
1

N

XN
n0¼1

log
1

jUðrn0
Þj

X
rn2Uðrn0 Þ

jtmax
n0þDn � t

max
nþDnj

0
@

1
A. (34)
Fig. 6. Chaotic oscillations at v2 ¼ 0:58 m=s: (a) time series of t2 and z, (b) power spectrum.

Fig. 7. Time series analysis of the chaotic part of the signal at v2 ¼ 0:58 m=s: (a) a projection of the attractor, (b) estimation of the Lyapunov exponent.
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Here, Uðrn0
Þ is the neighbourhood of the delay vector rn0

with diameter e. If Sðe;m;DnÞ exhibits a linear increase with a
certain slope, this slope can be taken as an estimate of the maximal Lyapunov exponent l (Fig. 7b).

Naturally, two trajectories cannot separate further than the size of the attractor, which is why a saturation can be
observed in Fig. 7b. Averaging the estimated slopes of the linear parts of the curves, we were able to fit a line with slope
l̂ � 0:22. This slope is the nondimensional approximation of the Lyapunov exponent. Taking into account that the time step
was 0.0005 during the simulation, there were on average 930 steps between two maxima of t2, and the time scale was
K=f 2 ¼ 1:025� 10�3, the Lyapunov exponent can be approximated as l � 0:22=ð0:0005 � 930 � K=f 2Þ ¼ 462 1=s. Since both
the linear parts of the curves and the saturation are clearly visible in Fig. 7b, we can claim that the examined solution is
chaotic during the first part of the simulation. However, later this chaotic state comes to an end, as Fig. 8a shows.

The eigenfrequency n � 600 Hz is dominant in the spectrum if the first part of the time series ðto1000Þ is discarded (see
Fig. 8b), and there is another peak, too. Consequently, the chaotic motion—after a period of time the duration of which
sensitively depends on the initial conditions—switches to quasiperiodic vibration. This phenomenon is referred to as
transient chaos. Note that since parameter A increases during the process, we also examined the behaviour of the system at
larger values of A. According to our experiences, the mean lifetime of transient chaos decreases as parameter A is increased.
Moreover, at a sufficiently large value, the final solution becomes fixed point, instead of a quasiperiodic vibration.

6.3. Modification of the fixed point (equilibrium) solution of the original 4D model

At the cutting speed v3 ¼ 0:3 m=s, the solution of the original 4D model was a fixed point. However, we observed
aperiodic vibrations in the extended model with f 3 ¼ 0:083. The deflection-time diagram can be seen in Fig. 9.

To determine the characteristics of the motion, we again applied nonlinear time series analysis. Plotting the subsequent
values of the maxima of the shear stress t2, we obtained Fig. 10a, where the points form a geometric structure. The analysis
of the time series composed of these values led to Fig. 10b. The slope of the linear part of the curves provides a
nondimensional estimation for the Lyapunov exponent, which is approximately l̂ � 0:17. Since the time step was 0.0005
during the simulation, the average number of steps between two minima was 507.4 and the time step is
K=f 3 ¼ 1:97� 10�3 s, the real value of the Lyapunov exponent is l � 0:17=ð0:0005 � 507 � K=f 3Þ ¼ 340 1=s.

This result is verified by the section of a continuous chip, shown in Fig. 11, where zampl � 0:015 mm. It is usual in
practice, that an irregular (chaotic), small amplitude unevenness occurs on the profile of continuous chips (fixed point
Fig. 8. Quasiperiodic vibrations after the chaotic part of the motion, at v2 ¼ 0:58 m=s: (a) t2 and z, (b) power spectrum.

Fig. 9. Deflection-time diagram at v3 ¼ 0:3 m=s.
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Fig. 10. Time series analysis of the chaotic part of the signal at v3 ¼ 0:3 m=s: (a) a projection of the attractor, (b) estimation of the Lyapunov exponent.

Fig. 11. Continuous chip with chaotic unevenness.
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solutions). This phenomenon refers to the small oscillations of the machine-tool-workpiece system, according to the results
of our cutting model. The calculated value, z � 0:014 mm, is consistent with the measured amplitude on the chip section.
7. Conclusion

We can conclude that the assumption about the elasticity of the workpiece led to a significantly more complex
mathematical model, and—in the examined typical cases—more complex types of solutions. Compared to the 4D model,
the analysis of the time series was rather difficult in the 6D model, and the precision of the estimations decreased. The
types of evolving solutions also changed:
�
 Due to the interaction between the oscillating workpiece and the formation of chips, the originally periodic cutting
process became quasiperiodic. The eigenfrequency of the workpiece appeared in the spectrum of the vibration.

�
 The originally chaotic solution of the 4D model became transient chaotic. The Lyapunov exponent is less during the

chaotic part of the motion than it was in the 4D model. After a sufficiently long time, the motion suddenly becomes
quasiperiodic.

�
 In the case of the original equilibrium (fixed point) solution, we found small amplitude chaotic vibrations. This result is

in agreement with the practical experience, i.e., that the chip width varies slightly and irregularly in the case of
continuous chips, too.
We believe that this simple model makes a quick overview of the sources of vibrations during the cutting process possible.
Moreover, it can provide help during the design and evaluation of preliminary experiments and measurements that are
necessary for the preparation of the production process. In the case of large simulation software, our model may support
the design or can be used for the determination of certain parameters in applications.
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