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Analysis of in-plane free vibration of functionally graded (FG) thin-to-moderately thick

deep circular arches in thermal environments is presented based on first-order shear

deformation theory (FSDT). The material properties are assumed to be temperature-

dependent and graded in the thickness direction. Hamilton’s principle is employed to

derive the equations of motion and the related boundary conditions including the

effects of initial thermal stresses. The temperature is assumed to be uniform through the

arch surface and varied through the thickness. The initial thermal stresses are obtained

by solving the thermoelastic equilibrium equations. The differential quadrature method

(DQM) as an efficient numerical tool is adopted to solve the thermoelastic equilibrium

equations and the equations of motion. The numerical solutions are validated by

comparing to the solutions of the limited cases for isotropic arches, as well as by

examining the solutions convergence behavior. Parametric studies are also conducted to

study the effects of the temperature rise, boundary conditions and the material graded

index on the frequency of the FG arches. Also, the impact of geometrical parameters

such as the thickness-to-mean radius ratio and the opening angle are examined.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years a new class of materials known as functionally graded materials (FGMs) with a continuous change in
their material domain, particularly along the thickness direction has emerged. Structural elements made of FGMs, such as;
circular arches have found widespread applications in space vehicles, aircrafts, automobiles, nuclear power plants and
many other industries. These elements are often exposed to dynamic thermal environments with large temperature
changes which induce thermoelastic stresses that affect the behavior of the system. Hence, vibration characteristic of
functionally graded (FG) structures under high-temperature environment is of interest for engineering design.

There have been some investigations on the in-plane free vibration analysis of composite arches mostly limited to
laminated arches with orthotropic layers [1–6]. Also free vibration analyses of FG straight beams with and without thermal
effects have come under consideration [7–13]; a brief discussion is in order here. Aydogdu and Taskin [7] used different
higher-order shear deformation theories and classical beam theory to investigate the free vibration of simply supported FG
beams using Navier’s method. The natural frequencies and mode shapes of a simply supported FG beam were also
examined by Li [8] based on the first-order shear deformation theory (FSDT). Sina et al. [9] introduced an analytical
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+1701 2318913.

rami).

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.05.016
mailto:G.Karami@ndsu.nodak.edu


ARTICLE IN PRESS

P. Malekzadeh et al. / Journal of Sound and Vibration 326 (2009) 837–851838
approach based on FSDT beam theory to examine the free vibration of FG beams under various boundary conditions. Yang
and Chen [10] presented a theoretical investigation for free vibration and elastic buckling of FG beams containing open
edge cracks using the Bernoulli–Euler beam theory. Ying et al. [11] presented an analytical solution for bending and free
vibration of functionally graded simply supported beams resting on elastic foundation based on two-dimensional theory of
elasticity. The problem was solved using the state space method in conjunction with trigonometric series. Bhangale and
Ganesan [12] studied the buckling and vibration behaviors of clamped FG sandwich beams having constrained viscoelastic
layer subjected to thermal environment using finite element method. Pradhan and Murmu [13] studied thermomechanical
vibration of FG beams and FG sandwich beams resting on elastic foundation using modified differential quadrature method
(MDQM). Xiang and Yang [14] studied free and forced vibration of laminated FG beams of variable thickness under
thermally induced initial stresses within the framework of Timoshenko beam theory and used the differential quadrature
method (DQM) for the analysis.

In this paper, free vibration behavior of FG circular arches in thermal environments and with temperature-dependent
material properties is studied. In order to include the transverse shear deformation and rotary inertia effects on natural
frequencies, the first-order shear deformation theory is to be employed. The material properties are thus assumed
temperature-dependent and graded in the thickness direction. The Hamilton’s principle is employed to derive the
equations of motion and the related boundary conditions. The initial thermal stresses are obtained by solving the
thermoelastic equilibrium equations. DQM as an efficient numerical tool [15–19] is employed to solve the governing
differential equations. The convergence behavior and accuracy of the presented method are investigated through different
examples. The influences of uniform and non-uniform temperature rise, boundary conditions, dependence of material
properties on temperature, material property graded index and geometrical parameters on the in-plane vibration
frequencies of FG arches will be studied.
2. Theoretical formulation

Consider a thick FG circular arch as shown in Fig. 1. A polar coordinate system ðr; yÞ is used to label the material points of
the arch in the unstressed reference configuration. The displacement components of an arbitrary material point ðr; yÞ of the
arch are denoted as �u and �v in r- and y-directions, respectively.
2.1. Temperature dependent FGMs relations

The material properties of the arch are assumed to vary continuously through the thickness, i.e. in the r-direction. In this
study, without the loss of generality of the formulations, the material properties are assumed to vary according to power
law distribution in terms of volume fractions of the constituents through the thickness. The material composition
continuously varies such that the outer surface of the arch (r ¼ Ro) is ceramic-rich whereas the inner surface of the arch
(r ¼ Ri) is metal-rich. Based on the power law distribution, a typical effective material property ‘P’ of the FG arch is obtained
as

Pðr; TÞ ¼ PmðTÞ þ ½PcðTÞ � PmðTÞ�
r � Ri

h

� �p

, (1)

where the subscripts m and c refer to the metal and ceramic constituents, respectively, p the power law index or the
material property graded index, h the thickness of the arch and T [ ¼ T(r)] the temperature at an arbitrary material point of
the arch.
h r Ri

Rm

Ro

�0

�

Fig. 1. Geometry and coordinate system of the FGM circular arch.
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For the FG arch constituents, i.e. ceramic and metal, the material properties are temperature-dependent and a typical
property ‘Q’ may be expressed as a function of temperature as [20,21]

Q ðTÞ ¼ Q0ð1þ Q1T þ Q2T2Þ. (2)

The coefficients Qi (i ¼ 0, 1, 2) are unique to the constituent materials.

2.2. Thermal analysis

It is assumed that the arch is stress free at the temperature T0. If the arch operates in a thermal environment, non-
uniform temperature rise or mechanical constraints at its edges cause deformation and consequently create some stresses
in it. These stresses affect the vibration characteristic of the arch. In order to evaluate these thermal stresses, the
temperature distribution in the arch should be obtained firstly. Here, it is assumed that the temperature rise varies only
across the section of arch and no heat generation source exists within the arch. Hence, the temperature distribution along
the thickness direction can be obtained by solving the following steady-state one-dimensional heat transfer equations
through the thickness of the arch:

KðrÞ
d2T

dr2
þ

dKðrÞ

dr

dT

dr
¼ 0, (3)

where K is the thermal conductivity of the arch. Different thermal boundary conditions can be considered at the inner and
the outer surfaces of the arch. One of the thermal boundary conditions usually considers prescribed temperature at the
upper and lower surfaces of these structural elements. Hence, for the brevity purpose and without loss of generality, here
these type of the boundary conditions are considered, which for an arch problem become

T ¼ Tm at r ¼ Ri and T ¼ Tc at r ¼ Ro. (4)

The solution to Eq. (3) subjected to the boundary conditions (4) can be obtained by means of polynomial series solutions.
The result is

TðrÞ ¼ Tm þ
DT

C

r � Ri

h

� �
�

Kcm

ðpþ 1ÞKm

r � Ri

h

� �pþ1

þ
K2

cm

ð2pþ 1ÞK2
m

r � Ri

h

� �2pþ1
"

�
K3

cm

ð3pþ 1ÞK3
m

r � Ri

h

� �3pþ1

þ
K4

cm

ð4pþ 1ÞK4
m

r � Ri

h

� �4pþ1

�
K5

cm

ð5pþ 1ÞK5
m

r � Ri

h

� �5pþ1
#

, (5)

where DT ¼ Tc � Tm, Kcm ¼ Kc � Km and

C ¼ 1�
Kcm

ðpþ 1ÞKm
þ

K2
cm

ð2pþ 1ÞK2
m

�
K3

cm

ð3pþ 1ÞK3
m

þ
K4

cm

ð4pþ 1ÞK4
m

�
K5

cm

ð5pþ 1ÞK5
m

.

2.3. Vibration analysis

To study the free vibration characteristic of a FG arch in thermal environment, the displacement components of an
arbitrary material point ðr; yÞ are perturbed around its equilibrium position. Hence, the total displacement components
measured from the arch undeformed configurations become �u0ðr; yÞ þ �uðr; y; tÞ and �v0ðr;yÞ þ �vðr; y; tÞ along the r- and
y-directions, respectively. Hereafter, a subscript ‘0’ is used to represent the variables of deformation field and stress
components in the equilibrium state of the arch in thermal environment. The thermoelastic equilibrium equations and the
free vibration equations of motion together with the related boundary conditions can be obtained in a systematic manner
by using the Hamilton’s principle, which has the following form:Z t2

t1

ðdK � dUÞdt ¼ 0, (6)

where K and U are the kinetic and the potential energy of the arch and t1 and t2 are the beginning and the end of motion
time, respectively. The variational form of the arch potential energy can be stated as

dU ¼

Z y0

0

Z Ro

Ri

½ðs0yy þ syyÞdð�0yy þ �yyÞ þ ðs0ry þ sryÞdðg0ry þ gryÞ�br dr dy, (7)

where �0yy, g0ry and s0yy, s0ry are the normal and the shear components of the strain tensor and stress tensor at
equilibrium state, �yy, gry and syy, sry are the normal and the shear components of the strain tensor and stress tensor due
to vibration, also, y0, Ri, Ro and b are the opening angle, inner radius, outer radius and width of the arch, respectively.
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Since in this study only small amplitude free vibration is considered, the nonlinear terms are to be neglected. Hence, the
strain–displacement relations of the thermoelastic equilibrium state become

�0yy ¼
1

r

q �v0

qy
þ �u0

� �
; g0ry ¼

1

r

q �u0

qy
� �v0

� �
þ
q �v0

qr
. (8)

However, to include the effects of the initial stresses due to thermal environment in the equations of motion, the nonlinear
terms in the strain–displacement relations of vibration should be considered

�yy ¼ �
L
yy þ �

NL
yy ¼

1

r

q �v
qy
þ �u

� �
þ

1

2r2

q �u
qy
� �v

� �2

þ
1

2r2

q �v
qy
þ �u

� �2

,

gry ¼ gL
yy þ g

NL
yy ¼

1

r

q �u
qy
� �v

� �
þ
q �v
qr
þ

1

r

q �u
qy
� �v

� �
q �u
qr
þ

1

r

q �v
qy
þ �u

� �
q �v
qr

, (9)

where the superscripts ‘L’ and ‘NL’ stand for the linear and nonlinear terms of the strain components.
Employing the small amplitude vibration assumption, the stress–strain relations become

s0yy ¼ Eðr; TÞ½�0yyðr; yÞ � aðr; TÞDTðrÞ�; s0ry ¼ kGðr; TÞg0ryðr;yÞ,

syy ¼ Eðr; TÞ�L
yyðr; yÞ; sry ¼ kGðr; TÞgL

ryðr; yÞ, (10)

where Eðr; TÞ is the Young’s modulus, aðr; TÞ the thermal expansion coefficient of the arch, T(r) the temperature at an
arbitrary material point of the arch, DTðrÞ ¼ TðrÞ � T0 the temperature rise,

Gðr; TÞ ¼
0:5Eðr; TÞ

1þ nðr; TÞ

� �

the shear rigidity and k the shear correction factor.
The variational form of the arch kinetic energy is obtained from the following equation:

dK ¼

Z y0

0

Z Ro

Ri

r q �u
qt

qd �u
qt
þ
q �v
qt

qd �v
qt

� �
br dr dy, (11)

where r½¼ rðr; TÞ� is the mass density of the FG arch.
Based on the FSDT, the displacement components at an arbitrary material point ðr; yÞ of the arch can be expressed as

�u0ðr; yÞ ¼ u0ðyÞ; �v0ðr; yÞ ¼ v0ðyÞ þ xj0ðyÞ; �uðr; y; tÞ ¼ uðy; tÞ; �vðr;y; tÞ ¼ vðy; tÞ þ xjðy; tÞ, (12)

where jðyÞ is the bending rotation of the cross section of the arch, also, x ¼ r � Rm and Rm the mean radius of the arch.
Inserting Eqs. (7)–(12) into Eq. (6) and performing the integration by parts with respect to spatial coordinate variables y

and time t, one obtains the thermoelastic equilibrium equations and the equations of motion together with the related
boundary conditions as follows:

Thermoelastic equilibrium equations:

du0 : As
d2u0

dy2
� Anu0 � ðAs þ AnÞ

dv0

dy
þ ðAsRm � BnÞ

dj0

dy
¼ �NT , (13)

dv0 : ðAs þ AnÞ
du0

dy
þ An

d2v0

dy2
� Asv0 þ Bn

d2j0

dy2
þ RmAsj0 ¼

dNT

dy
, (14)

dj0 : ðBn � AsRmÞ
du0

dy
þ Bn

d2v0

dy2
þ AsRmv0 þ Db

d2j0

dy2
� AsR2

mj0 ¼
dMT

dy
. (15)

Boundary conditions at the edges y ¼ 0 and y0:

Either du0 ¼ 0 or As
du0

dy
� v0 þ Rmj0

� �
¼ 0, (16)

Either dv0 ¼ 0 or An u0 þ
dv0

dy

� �
þ Bn

dj0

dy
¼ NT , (17)

Either dj0 ¼ 0 or Bn u0 þ
dv0

dy

� �
þ Db

dj0

dy
¼ MT . (18)
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Free vibration equations of motion:

du :
n0yy þ As

Rm

� �
q2u

qy2
þ

1

Rm

dn0yy
dy

� �
qu

qy
�

An þ n0yy
Rm

� �
u�

An þ As þ 2n0yy
Rm

� �
qv

qy

�
1

Rm

dn0yy
dy

� �
v�

Bn þ 2 �N0

Rm
� As

 !
qj
qy
þ

dn0yy
dy

� �
j ¼ I11

q2u

qt2
, (19)

dv :
As þ An þ 2n0yy

Rm

� �
qu

qy
þ

1

Rm

dn0yy
dy

� �
uþ

An þ n0yy
Rm

� �
q2v

qy2
þ

1

Rm

dn0yy
dy

� �
qv

qy

�
As þ n0yy

Rm

� �
vþ

�N0 þ Bn

Rm

 !
q2j
qy2
�

dn0yy
dy

� �
qj
qy
þ ðAs þ n0yyÞj ¼ I11

q2v

qt2
þ I12

q2j
qt2

, (20)

dj :
Bn þ 2 �N0

Rm
� As

 !
qu

qy
�

2Q0ry
Rm

þ
dn0yy

dy

� �
uþ

Bn þ
�N0

Rm

 !
q2v

qy2

�
2Q0ry

Rm
þ

dn0yy
dy

� �
qv

qy
þ As �

�N0

Rm

 !
vþ

�M0 þ Db

Rm

 !
q2j
qy2
þ 2Q0ry þ Rm

dn0yy
dy

� �� �
qj
qy

�
1

Rm

�M0 �
dM0ry

dy

� �
þ RmAs

� �
j ¼ I12

q2v

qt2
þ I33

q2j
qt2

. (21)

Boundary conditions at the edges y ¼ 0 and y0:

Either du ¼ 0 or ðAs þ n0yyÞ
qu

qy
� v

� �
� ð �N0 � RmAsÞj ¼ 0, (22)

Either dv ¼ 0 or ðBn þ
�N0Þ

qj
qy
þ ðAn þ n0yyÞ

qv

qy
þ u

� �
þ Q0ryj ¼ 0, (23)

Either dj ¼ 0 or ðDb þ
�M0Þ

qj
qy
þ ðBn þ

�N0Þ
qv

qy
þ u

� �
þM0ryj ¼ 0. (24)

In the above equations

NT ¼

Z Ro

Ri

Eðr; TÞaðr; TÞDTðrÞb dr; MT ¼

Z Ro

Ri

xEðr; TÞaðr; TÞDTðrÞb dr,

An ¼

Z Ro

Ri

Eðr; TÞ

r

� �
b dr; Bn ¼

Z Ro

Ri

x

r

� �
Eðr; TÞb dr ¼

Z Ro

Ri

Eðr; TÞb dr � RmAn,

As ¼ k
Z Ro

Ri

Gðr; TÞ

r

� �
b dr; Db ¼

Z Ro

Ri

Eðr; TÞ x� Rm þ
R2

m

r

 !
b dr ¼

Z Ro

Ri

xEðr; TÞb dr � RmBn,

Ds ¼ k
Z Ro

Ri

xGðr; TÞ

r

� �
b dr ¼ k

Z Ro

Ri

Gðr; TÞb dr � RmAs; �N0 ¼ N0yy � Rmn0yy,

�M0 ¼ M0yy � N0yyRm þ R2
mn0yy. (25)

Also, the resultant forces and moments are related to the displacement components, the bending rotation and the
temperature rise as

N0yy
n0yy
M0yy

8><
>:

9>=
>; ¼

An Bn

an bn

Bn Db

2
64

3
75

qv0

qy
þ u0

qj0

qy

8>><
>>:

9>>=
>>;�

NT

nT

MT

8><
>:

9>=
>;;

Q0ry
M0ry

( )
¼

As

Ds

( )
qu0

qy
� v0 þ Rmj0

� �
(26)
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with

nT ¼

Z Ro

Ri

Eðr; TÞaðr; TÞ DTðrÞ

r

� �
b dr; an ¼

Z Ro

Ri

Eðr; TÞ

r2

� �
b dr; bn ¼ An � Rman.

Different types of the classical boundary conditions at the edges y ¼ 0 and y0 of the arch can be obtained by combining
the conditions stated in Eqs. (16)–(18) for the thermoelastic equilibrium analysis and Eqs. (22)–(24) for the free vibration
analysis. For example, for the equilibrium state one has

Simply supported ðSÞ : u0 ¼ 0; v0 ¼ 0; Bn u0 þ
dv0

dy

� �
þ Db

dj0

dy
¼ MT , (27)

Clamped ðCÞ : u0 ¼ 0; v0 ¼ 0; j0 ¼ 0, (28)

Free ðFÞ :
du0

dy
� v0 þ Rmj0 ¼ 0; An u0 þ

dv0

dy

� �
þ Bnj0 ¼ NT ,

Bn u0 þ
dv0

dy

� �
þ Db

dj0

dy
¼ MT . (29)

3. Solution procedure

Analytical solutions to the above system of equations cannot be found, thus, here DQM as an approximate but efficient
numerical tool is employed to solve these equations. Details of this procedure can be found in the previous works of
Malekzadeh and his co-workers [5,16–18,22]. However, for the purpose of completeness, a brief review of the DQM is
presented here.

The basic idea of the differential quadrature method is that the derivative of a function with respect to a coordinate
variable at a given grid point is approximated as the linear weighted sums of its values at all of the grid points in the
domain of that variable. In order to illustrate the DQ approximation, consider a function f ðy; tÞ having its field on a domain
0 � y � y0, 0 � t. Based on the DQM, the domain is discretized into Ny grid points along the y-direction. Then, at each grid
point (yi) with i ¼ 1;2;3; . . . ;Ny, the first- and second-order partial derivatives of the function f ðy; tÞ with respect to y are
approximated as

qf ðy; tÞ
qy

����
y¼yi

¼
XNy

m¼1

Ayimf ðym; tÞ ¼
XNy

m¼1

Ayimf mðtÞ;
q2f ðy; tÞ

qy2

�����
y¼yi

¼
XNy

m¼1

Byimf mðtÞ, (30)

where Ayij and Byij are the DQ weighting coefficient of the first- and second-order derivatives. From this equation one can
deduce that the important components of DQ approximations are the weighting coefficients and the choice of sampling
points. In order to determine the weighting coefficients, a set of test functions should be used in Eq. (30). For polynomial
basis functions DQ, a set of Lagrange polynomials are employed as the test functions. The weighting coefficients for the
first-order derivatives in the y-direction are thus determined as [15]

Ayij ¼

1

y0

QNy
k¼1;iak

ðyi � ykÞ

ðyi � yjÞ
QNy

k¼1;jak
ðyj � ykÞ

if iaj

�
PNy

k¼1
iaj

Ayik if i ¼ j

8>>>>>>><
>>>>>>>:

for i; j ¼ 1;2; . . . ;Ny. (31)

Using the weighting coefficients of the first-order derivative, the weighting coefficients of the second-order derivative are
obtained as [15]

Bh ¼ AhAh
¼ ðAh

Þ2. (32)

A natural grid generation rule is that of equally spaced points. However, a better choice is that corresponding to zeros of
the orthogonal polynomials such as the zeros of the Chebyshev polynomials or the so-called cosine-type grid generation
rule. In this study, this type of grid generation rule is used [15]

yi

y0
¼

1

2
1� cos

ði� 1Þp
ðNy � 1Þ

� �	 

for i ¼ 1;2;3; . . . ;Ny. (33)
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Employing the DQ rules to the thermoelastic equilibrium equations at each domain grid point yi with i ¼ 2;3; . . . ;Ny � 1
and at the boundary grid points y1 ¼ 0 and yNy

¼ y0 to discretize the related boundary conditions, one obtains a system of
algebraic equations which in the matrix form become [16]

SU0 ¼ F, (34)

where U0 is the vector of unknown degrees of freedom

U0 ¼ ½u01 . . . u0Ny
v01 . . . v0Ny

j01 . . . j0Ny
�T. (35)

Hereafter, f i ¼ f ðyiÞ. S is the stiffness matrix and its elements are obtained from the discretized differential equations and
boundary conditions based on the definition (35) and F the load vector. After solving this system of algebraic equations, the
displacement components at the DQ grid points are obtained. Then, the initial thermal resultant forces and moments at
each DQ grid points yi are obtained from the constitutive relations (26) as

ðN0yyÞi
ðn0yyÞi
ðM0yyÞi

8><
>:

9>=
>; ¼

An Bn

an bn

Bn Db

2
64

3
75

PNy

m¼1
Ayimv0m þ u0i

PNy

m¼1
Ayimj0m

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
�

ðNT Þi

ðnT Þi

ðMT Þi

8><
>:

9>=
>;,

ðQ0ryÞi
ðM0ryÞi

( )
¼

As

Ds

( ) XNy

m¼1

Ayimu0m � v0i þ Rmj0i

0
@

1
A for i ¼ 1;2; . . . ;Ny, (36)

whereð Þi ¼ ð Þjy¼yi
.

At this stage the DQ rules are employed to discretize the free vibration equations and the related boundary conditions.
In order to carry out the eigenvalue analysis, the domain and boundary degrees of freedom should be separated. In vector
forms, they are denoted as fdg, and fbg, respectively. Based on these definitions and using Eq. (36), the DQ discretized form
of the equations of motion and the related boundary conditions can be obtained in the matrix form as [5,22]

Equations of motion:

Sdbbþ SdddþM €d ¼ 0. (37)

Boundary conditions:

Sbbbþ Sbdd ¼ 0. (38)

The elements of the stiffness matrixes Sdi (i ¼ b, d) and the mass matrix M are obtained from equations of motion and
those of the stiffness matrixes Sbi (i ¼ b, d) are obtained from the boundary conditions.

Eliminating the boundary degrees of freedom from Eq. (37) using Eq. (38) and considering dðtÞ ¼ D eIot , in which o is
the natural frequency and Ið¼

ffiffiffiffiffiffiffi
�1
p
Þ is the imaginary number, the result reads

ð�S�o2MÞD ¼ 0, (39)

where �S ¼ Sdd � SdbS�1
bb Sbd.

Solving the eigenvalue system of Eq. (39), the natural frequencies and mode shapes of the arches will be obtained.
Table 1
Temperature-dependent coefficients of material properties for ceramic (ZrO2) and metals (Ti–6Al–4 V) [20].

Material Q0 Q1 Q2

E Ti–6Al–4V 122.7 (GPa) �4.605�10�4 0

ZrO2 132.2 (GPa) �3.805�10�4
�6.127�10�8

n Ti–6Al–4V 0.2888 1.108�10�4 0

ZrO2 0.3330 0 0

r Ti–6Al–4V 4420 (kg/m3) 0 0

ZrO2 3657 (kg/m3) 0 0

a Ti–6Al–4V 7:43� 10�6 (1/K) 7.483�10�4
�3.621�10�7

ZrO2 13:3� 10�6 (1/K) �1.421�10�3 9.549�10�7

K Ti–6Al–4V 6.10 (W/m K) 0 0

ZrO2 1.78 (W/m K) 0 0
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Table 2

Convergence of the first three non-dimensional natural frequency parameters of clamped FG arch under uniform temperature rise ðp ¼ 2; DT ¼ 800 KÞ.

y0 Ny h=Rm ¼ 0:1 h=Rm ¼ 0:2

l1 l2 l3 l1 l2 l3

601 7 21.642 30.877 60.812 13.860 23.073 35.489

9 21.630 29.733 57.285 13.862 22.829 35.287

13 21.630 29.731 57.263 13.862 22.827 35.283

17 21.630 29.731 57.263 13.862 22.827 35.283

19 21.630 29.731 57.263 13.862 22.827 35.283

1201 7 7.7572 14.915 24.520 6.8323 8.9184 16.298

9 7.3280 13.196 22.136 6.6033 8.7945 14.920

13 7.3284 13.132 21.931 6.6032 8.7922 14.878

17 7.3285 13.132 21.931 6.6032 8.7922 14.878

19 7.3285 13.132 21.931 6.6032 8.7922 14.878

Table 3
Convergence of the first three non-dimensional natural frequency parameters of clamped FG arch under non-uniform (nonlinear) temperature rise

ðp ¼ 2; DTm ¼ 0; DTc ¼ 800 KÞ.

y0 Ny h=Rm ¼ 0:1 h=Rm ¼ 0:2

l1 l2 l3 l1 l2 l3

601 7 26.163 37.273 73.075 16.788 28.060 42.169

9 26.151 35.931 68.930 16.791 27.762 41.955

13 26.150 35.929 68.907 16.791 27.760 41.950

17 26.150 35.929 68.907 16.791 27.760 41.950

19 26.150 35.929 68.907 16.791 27.760 41.950

1201 7 9.2294 17.871 29.368 8.1980 10.755 19.576

9 8.7122 15.756 26.533 7.9217 10.604 17.922

13 8.7127 15.676 26.284 7.9216 10.601 17.871

17 8.7127 15.676 26.284 7.9216 10.601 17.871

19 8.7127 15.676 26.284 7.9216 10.601 17.871

Table 4
Comparison of the first three non-dimensional natural frequency parameters of the isotropic arch ðn ¼ 0:3Þ.

y0 h=Rm ¼ 0:1 h=Rm ¼ 0:2

l1 l2 l3 l1 l2 l3

C–C 601 33.981 47.025 89.869 21.782 35.946 54.374

FSDST [1] 33.981 47.021 89.863 21.777 35.911 54.299

2D-LW-DQ [5] 34.041 47.259 90.462 21.910 36.368 54.594

S–S 31.569 31.734 71.449 17.068 27.671 53.900

FSDST [1] 31.569 31.732 71.446 17.067 27.655 53.822

C–S 31.595 39.735 80.686 18.816 32.186 53.985

FSDST [1] 31.594 39.732 80.682 18.814 32.161 53.909

C–C 1201 11.392 20.393 34.001 10.279 13.665 23.116

FSDST [1] 11.391 20.392 34.001 10.271 13.662 23.107

2D-LW-DQ [5] 11.411 20.436 34.044 10.333 13.718 23.254

S–S 6.8254 16.586 31.731 6.5488 13.461 18.978

FSDST [1] 6.8247 16.585 31.730 6.5450 13.458 18.975

C–S 8.9605 18.664 32.768 8.3067 13.613 20.934

FSDST [1] 8.9595 18.663 32.767 8.3012 13.610 20.928
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4. Numerical results

In this section, firstly, the convergence and accuracy of the method is investigated and then the effects of the
geometrical and the material parameters on the in-plane free vibration characteristics of FG circular arches under uniform
ðDTc ¼ DTm ¼ DTÞ and non-uniform temperature rise ðDTm ¼ 0; DTc ¼ DTÞ are presented. In the examples solved, unless
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Table 5

Convergence and accuracy of the fundamental non-dimensional natural frequency parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0L4o2Þ=ðE0IxxÞ

4
q� �

a of the soft simply supported FG

straight beam ½b=h ¼ 1; g ¼ ln ð10Þ; Lð¼ Rmy0Þ ¼ Rm ¼ 1; n ¼ 0:3�.

H/L Ny 2D-analytic [11]

7 9 13 19 23

1/15 2.9459 2.9453 2.9454 2.9454 2.9454 2.9449

1/5 2.8837 2.8832 2.8832 2.8832 2.8832 2.8773

a E0 and r0 are the Young’s modulus and the mass density of ceramic [11]; Ixx ¼ bh3=12, A0 ¼ bh.
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otherwise specified, the following non-dimensional frequency parameter is used

li ¼ oiðR
2
m=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0c=E0c

q
. (40)

The material properties of Ti–6Al–4V and ZrO2, as given in Table 1, are used in the numerical computations. They are valid
for the temperature range of 300 � T � 1100 K [20,21].

4.1. Convergence study and validation

Lack of appropriate results for functionally graded circular arches for direct comparison has forced us to validate the
presented formulation in one of the two following ways. First, compare the results with those of isotropic arches and
second, observe the convergence of the solutions with respect to increasing Ny, the number of discrete points distributed
along the y-directions.

As a first example to validate the presented formulations, the convergence of the method for FG arches with
temperature-dependent material properties under high temperature thermal environment is studied here. The results for
the FG clamped arches under high uniform temperature rise are presented in Table 2 and those of the FG clamped arches
subjected to non-uniform temperature rise are presented in Table 3. In all cases, fast rate of convergence of the method are
evident. It should be mentioned that for both uniform and non-uniform temperature rise, only nine DQ grid points in the
tangential direction is sufficient to obtain results with sufficient accuracy. Also, in all cases for Ny � 13 the results will find
no change up to five significant digits. Hence, hereafter, the results for the FG arches are prepared using Ny ¼ 13.

As another attempt to validate the presented formulations, in Table 4 the first three non-dimensional natural frequency
parameters of the isotropic arches subjected to different boundary conditions are compared with those obtained using the
Qatu’s formulation [1], which are based on the first-order shear deformation shell theory (FSDST). The results are prepared
for two different values of the opening angle (y0) and the thickness-to-length ratio. Additionally, the same problem but
with clamped boundary conditions is also solved by using the two-dimensional layerwise-differential quadrature (2D-LW-
DQ) method presented by Malekzadeh et al. [5], which its high accuracy was demonstrated. The converged results of the
2D-LW-DQ are obtained by using 12 mathematical layers in the radial direction and 70 grid points in the tangential
direction. In all cases, excellent agreements with those of the other two approaches have been achieved.

Also to verify the accuracy of the method for FG beams, the solutions for the fundamental frequency parameter of a soft
simply supported straight beam are compared with those of two-dimensional analytical elasticity solution of Ying et al.
[11] in Table 5. They assumed that all elastic constants and mass density varied exponentially through the beam thickness,
that is Q ¼ Q0 egz, where �Q represents elastic constant or mass density of the beam, g the gradient index and z the through
thickness coordinate (z ¼ r � Ri, in the present analysis). The numerical values of the material properties are the same as
those given in Ref. [11]. From the data presented in Table 5, which are prepared for two different values of the thickness-to-
length ratios, the fast rate of convergence and high accuracy of the method are evident.

4.2. Parametric studies

In this section, unless otherwise stated, the following value are used for the chosen parameter in the examples
considered; p ¼ 2, y0 ¼ 1201, h ¼ 0:2Rm. To show the importance of considering the variation of material properties with
temperature, the first two frequency parameters of the FG circular arches with and without the temperature-dependent
material properties subjected to non-uniform temperature rise are compared in Figs. 2(a)–(c). The results are prepared for
FG arches with three different sets of boundary conditions at edges: clamped–clamped, clamped–simply supported and
simply supported–simply supported. From these figures one can see that the frequency parameters are greatly
overestimated when the temperature-dependence of material parameters is not taken into account. The discrepancy
between temperature-dependent and temperature-independent solutions increase dramatically as the temperature rise
increases. The relative errors between the results of the two formulations at DT ¼ 800 K are presented in Table 6. The
difference reaches as high as 20.772 percent for the second frequency parameters of simply supported arch.
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Table 6

Relative errora between the results for the FG arch with and without the temperature-dependent properties at DT ¼ 800 K.

Boundary conditions e1 e2 e3

Clamped 18.177 17.573 18.033

Simply supported–clamped 16.455 16.784 18.142

Simply supported 17.401 16.757 20.772

a ei ¼ ½ðliÞTemperature-dependent � ðliÞTemperature-independent � � 100=ðliÞTemperature-dependent.
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Fig. 2. (a)–(c). Comparison of the first two frequency parameters of the (a) clamped, (b) simply support–clamped and (c) simply supported FG circular

arches with and without the temperature-dependent material properties. Temperature dependent: the first mode (i ¼ 1), the second

mode (i ¼ 2); Temperature independent: the first mode (i ¼ 1), the second mode (i ¼ 2).
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In some studies in free vibration analysis of FG plates, pre-stress analysis has not been used and usually the initial
thermal stresses have been obtained approximately from the thermal strains; see for example Refs. [20,23]. For the circular
arch these approximate formulations reduce to

s0yy ¼ �Eðr; TÞaðr; TÞDT; s0ry ¼ 0. (41)

In Figs. 3(a)–(c), a comparison between the obtained results based on using Eqs. (10) and (41) for the initial thermal
stresses are made. The first three frequency parameters of simply supported FG circular arches under non-uniform
temperature rise are presented. It is interesting to note that the effect of approximate evaluation of the initial stresses on
the fundamental frequency parameters is more than the other two frequency parameters (see also Table 7). The difference
between the results of the two approaches increases by increasing the temperature rise. The natural frequencies obtained
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Fig. 3. (a)–(c). The effects of approximate evaluation of the thermal stresses on the first three frequency parameters of simply supported FG arches:

without approximation and with approximation.

Table 7

Relative errora between the results for the FG arch with and without approximate evaluation of thermal stresses at DT ¼ 800 K.

Boundary conditions e1 e2 e3

Clamped 2.2610 1.0318 1.1674

Simply supported–clamped 2.3632 0.7612 0.6030

Simply supported 6.0274 1.5344 1.7028

a ei ¼ ½ðliÞWithout app: � ðliÞWith app:� � 100=ðliÞWithout app: .
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based the approximate theory is lower than those of the exact formulation because the initial thermal stresses obtained
using the approximate theory are higher than those obtained by exact formulation.

The effects of uniform and non-uniform temperature rise on the first three frequency parameters of clamped FG arches
are shown in Figs. 4(a)–(c). It can be seen that for identical change of temperature rise, the uniform temperature rise has
more effect than non-uniform temperature rise on the frequency parameters and increasing the temperature rise, the
discrepancy between the results of the two cases increase dramatically. This is because for the same value of the uniform
temperature rise, the variation of the material properties and also the value of the thermal stresses are greater than those of
non-uniform one.

The influences of the opening angle ðy0Þ on the first three frequency parameters of FG clamped circular arches under
non-uniform temperature rise are presented in Figs. 5(a) and (b) for two different values of thickness-to-mean radius ratio.
It can be seen that increasing the opening angle, the frequency parameters decrease. This is due to the fact that increasing
the opening angle, the beam length increases and consequently the stiffness reduces.
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The results for the fundamental frequency parameter of the FG clamped circular arches for different values of thickness-
to-mean radius ratio and under uniform and non-uniform temperature rise are compared in Figs. 6(a) and (b). Presented in
Figs. 7(a)–(c) are comparison between the results for the first three frequency parameters of the FG arches with three
different sets of boundary conditions and subjected to non-uniform temperature rise. As it can be seen, in all cases,
increasing the temperature rise, due to reduction in the elastic coefficients the natural frequencies decrease.

The effects of the material index (p) on the first three frequency parameters of FG clamped circular arches subjected to
non-uniform temperature rise are presented in Fig. 8. It can be seen that increasing the material index (p), the frequency
parameters decrease. Through the numerical experiment, the same behavior is observed for FG arches with other types of
boundary conditions.
5. Conclusion

A method for the in-plane free vibration analysis of the FG circular arches with temperature-dependent material
properties subjected to thermal environment was presented. Employing the Hamilton’s principle, the equations of motion
and the related boundary conditions subjected to initial thermal stresses were derived. The initial thermal stresses were
obtained by solving the thermoelastic equilibrium equations of the arch. DQM as an efficient numerical tool is used to solve
the system of equations. The methodology has the capacity to provide solutions for arches with different types of boundary
conditions. The effects of the temperature rise, boundary conditions and the material graded index as well as the different
geometrical parameters such as the thickness-to-mean radius ratio and the opening angle on the frequency parameters of
the FG arches were investigated. It was shown that the temperature-dependence material properties can have significant
impacts on the natural frequencies.
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