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a b s t r a c t

Currently the most widely used method for comparing mode shapes from finite

elements and experimental measurements is the modal assurance criterion (MAC),

which can be interpreted as the cosine of the angle between the numerical and

measured eigenvectors. However, the eigenvectors only contain the displacement of

discrete coordinates, so that the MAC index carries no explicit information on shape

features. New techniques, based upon the well-developed philosophies of image

processing (IP) and pattern recognition (PR) are considered in this paper. The Zernike

moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD) are the

most popular shape descriptors due to their outstanding properties in IP and PR. These

include (1) for the ZMD-rotational invariance, expression and computing efficiency, ease

of reconstruction and robustness to noise; (2) for the FD—separation of the global shape

and shape-details by low and high frequency components, respectively, invariance

under geometric transformation; (3) for the WD—multi-scale representation and local

feature detection. Once a shape descriptor has been adopted, the comparison of mode

shapes is transformed to a comparison of multidimensional shape feature vectors.

Deterministic and statistical methods are presented. The deterministic problem of

measuring the degree of similarity between two mode shapes (possibly one from a

vibration test and the other from a finite element model) may be carried out using

Pearson’s correlation. Similar shape feature vectors may be arranged in clusters

separated by Euclidian distances in the feature space. In the statistical analysis we are

typically concerned with the classification of a test mode shape according to clusters of

shape feature vectors obtained from a randomised finite element model. The dimension

of the statistical problem may often be reduced by principal component analysis. Then,

in addition to the Euclidian distance, the Mahalanobis distance, defining the separation

of the test point from the cluster in terms of its standard deviation, becomes an

important measure. Bayesian decision theory may be applied to formally minimise the

risk of misclassification of the test shape feature vector. In this paper the ZMD is applied

to the problem of mode shape recognition for a circular plate. Results show that the

ZMD has considerable advantages over the traditional MAC index when identifying the

cyclically symmetric mode shapes that occur in axisymmetric structures at identical

frequencies. Mode shape recognition of rectangular plates is carried out by the FD. Also,

the WD is applied to the problem of recognising the mode shapes in the thin and thick

regions of a plate with different thicknesses. It shows the benefit of using the WD to

identify mode-shapes having both local and global components. The comparison and

classification of mode shapes using IP and PR provides a ‘toolkit’ to complement the
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conventional MAC approach. The selection of a particular shape descriptor and

classification method will depend upon the problem in hand and the experience of

the analyst.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Validating and updating a mathematical model [1] by experimental results is a well-known strategy in design
optimisation. In structural dynamics, comparing mode shapes between prediction and measurement is a crucial step. The
current method, the modal assurance criterion (MAC) [2], works perfectly well with small and medium-sized structures.
However, the MAC is inadequate to show the subtle difference between analytical and measured mode shapes especially
since new computing and testing techniques have emerged. Modern computing power for detailed finite element models
and advanced full-field optical measurement techniques such as the scanning laser Doppler vibrometer (SLDV) [3,4] and
digital image correlation (DIC) [5] make accurate dynamic characteristics available for large and complicated structures.
Well developed techniques in image processing (IP) and pattern recognition (PR) enable versatile comparison and
classification of mode shapes [6–8]. Within such procedures, a series of shape features with good discriminative capability
should be extracted to form a feature vector—shape descriptor (SD). Now the similarity/dissimilarity of the shapes can be
revealed by the ‘distance’ of their corresponding SDs in the shape feature space according to appropriate criteria.

The moment descriptor is one of the most popular shape descriptors in IP and PR of two dimensional (2D) images and
shape patterns [9,10]. Hu [11] first introduced a set of moment invariants constructed by non-linear combinations of
geometric moments (GM). These geometric moment invariants have the properties of being invariant under image
translation, scaling and rotation. However, the non-orthogonality of the moment basis leads to redundancy of information,
making it is difficult to recover the original shape unambiguously from the shape descriptors.

Teague [12] suggested using orthogonal polynomials to replace the algebraic polynomials when calculating the moment
descriptor. The Zernike moment (ZM) is based on a complete set of orthogonal polynomials over a circle of unit
radius—Zernike polynomials. It was found later that the Zernike moment is one of the most important region-based shape
descriptors because of its outstanding properties resulting from the orthogonality of the Zernike polynomials. Firstly,
expressing an image as a set of mutually independent descriptors has the effect of minimising the redundancy of
information. Secondly, the contribution of each order of moment to the image reconstruction can be separated, so that the
process of regaining the original image is much easier than by geometric moment descriptors [13]. Rotational invariance
[14,15] is another important property of the ZM, meaning that rotating an image does not change the magnitudes of its
Zernike moments. Also, the ZM is robust to noise [13] and effective, so that a small number of Zernike moments are usually
sufficient for shape reconstruction.

Fourier Descriptors (FDs) were originally proposed in 1960 by Cosgriff [16], and thereafter became popular among the
pattern recognition community through the papers of Zahn [17], Granlund [18], and Fu [19]. FDs are among the most popular
shape representation methods for vision and pattern recognition applications. FDs refer to a class of methods, not a single
method, since there are many different ways in which the FDs of a shape can be defined. The basic idea underlying this
approach consists in representing the shape of interest in terms of a 1D, 2D or even 3D signal. The Fourier transform of this
signal is determined and the FDs are calculated for this Fourier representation. Some properties of the FDs directly follow
from the underlying theory of the Fourier transforms and series. For instance, the 0th component of the FDs obtained from
the contour representation is associated with the centroid of the original shape. The invariance to geometric transformations
is also a direct consequence of the properties of the Fourier series. Such properties have helped to popularize this shape
representation scheme, which has been adopted in a number of applications during the last four decades.

In certain applications, local shape information is especially significant, so that certain important shape features are
associated with a particular portion of the object, such as a discontinuity, singularity or local frequency. The short-time

Fourier descriptor (SFD) [20] and wavelet descriptor (WD) [21,22] are two of the most powerful methods for detecting these
local shape features. One of the main properties of the wavelet descriptor is its ability to separate local features from the
global shape. For example a partial occlusion may interfere significantly with a global Fourier descriptor or moment
descriptor, while the wavelet descriptor is not affected at all.

The SDs may be assembled together in the shape feature vector (SFV). The comparison of mode shapes is then
transformed to a similarity measurement between the SFVs in the feature space. Dimensionless normalisation for the SFV
is necessary before commencing the comparison to avoid the scaling effect. For example, the SFV may be normalised by
subtracting its mean value and then dividing by its standard deviation. The comparison of SFVs may be achieved by
Pearson’s correlation, which is similar to the MAC correlation except that it is carried out using the shape feature vector
rather than the vector of coordinate displacements. The shape feature vector has the effect of concentrating the shape
information into a small number of meaningful terms whereas there is generally much redundancy in the untreated vector
of coordinate displacements. Clustering techniques are used to establish the similarity between different mode shapes. In
hierarchical clustering, SFVs grouped together according to distance measures are shown as ‘twigs’ on the dendrogram.
Twigs that are close to each other are considered to represent similar mode shapes.
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When modes shapes are measured in the presence of uncertainty, then the comparison of SFVs becomes a
stochastic problem. Statistical pattern recognition techniques provide a range of methods [7] for the classification
of the SFVs. The basic idea of the statistical approach is to select suitable features that allow the SFVs of the shapes
in the same class to be as compact as possible in the feature space; while SFVs of two shapes from distinct classes
are as loose as possible. Bayesian decision theory [23], discriminant functions [24] and clustering [25] are frequently
adopted.

In the next section, different shape descriptors are defined. The comparison of SFVs based on statistical methods is
described in Section 3. The application of SDs for mode-shape recognition is illustrated using several simple structural
examples in Section 4.

2. Shape descriptors

The SD of an image (mode shape) may be considered as a point in the shape-feature vector space. 2D mode shapes are
considered in this paper. Thus, the general form of SD can be expressed as

D ¼J½Iðx; yÞ� (1)

where I(x,y) denotes the continuous-displacement mode shape function and J½�� represents the transformation for
extracting the shape features. More specifically, the SD can be defined by projecting the image function onto a kernel
function <ðx; yÞ as

D ¼

Z
O
<ðx; yÞIðx; yÞdx dy (2)

where O denotes the domain of definition. Different types of SDs (ZMDs, FDs, WDs etc.) are defined by using different
kernel functions.

2.1. Zernike moment descriptor

A set of 2D complex polynomials defined over a unit circle was introduced by Zernike [26],

Vn;mðx; yÞ � Vn;mðr;WÞ ¼ Rn;mðrÞeimW (3)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, ðr;WÞ is the polar coordinate, n is the non-negative integer, representing the order of the radial polynomial;
m is the positive and negative integers subject to constraints n� jmj even, jmj � n representing the repetition of the
azimuthal angle; Rn;m is the radial polynomial,

Rn;mðrÞ ¼
Xðn�jmjÞ=2

s¼0

ð�1Þs
ðn� sÞ!

s!
nþ jmj

2
� s

� �
!

n� jmj

2
� s

� �
!

rn�2s (4)

According to the orthogonality properties [27], the inner product of any pair of complex Zernike polynomials can be
expressed as Z Z

x2þy2�1
Vp;qðx; yÞV

�
n;mðx; yÞdx dy ¼

p
nþ 1

dn;pdm;q (5)

where * denotes the complex conjugate and dn;p and dm;q are Kronecker deltas. Thus, the Zernike moment descriptor can be
obtained by substituting the Zernike polynomials into the kernel function in (2) as

DZn;m
¼

nþ 1

p

Z Z
x2þy2�1

Iðx; yÞV�n;mðx; yÞdx dy (6)

or, expressed in polar coordinates as

DZn;m
¼

nþ 1

p

Z 2p

0

Z 1

0
Iðr;WÞV�n;mðr;WÞrdrdW (7)

Eqs. (6) and (7) show that the ZMDs are the inner products of the image and a series of orthogonal Zernike Polynomials.
Thus, the original image Iðr;WÞ may easily be reconstructed by summing together all the products of the decomposition
coefficients (ZMD) and their corresponding Zernike polynomials as [12],

Iðr;WÞ ¼
X1
n¼0

X
m

DZn;m
Vn;mðr;WÞ (8)

where m is constrained as in Eq. (3). Expression efficiency is one of the important properties of the ZMD, meaning the main
shape information may be extracted by the lower order moments after truncating the higher orders of the ZMD in real
applications. Therefore, the finitely reconstructed image Îðr;WÞ obtained by keeping the moments from order 0 to Nmax and
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discarding the remaining higher order Zernike polynomials may be written as

Îðr;WÞ ¼
XNmax

n¼0

X
m

DZn;m
Vn;mðr;WÞ (9)

The sufficient number Nmax to be retained may be determined by comparing the similarity between the original image and
the reconstructed image by the ZMDs up to Nmax. Such comparisons may be carried out using the correlation coefficient,

RðÎ; IÞ ¼
R R

OðÎ � ÎÞðI � �IÞdAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
R R

OðÎ � ÎÞ2dA�½
R R

OðI � IÞ2dA�

q (10)

where O denotes the internal domain of the unit disc, dA is the infinitesimal area, and

Î ¼

R R
O ÎdAR R
O dA

(11)

I ¼

R R
O IdAR R
O dA

(12)

Rotational invariance is another significant property [15] of the ZMD. Suppose the image Iðr;WÞ is rotated through an angle
a with respect to the z-axis,

Irðr;WÞ ¼ Iðr;W� aÞ (13)

The relation between their ZMDs can be expressed as

jDZr
n;m
j ¼ jDZn;m

j (14)

and

argðDZr
n;m
Þ ¼ argðDZn;m

Þ �ma (15)

These properties are very useful for recognising mode shapes of axisymmetric structures, as will be demonstrated in
Section 4.
2.2. Fourier descriptor

The FD is based on the frequency components of the Fourier transform (FT) applied to the image. According to the well-
known theory of the FT, the kernel function of the SD should be the complex valued sinusoid,

DFðu;vÞ ¼

Z þ1
�1

Z þ1
�1

e�i2pðuxþuyÞIðx; yÞdx dy (16)

DFðu;vÞ is a continuous function having the same cardinality as I(x,y) and for real applications, this should to be reduced
whilst retaining as much information as possible. It is noted that only the low frequency and higher energy components are
sufficient to describe the shape. For instance, elliptical descriptors (with centroid, orientation, eccentricity and spread

described on page 422 of [8]) based on the FD spectrum are feasible to indicate the distribution of the frequency energy.
Also, the FD spectrum can be divided into non-overlapping sub-bands. The average energy from each sub-band then
becomes an element of the feature vector. The latter extraction method is easily implemented when applying the discrete

Fourier transform (DFT),

DFðu;vÞ ¼
1

KL

XK�1

k¼0

XL�1

‘¼0

e�i2pððuk=KÞþðv‘=LÞÞIðk; ‘Þ (17)

We considered the recognition of real valued mode shapes (normal modes). According to the properties of the FT, DFðu;vÞ

is symmetric under conjugation, DFðu;vÞ ¼ D�Fð�u;�vÞ. In additional, some of the mode shapes are axisymmetric,
Iðx; yÞ ¼ Iðx;�yÞ or anti-axisymmetric, Iðx; yÞ ¼ �Iðx;�yÞ. Their corresponding FDs can be expressed as DFðu;vÞ ¼

�DFðu;�vÞ and DFðu;vÞ ¼ DFðu;�vÞ respectively. These symmetric properties indicate that the mode shapes can be
uniquely determined by only the non-negative components in the spatial frequency plane. Thus, the dimensionality of the
SFV formed by the FDs , fFD, can be further reduced.

Reconstruction is straight forward by applying the inverse Fourier transform. Good approximation may be obtained by
retaining a sufficient number of higher energy terms. The same criterion as in Eq. (10) may be used to determine the
necessary dimensionality of the SFV.
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2.3. Wavelet descriptor

The idea of wavelet transformation is to represent an image in terms of the superposition of wavelets with different
scale levels and positions. The wavelet, having better time-frequency resolution than the short-time Fourier transform (STFT)
[28], may be expressed as

cbx;by ;a ¼
1

a
c

x� bx

a
;
y� by

a

� �
(18)

where a 2 Rþ is the dilating scale parameter, ðbx; byÞ 2 R
2 are the translation parameters and cbx;by;a is the translated and

dilated version of the mother wavelet cðx; yÞ. The normalisation factor 1/a is included so that kcbx;by;ak ¼ kck. Depending
on the application, these parameters take either continuous or discrete values. The definition of continuous wavelet

transform (CWT) can be expressed as an inner product of the wavelet and the image,

DWða; bx;byÞ ¼ hcbx;by ;a; Iðx; yÞi

¼

Z þ1
�1

Z þ1
�1

c�bx;by;a
ðx; yÞIðx; yÞdx dy (19)

The mother wavelet must satisfy Z þ1
�1

Z þ1
�1

cðx; yÞdx dy ¼ 0 (20)

so that the wavelet is oscillatory with a null DC component.
Discretization of the wavelet parameters is adopted in many applications [28]. The most common choice in practise is

obtained by letting a ¼ 2�s, bx ¼ 2�sk, by ¼ 2�s‘ with s; k; ‘ 2 Z (integers). This results in the discrete wavelet transform

(DWT).
A number of orthonormal wavelet bases may be constructed [29]. In image processing the great power of the DWT in

lies in its application to multiresolution analysis (MRA) [21]. A one dimensional (1D) signal f(x), may be approximated by

using a hierarchical framework with different resolutions. Two related functions, the mother wavelet function c and the

scaling function f, are introduced with their dyadic dilated and translated in integer steps, cs;nðxÞ ¼
ffiffiffiffiffi
2s
p

cð2sx� nÞ and

fs;nðxÞ ¼
ffiffiffiffiffi
2s
p

fð2sx� nÞ, s;n 2 Z. For any fixed s, the scaling functions fs;n are constructed to be orthonormal. The

subspaces As spanned by fs;n describe the successive approximation spaces, f0g � � � �A�2 � A�1 � A0 � A1 � A2

� � � � L2ðRÞ, with respect to integer scales. When the signal is approximated by the coarser resolution 2s, rather than the
finer resolution 2s+1, the loss of information is described by the wavelets at resolution 2s. Thus, a subspace Ws spanned by

the wavelet sequence cs;n complements the approximation space As in As+1 orthogonally, so that Ws ? As and

Asþ1 ¼Ws þ As (21)

¼Ws þWs�1 þ As�1 (22)

¼
XJ�1

j¼0

Ws�j þ As�J (23)

where J is the number of decomposition levels. In real applications, the signals obtained are usually sampled. Thus, a
discrete signal may be considered as the initial approximation and be represented as an approximation by the scaling
functions plus the details held by the wavelet functions at one step coarser resolution. The resulting approximation can be
decomposed further by using the same procedure at successively coarser resolutions. Therefore, the input signal is
characterised by the coefficients of the wavelets and scaling functions. These coefficients are determined as [21],

aj�1;n ¼
X

k

h2n�kaj;k (24)

and

wj�1;n ¼
X

k

g2n�kaj;k (25)

where as;n ¼ hf ðxÞ;fs;ni, ws;n ¼ hf ðxÞ;cs;ni, gk ¼ ð�1Þkh1�k and hn ¼
ffiffiffi
2
p R

fðx� nÞfð2xÞdx. Thus, the coefficients in different

scales may be used as the components of SFV. For example, if we are interesting in the details of certain level, the SFV might

be defined as fw
s ¼ fws;kg.

The DWT may be extended to 2D images. Similar to the 1D case, scaling functions at approximation subspace As with
resolution 2s may be defined as [21],

/s;k;‘ðx; yÞ ¼ fs;kðxÞfs;‘ðyÞ; s; k; ‘ 2 Z (26)
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where fð�Þ is the 1D scaling function, s is the scale and ðk; ‘Þ is the translation coordinate. The orthogonal complement
subspace Ws of As in As+1 can be built by three sets of wavelets which can be defined by associating the 1D wavelet cð�Þ and
scaling functions fð�Þ as,
ws+1
H

ws+1
D

ws+1
V

wV

wH
s

wD
ss

as

as+1

as+1

Fig. 1. Decomposition of sub-images between two scales.
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6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Zernike Moment Amplitudes (Nmax = 8)

Fig. 2. Amplitudes of the ZMDs.
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Horizontal wavelets wH
s;k;‘ðx; yÞ ¼ fs;kðxÞcs;‘ðyÞ (27)

Vertical wavelets wV
s;k;‘ðx; yÞ ¼ cs;kðxÞfs;‘ðyÞ (28)

Diagonal wavelets wD
s;k;‘ðx; yÞ ¼ cs;kðxÞcs;‘ðyÞ (29)

which satisfy the admissibility condition (20).
Thus, the 2D discrete wavelet transform (DWT2) for an image can be obtained by implementing the 1D algorithm

horizontally and then vertically. The outputs from each step of decomposition are the sub-images of one approximation at
coarser resolution and three sub-images of detail in horizontal, vertical and diagonal directions as illustrated in Fig. 1. Thus,
the comparison between images can now be carried out using the sub-images at different resolutions. The average energy
of each sub-image may be used to form the SFV,

vdwt ¼ fv�J ;v
H
�J ;v

V
�J ;v

D
�J ;v

H
�Jþ1;v

V
�Jþ1;v

D
�Jþ1; . . . ;v

H
�1;v

V
�1;v

D
�1g

T (30)
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where

v�J ¼
1

K�JL�J

XK�J ;L�J

k;‘

ða�J;k;‘Þ
2 (31)

is the average energy of the coarsest approximation coefficients defined by

a�J:k;‘ ¼ hIðx; yÞ;2
�Jfð2�Jx� k;2�Jy� ‘Þi (32)

and

vi
j ¼

1

KjLj

Xkj ;Lj

k;‘

ðwi
j;k;‘Þ

2; j ¼ �J;�J þ 1; . . . ;�1; i ¼ H;V ;D (33)

where (Kj	 Lj) is the size of the sub-image, J is the number of decompositions and wi
j;k;‘

is the wavelet coefficients at ðk; ‘Þ
for the jth resolution defined as

wi
j;k;‘ ¼ hIðx; yÞ;w

i
s;k;‘i (34)

3. Statistical methods for SFV comparison

Shapes to be compared by statistical approaches are represented as l-dimensional feature vectors in the shape feature
space. The intention is to select suitable features that allow the l-dimensional vectors of the shapes in the same class to be
as compact as possible in the feature space; while feature vectors of two shapes from distinct classes are as loose as
possible. Given a set of training shapes from each class, the objective is to establish decision boundaries in the feature space
which separate shapes belonging to different classes. In the statistical decision theoretic approach, the decision boundaries
are determined by the probability distributions of the patterns belonging to each class, which must either be specified or
learned, for example, by a Bayesian classifier [23,30]. Another method is to define a set of boundaries that divide the feature
space into different regions which correspond to each class, such as linear discriminant analysis, quadratic classifiers, etc.
Clustering analysis is a powerful approach in unsupervised classification. This technique partitions the shapes into different
clusters or groups. The term unsupervised means that the class labelling of the training shape patterns is not available.
Therefore, the main objective of clustering analysis is to classify all the shapes into sensible clusters, which can be used to
disclose the similarities and differences between the shapes and to draw meaningful conclusions from them. In this paper,
correlation, principal component analysis (PCA), Bayesian decision theory and clustering techniques [25] are applied. A brief
discussion of PCA and Bayesian classification may be found in Appendices A and B.
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4. Examples

In this section, four cases based on different SDs are considered. The ZMD is applied to the problem of free vibration of a
circular plate. Not only can the double modes of axisymmetric structures be revealed by the amplitudes of the ZMD but
also their angular difference can be determined by phase information from the ZMD. The mode shapes of two rectangular
thin plates, one stiffened by crossed ribs are compared by using a small number of high-energy FDs. Similar modal patterns
of a plate are revealed using elliptical descriptors derived from the FDs. Local and global mode shape recognition is carried
out using the WD for four rectangular plates with different thickness regions. Statistical classification methods are applied
to the problem of a beam with uncertain boundary conditions.
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4.1. ZMD of a circular plate

The free vibration of a circular plate is modelled by finite elements. Since the circular plate is a perfectly axisymmetric
structure double modes are obtained. The conventional mode-shape comparison method, MAC, shows nothing about the
double modes. Thus, the ZMD is applied to the first 20 modes. As illustrated in Fig. 2, the amplitudes of the Zernike
moments from order 0 to 8 are shown in the figure. There are totally 25 Zernike moment amplitudes shown along the
horizontal axis for each mode (subfigure). This overall number of the Zernike moments was determined by the indices
{n, m} ¼ {(0,0), (1,1), (2,0), (2,2), (3,1), (3,3),y, (8,8)} as defined in Eq. (3). It can also be seen that only a small number of the
lower order ZMDs are needed to represent all the modes. This shows the ZMD to be an expression-efficient SD. The Pearson
correlation coefficient [31] for mode shapes based on ZMD amplitudes is shown in Fig. 3 where the double modes can
clearly be recognised.

The rotational difference between any pair of double modes can be determined by the ZMD property (15). The first pair
of double modes 1 and 2 is shown in Fig. 4. As seen from Fig. 2 their ZMDs are mainly dominated by DZ2;2

. Thus, the angle

a ¼
ðargðD

Zð2Þ
2;2

� argðD
Zð1Þ

2;2

ÞÞ

2
¼

90:1


2
¼ 45:1


matches the theoretical angular difference between double modes 1 and 2 as in Fig. 5.
Further applications of the ZMD are discussed by the present authors [32], including the extension to non-circular

structures, point-mass detection in a circular plate and finite element model updating.

4.2. FD of a rectangular plate

Free vibration of a 160	120	2 mm rectangular aluminium thin plate is modelled. The FDs of the mode shapes are
determined by the DFT. Since the structure is symmetric about the x-axis and about the y-axis, only the non-negative
spatial frequency components need to be considered. Fig. 6 shows the amplitudes of the FDs for the first 12 modes in the
first quadrant. The horizontal and vertical axes represent the spatial frequency coordinates u and v, respectively, as defined
in Eq. (17). The size of the square represents the magnitude of the corresponding FD. It is noted that only a few lower
Fig. 9. FE model of the plate with ribs. The squares 1–48 are the quadrilateral plate elements and the bold line segments 49–62 are beam elements (ribs).
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frequency components are significant. Higher level information is provided by elliptical descriptors, which describe the
global spectrum pattern, also presented in the figures. It would be possible to apply Pearson’s correlation, as in the previous
ZMD example, using either the vector of FD terms directly or using the vector of elliptical descriptors. In this example it is
chosen to apply a hierarchical clustering algorithm using elliptical descriptors from the FD spectrum and providing
quantitative (average distance) measures between clusters of modes. Several clusters may be obtained by cutting the
dendrogram [25] shown in Fig. 7 at a chosen distance separating the various groups of modes. The most compact cluster C1
((1,7),10) indicates the similarity of the three spectrum patterns as shown in Fig. 6. Cluster C2 ((5,12),6) groups together
those modes with a strongly dominant horizontal major axis of the ellipse. Also, the three compact ellipses having
horizontal major axes are grouped by cluster C3 (2,(8,11)). Furthermore, the similarities between FD patterns indicated by
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these clusters can be referred back to the similarities between mode shapes. The nodal lines of the 12 modes are shown in
Fig. 8. According to the closeness of modes 1, 7 and 10 (indicated by cluster C1) it can be seen from their nodal lines that
mode 7 has two more horizontal oscillations than mode 1 whilst mode 10 has two more vertical oscillations than mode 1.
For cluster C2, mode 12 has two more oscillations than mode 6 horizontally and mode 5 vertically. Similar relations
between mode 2, 8 and 11 are indicated for cluster C3. Thus the SFV formed by the elliptical descriptor of the FD spectrum
Simple Plate 7 Ribbed Plate 6

Simple Plate 13 Ribbed Plate 12

Fig. 12. Similar mode shape pairs S07 and R06, S13 and R12.

Simple Plate 6 Ribbed Plate 7

Simple Plate 11 Ribbed Plate 11

Fig. 13. Similar mode shape pairs S06 and R07, S11 and R11.
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demonstrates the capability of discriminating between the various mode-shapes correctly and efficiently (the
dimensionality of this SFV is 5).

Additionally, in order to obtain a more accurate comparison, the SFV may be based on the individual FDs sorted in
descending magnitude order of their energies. In this case, the SFV is more powerful when recognising the mode shapes
between two similar structures. e.g. with slightly different boundary conditions.

As shown in Fig. 9, the simple plate of the previous example is stiffened by two ribs. The mode-shape FDs were
determined in the same way as for the simple plate. The similarity of mode shapes between the simple and ribbed plates
via the hierarchical clustering of the Fourier descriptors is shown in Fig. 10. In this case, all the non-negative frequency FD
components are considered. Similar mode shape pairs are clustered together in the dendrogram. For instance, the nearest
pair is R01 and S01 where R denotes the ribbed plate; S denotes the simple plate and the following digits denote the modes.
Other similar pairs such as R07 and S06, R11 and S11, R06 and S07, R12 and S13 etc. are gathered into clusters and their
mode shape patterns are shown in Figs. 11–13 which demonstrates the similarities.

As mentioned before, only a small number of low frequency FDs are significant. Discarding the higher frequency and low
energy components is feasible to reduce the dimensionality of the Fourier feature vector. The number of higher frequency
and low energy FDs that might be neglected may be determined from the closeness of the reconstructed mode shape
patterns with and without those FDs. In this case, the complete feature vectors fFD including all non-negative frequency
components of each mode for both plates are summarized to produce an overall FD energy vector. Here the term energy

denotes the squared amplitude of the FDs. This energy vector is then sorted in descending order as shown in Fig. 14(a). The
slope of the descending curve is steep from number 1 to 13 and flat for the remaining orders. Therefore, a sufficient and
efficient Fourier feature vector f0FD can be constructed by truncating the low energy components after number 13. The
remaining FDs, after truncation (20 percent of the overall number) are shown in Fig. 14(b). As we can see that the most
significant FD for all modes is the component with u ¼ 1 and v ¼ 1; the second is the one with u ¼ 2 and v ¼ 1 etc. The
clustering of mode shapes based on these truncated Fourier feature vectors are almost identical to those created by
the complete FDs. Also, the reconstructed shape patterns by the truncated Fourier feature vector f 0FD are very similar to the
original shapes. Therefore, f0FD is an appropriate shape feature vector for mode shape recognition of plate structures.
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Furthermore, it provides an adequate and computationally economic mode-shape indicator for correlation and updating of
FE models.

4.3. WD of a rectangular plate with a thin region

Four rectangular plates with different thicknesses were modelled as shown in Fig. 15. The plates of Fig. 15(a) and (b)
denoted by pC and pCr have two regions with different thickness. pCr has ‘rims’ at the edges of the thin region as shown in
the figure. Another plate (pN) having the same size as the thin region of pC is shown in Fig. 15(c). The upper and left edges of
pN are clamped whilst the others are free. The plate denoted by pK as shown in Fig. 15(d) has uniform thickness, the same
as the thick region of pCr. Also, pK and pCr have the same height and width. The objectives of this section are to identify the
thin region of the plate pC by the WD applied to the mode shapes and to recognise similar global mode shape patterns in
plates pCr and pK.

Four levels of decomposition by the rbio3.1 wavelet [28], shown in Fig. 16, were carried out on the mode shapes of the
four plates. For each decomposition level, as in Fig. 1, there are four sub-images. i.e. one approximation at current level and
three detail sub-images [21]. Thus, 13 sub-images were obtained for every single mode-shape four horizontal, four vertical,
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four diagonal detailed sub-images and 1 approximation sub-image as shown in Fig. 17. The average energy of every sub-
image was calculated by Eq. (31) to form a shape feature vector.

4.3.1. Comparing pC and pN

Hierarchical clustering of the SFV formed by the energies of the 12 detailed sub-images in Fig. 17 was carried out on the
plates pC and pN. The resulting dendrogram is shown in Fig. 18. A number of clusters with small distances indicate the
similarity of the mode-shape details. For instance, cluster a formed by mode 2 of pN (N02) and mode 4 of pC (C04) suggests
the shape of pC in the thin region may be similar to the shape of pN, which is true by visual comparison between these two
modes as shown in Fig. 19(a). The correlation of the shapes between C04 and N02 on the thin region is 97.7 percent. Similar
results for the clusters b, c, e and f may be obtained. Two more pairs of mode-shape patterns for cluster b and c shown in
Fig. 19(b) and (c) have 95.7 percent and 95.8 percent correlation for the paired thin regions, respectively. Thus, the patterns
in the thin regions of pC match the corresponding patterns of pN sufficiently. In addition, cluster d groups modes 11 and 12
of pC together. This implies that shapes from different modes of the same structure may have similar patterns in the thin
region. Fig. 19(d) shows the shapes of mode 11 and the flipped version of mode 12 (flipped with respect to the axis 2–4).
It can be seen that the lower-right corners of both images match well (93.1 percent). Thus it is seen that the local shapes
in the thin region of the plate may be recognised from the SFV formed by the energies from the detailed sub-images.

4.3.2. Comparing pC and pCr with pK

In this section, global shape patterns of plate pC and pCr are compared with the plate having uniform thickness pK. The
MAC of pC and pK shown in Fig. 20 indicates almost no similarity between them. It is observed that certain mode shapes in
the thick region of pC are similar to the relative region of pK. In order to reveal the similarity between the modes of pC and
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pK globally, the approximation at level 4 (A4) of the mode shapes by the DWT2 is adopted. The analysing wavelet is the
rbio3.1. The 2D correlation coefficients [33] for mode pairs pC and pK with correlations greater than 0.65 at approximation
level 4, are shown in Fig. 21 for the approximations at levels 1–4. As described in Fig. 17, more details are removed from the
approximation when the decomposition level increases. Thus, the correlation coefficients of the mode pairs increase with
the decomposition levels as shown in Fig. 21. A number of well correlated pairs can be found from Fig. 21(d). For instance,
73.7 percent correlation of A4 between mode 8 of pC (C8) and mode 8 of pK (K8) indicates that their global shape patterns
are similar. As shown in Fig. 22(a), the pattern of the bottom-right region of pC is same as the ‘shrunken’ version of pK. For
the pairs of C12–K6 and C20–K12 shown in Fig. 22(b) and (c), the patterns of pC on the thick region are similar to those of pK

in the corresponding region which are revealed by the 68.1 percent and 78.4 percent correlation of the global
approximations A4, respectively. If the pattern of C5 is rotated through 901 with respect to z-axis, it almost perfectly
matches the pattern of K4 with a correlation of 90.6% at approximation K4 while the correlation is 66.8% for this pair of
mode shapes without any rotation as shown in Fig. 22(d).

When the two edges of the thin region of pC are stiffened by rims as in Fig. 15(b), it is found that the mode shapes of the
stiffened plate pCr are more similar to pK than pC. Fig. 23 shows the threshold correlation (greater than 0.7 at level 4) of
approximation at levels 1–4 between pCr and pK. It is clear that the number of high-correlation pairs between pCr and pK is
greater than those between pC and pK in Fig. 21. The global dynamic characteristics of the stiffened plate pCr are closer to
pK than pC. Similarly to Fig. 21, certain higher mode pairs become more correlated with increasing approximation level
(and consequent removal of detail) as shown in Fig. 23. The four pairs of patterns, shown in Fig. 24, have high correlation
coefficients at level A4 between pCr and pK in Fig. 23(d). It can be seen that the lower-right corners of pCr in Fig. 24(a), (b)
and (c) are the ‘shrunken’ version of those from pK, whilst the patterns on the thick region of pCr are extremely similar to
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pK. Their correlation coefficients of A4 are 81.6 percent, 81.9 percent and 84.9 percent, respectively. In additional, the pair
shown in Fig. 24(d) having 78.4 percent correlation for A4 is dissimilar to each other only in the thin region.

Therefore, it can be concluded from the two examples above that the WD not only detects the local shape features from
the whole structure accurately, but also extracts the overall, or global, shape features.
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4.4. Uncertain boundary conditions of a beam

4.4.1. Uncertain position of a sliding joint

As shown in Fig. 25, a beam with a pin joint at the left end and a sliding joint near the right end was modelled. The
position of the sliding joint is assumed to be uncertain. There are 11 samples taken uniformly from the uncertain position
of the joint (900 mm to 920 mm, mean value: 910 mm, standard deviation: 6.63 mm). The first nine normal modes are
calculated.

Since the mode shapes of the beam can be considered as 1D spatial signals the 1D Fourier descriptor of each mode shape
is used. The SFV, fFD, is constructed by the sub-band energies of the FDs with non-negative spatial frequency components.
In particular, the DC component and the seven sub-band energies sorted by spatial frequency from low to high were taken
into consideration for this case. So that fFD is an 8-dimensional random variable due to the position uncertainty. Fig. 26
shows the scatter-plot matrix of the SFV fFD. Each sub-figure shows the pairwise scatter-plot of the ith vs jth (i,j ¼ 0,1,y,7)
coordinates of fFD. It is clear that nine clusters are shown in each of the sub-figures. Every cluster has 11 points. The legends
of the different modes are illustrated in the enlarged sub-figure (3rd vs 4th) as shown in Fig. 26. Also, it can be seen that the
clusters of individual modes are separable in certain dimensions. For instance, the clusters of mode 1 having the largest DC
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component are far away from the rest in the 0th column sub-figures of Fig. 26; the clusters of mode 2 in the 1st column
sub-figures dominating by the 1st sub-band energy are well separated from the rest of the clusters. Similar isolated clusters
of modes 3 and 4 can be found in the 2nd column sub-figures; modes 5 and 6 in the 3rd column; mode 7 in the 4th column;
modes 8 and 9 in the 5th column.

Similarity measurement of the mode shapes based on the SFV fFD is carried out by a hierarchical clustering algorithm
and shown in Fig. 27. The digits (1–9) on the vertical axis denote the modes and the upper-case letters (A to K) denote the
different sample positions of the sliding joint. It can be seen that the SFVs of the same mode are grouped closely together.
However, when two modes are considered that are in different groups it is seen that they are far away from each other.
Thus, the SFV fFD constructed from the FDs shows the desirable property of modal separation. It presents small intra-class
(within the same mode clusters) distances and large inter-class (between two mode clusters) distances.

As most of the clusters having elongated characteristics as shown in Fig. 26, principal component analysis (PCA) is
applied to reduce the dimensionality of the feature vector. A brief discussion of PCA may be found in Appendix A. Taking
mode 3 for example, the 11 feature vectors are projected onto the principal component space by

S3 ¼ P3F3 (35)

where

F3 ¼ ½f
3;1
FD � l3

FD; . . . ; f
3;i
FD � l3

FD; . . . f
3;11
FD � l3

FD� (36)

is the 8	11 (dimensionality	 samples) centred feature matrix of the mode 3 with f3;i
FD represents the SFV of the ith sample

and l3
FD is the vector of mean values. P3 is the 8	8 orthonormal matrix with rows which are the principal vectors of F3;

that is the eigenvectors of the covariance matrix of F3 sorted in the order of decreasing component variance (the eigenvalue
of the covariance matrix). S3 is the projection of F3 in the principal component space P3. Thus, S3 a diagonal covariance
matrix. Table 1 shows the eight component variances of mode 3 in decreasing order. It is clear that the 1st component
variance dominates the total variance and the other seven variances are negligible. This means that the 11 SFVs of mode 3
are distributed mainly in the direction of the 1st principal component, which is the 1st row of the matrix P3. So that
retaining only the 1st row of the matrix S3 is sufficient to represent the cluster of mode 3. Therefore, the dimensionality of
the SFV may now be reduced from 8	1 to 1	1.

The first five principal component variances of every individual cluster of the 9 modes are listed in Table 2 by
percentage. All modes can be almost completely described by the 1st principal component (the first PC variances of all the
nine modes are greater than 98 percent as shown in the second row of Table 2), which may be interpreted as the fFD of
these modes being distributed linearly in the shape feature space. Thus, these linear clusters, considered as line segments
in a hyperplane, can be represented by the coefficients of their 1st principal components and their mean values as

Ck ¼ tkpk
1 þ lk

FD; tk 2 ½tk;1; tk;2�; k ¼ 1;2; . . . ;9 (37)
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where the superscript/subscript k represents the kth mode; tk having the values between [tk,1,tk,2] is the scaling parameters;
pk

1 is the 1st principal component and lk
FD is the mean value of the feature vector fFD from all samples.

For any new SFV ftest
FD needing to be compared to the nine clusters, projection onto the 1st principal component pk

1 of the
nine modes should be carried out first,

sk
1 ¼ ðf

test
FD � lk

FDÞ � ðp
k
1Þ

T (38)

Since the characteristics of the nine clusters indicated by the PCA are almost linear, the distance between ftest
FD and any

mode (cluster), as illustrated in Fig. 28, can be defined by

dp
k
ðftest

FD ;CkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjftest

FD � lk
FDjj

2 � ðsk
1Þ

2
q

(39)

where jj � jj denotes the norm of the vector. Therefore, the SFV ftest
FD is assigned to the mode k if dp

k
is the minimum out of all

the modes. For instance, another new sample of the sliding joint position (at 922 mm—slightly outside the uncertain range
assumed above) is taken. Feature vectors of the first nine modes are considered. The point-to-line distance of each mode of
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the test sample to the nine statistical clusters based on the Fourier SFV are calculated and shown in Table 3. It is clear the
minimum distances indicate that every single mode of the ftest

FD falls into the statistical cluster describing the same mode
because the minimum value in each row of Table 3 lies on the diagonal and is far smaller than the other values.

Thus, the degree of similarity of the test SFV can initially be determined by finding the minimum point-to-line distance,
minðdp

k
Þ, for each of the nine clusters. However, dp

k
is only the perpendicular distance to the principal direction of the

linear cluster. A further distance measurement, the Mahalanobis distance, along the direction of the linear cluster should
also be taken into consideration to ensure that the test SFV falls into the corresponding cluster.

The Mahalanobis distance dM
k takes into account the correlation of the data and is independent of scale. The

Mahalanobis distance between the test SFV and the mean value of the cluster along the direction of the 1st principal
component is written as

dM
k ðf

test
FD ;CkÞ ¼

sk
1

sk
1

(40)

where sk
1 is the standard deviation of the clusters at the direction of the 1st principal component. It is seen that dM

k o1

when the projection of the test SFV onto the direction of the 1st principal component is less than the standard deviation

and dM
k 41 when greater. Hence, the Mahalanobis distance of the test SFV to the cluster as indicated by the minimum dp

k

should be close to unity because it is supposed to fall in the cluster. If the cluster of the test SFV assigned by min(dp
k
) has

very large Mahalanobis distance, e.g. dM
k b1, the assignment of the test SFV needs to be reconsidered by assigning it to the

cluster with the second minimum dp
k

and rechecking the corresponding Mahalanobis distance.
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Fig. 26. Scatter plot of the 8-dimensional SFV (the ordinal number represents the sub-band energies).
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Table 4 lists the dM
k of the nine modes of the test SFVs to their corresponding statistical clusters as indicated in

Table 3. Their average value of dM
k , k ¼ 1,2,y,9 in Table 4 indicates that the SFV of the test sample is generally 1.828

times the standard deviation from the mean, and might therefore be considered to reasonably belong to the cluster.
It corresponds to the sliding joint position of this sample because the Mahalanobis distance of the test sample to the
mean position is

dM
joint ¼

ð922� 910 mmÞ

6:63 mm
¼ 1:8091 (41)

which is approximately equal to the average of the Mahalanobis distance of its SFVs.
The mode shapes of the beam with uncertain joint positions can be represented by the FD effectively because

each mode shape is described by an 8	1 Fourier SFV fFD. The similarities between different mode shapes are
measured by a hierarchical clustering algorithm with average distance criterion based on fFD as shown in Fig. 27.
The statistical characteristics of different modes of the Fourier SFV are extracted and described by the PCA. Recognition
of a test sample based on fFD can be carried out efficiently and accurately by the point-to-line and the Mahalanobis
distances.
4.4.2. Uncertain spring stiffnesses

Another bending beam model having a pin joint at the left end and two springs, one translational ky and one rotational
kw, attached to the right end is shown in Fig. 29. The stiffness of the two springs, assumed to be uncertain, obey a bivariate
Gaussian distribution. Ten-thousand random samples were generated with the mean values (mky ¼ 10	105,

mkw ¼ 1.5	103) and 20 percent standard deviations (sky
¼ 2	 105, skw

¼ 3	 102) as shown in Fig. 30. The first six

modes were calculated. Bending energy, as defined Appendix C, was adopted as a general shape descriptor for these
mode shapes. Thus, the feature vector fBE was a scalar. The class-conditional probability density of the bending energy
of each mode was estimated by the Parzen window method (described in Appendix B) based on 10 000 stiffness
samples. The univariate Gaussian kernel is adopted in this case. Fig. 31 shows the estimated probability densities of the
six modes.
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Fig. 28. Distance of a point from a line.

Table 1
Eigenvalues of covariance matrix of F3 in decreasing order.

1st 2nd 3rd 4th 5th 6th 7th 8th

Component variance 1.57	10�2 1.13	10�5 5.01	10�5 4.85	10�11 1.28	10�13 0.00 0.00 0.00

Percentage 99.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Table 2
The percentage of the total variance explained by each principal component.

Mode 1 2 3 4 5 6 7 8 9

PC—variance

1st 99.97% 99.88% 99.23% 98.26% 98.00% 98.89% 99.04% 99.31% 99.53%

2nd 0.03% 0.12% 0.77% 1.74% 1.96% 1.08% 0.95% 0.68% 0.46%

3rd 0.00% 0.00% 0.00% 0.00% 0.04% 0.02% 0.01% 0.01% 0.00%

4th 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5th 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 3
Point to line distance.

Modes of the test SFV

1 2 3 4 5 6 7 8 9

Modes of the clusters

1 0.0005 1.7375 1.3461 2.0050 2.1168 1.9656 2.3831 2.1949 2.5449

2 0.8474 0.0023 1.4034 1.8195 1.9513 1.7002 1.9941 1.8740 2.1002

3 1.8856 1.2811 0.0085 0.7302 1.5822 1.6591 1.8747 1.8002 2.0457

4 2.0605 1.2807 0.6739 0.0216 1.1171 1.1812 1.4355 1.3785 1.6253

5 2.4605 2.0295 2.2006 1.5486 0.1340 0.7335 1.4448 1.8165 1.821

6 1.7614 1.0886 1.8729 0.6060 0.8356 0.0971 0.5654 0.3953 0.7682

7 2.0804 1.5907 1.9130 1.2311 1.2720 0.8850 0.0518 0.7563 0.9733

8 1.9416 1.523 1.8829 1.3039 1.5636 0.8893 0.7215 0.0399 0.6026

9 2.3365 1.9686 2.0803 1.7475 1.8741 1.5564 1.5730 1.1501 0.0251

Table 4
The Mahalanobis distance between the test SFV and the mean of the clusters.

Mode 1 2 3 4 5 6 7 8 9 Average STD

dM
k

1.760 1.729 1.659 1.644 1.971 1.346 2.197 2.232 1.918 1.828 0.282
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To test any SFV ftest
BE that needs to be assigned to one of the modes, the Bayesian decision rule is applied to determine the

minimum risk of the test SFV. Substituting ftest
BE into Eq. (56) (given in Appendix B) leads to

Rðcijf
test
BE Þ ¼

Xk

j¼1
lðci; cjÞpðcjjf

test
BE Þ (42)

Also, the zero-one loss function is assumed for this case, i.e.

lðci; cjÞ ¼
0 i ¼ j

1 iaj
i; j ¼ 1;2; . . . k

(
(43)
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meaning that no loss will be allocated to a correct decision and a unity loss to a wrong decision. Therefore, Eq. (42) can be
written as

Rðcijf
test
BE Þ ¼

X
iaj

Pðcjjf
test
BE Þ

¼ 1� Pðcjjf
test
BE Þ (44)

which represents the average probability of misclassification. Thus, the Bayesian decision rule can be simplified as
maximising the posterior probability Pðcjjf

test
BE Þ, also called the maximum a-posterior (MAP) rule, in Eq. (44). Then the test

pattern ftest
BE is assigned to class ci if

Pðcijf
test
BE Þ4Pðcjjf

test
BE Þ 8iaj (45)

Applying the Bayes formula (Eq. (54)) on (45) yields,

Pðftest
BE jciÞPðciÞ

Pðftest
BE Þ

4
Pðftest

BE jcjÞPðcjÞ

Pðftest
BE Þ

8iaj (46)

which can be re-written as

Pðftest
BE jciÞPðciÞ ¼ max

j¼1;...:k
fPðftest

BE jcjÞPðcjÞg (47)

Furthermore, the prior probabilities P(cj)j ¼ 1,2,y,6, the probability of being of mode j, are the same and equal to 1
6. Thus,

Eq. (47) can be simplified as

Pðftest
BE jciÞ ¼ max

j¼1;...;k
fPðftest

BE jcjÞg (48)

indicating that the assignment of the pattern ftest
BE depends only on its maximum class-conditional density function.

It is apparent from Fig. 31 that the conditional density for mode 1, 2, 3 and 6 are well-separated from each other. Any

pattern ftest
BE in these regions can easily be assigned to the corresponding modes. However, a portion of conditional density

of mode 5 overlaps with the conditional density of mode 4. An enlarged version of these two densities is shown in Fig. 32. If

the test pattern falling with the region (C, D), mode 4 is assigned as Pðftest
BE jc4Þ4Pðftest

BE jc5Þ. Mode 5 will be returned if ftest
BE is

in either of the regions (B, C) or (D, E). Mode 4 is returned when ftest
BE is between (A, B).

5. Conclusions

The conventional method for comparing mode shapes, the MAC correlation, results in a single numerical value to assess
the similarity between mode-shape vectors. Further information on the subtle difference in shape of two modes may be
obtained by using image processing methods that have been used to good effect in other areas of science and engineering
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as well as in medicine and forensics. New techniques for vibration mode shape recognition using image processing and
pattern recognition are presented. A variety of shape descriptors with the capability of recognising mode-shape differences
are described. The SDs show the desirable properties of computational efficiency and ease of image reconstruction using a
small number of SD terms. Different advantages of various shape descriptors are determined by their individual properties.
Specifically, the ZMD is powerful in discriminating circular and spherical mode shapes; the FD is more general and very
effective at extracting mode-shape features by virtue of its sinusoidal kernel; the WD shows the capability of distinguishing
between local and global features. Deterministic and stochastic pattern classification techniques such as correlation,
hierarchical clustering, Euclidian and the Mahalanobis distances, principal component analysis and Bayesian decision
theory are examined to compare and classify the shape feature vectors assembled from different shape descriptors. The
choice of the shape descriptor and classification method depends on the structure in hand.

Though the mode shape recognition involves a set of methods, the procedure is determinate. The problem of mode-
shape comparison is transformed into the classification of the shape feature vectors assembled from different shape
descriptors. The present study provides a series of alternative approaches with different advantages and offering a more
complete understanding of modes shapes to complement the conventional MAC correlation.
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Appendix A. Principal component analysis (PCA)

The PCA, also known as the Karhunen–Loève transform, performs an orthogonal linear transformation on the feature
vectors such that the transformed feature vectors are uncorrelated with each other in the new coordinate system. The
covariance matrix of the transformed feature vectors is diagonal with the terms arranged in descending order. The first
diagonal terms with greatest variance is followed next on the diagonal by the second greatest variance and so on.

This transform can be expressed as

S ¼ PF (49)

where F is the l	N (feature dimensionality	 total samples) centred feature matrix, having zero empirical mean,
constructed by

F ¼ ½f1 � l; . . . ; fi � l; . . . ; fN � l� (50)

with f1 is the ith SFV from the N samples and l is the mean. P is the orthonormal transformation basis and S is the
projection F onto P expressed as

S ¼ ½s1; . . . ; si; . . . ; sN� (51)

Since the objective of this linear transform is to make the matrix S having diagonal covariance matrix, the matrix P can be
constructed by the eigenvectors of the covariance matrix of F [34]. These eigenvectors are called principal components of F
and sorted in descending order by their corresponding eigenvalues (component variance). Thus,

P ¼

p1

p2

..

.

pl

2
666664

3
777775 (52)

where p1, a 1	 l; row vector, is the 1st principal component having the greatest component variance; p2 is the 2nd
principal component with second greatest component variance and so on. The least significant eigenvector pl has the
smallest component variance.

Hence, the dimensionality of feature vectors can now be reduced by keeping those coordinates of the transformed
feature vectors that contribute most to the total variance. i.e. retaining the first m principal components and rewriting Eq.
(49) as,

½s̃1; . . . ; s̃i; . . . ; s̃N � � S̃ ¼ P̃F ¼

p1

p2

..

.

pm

2
666664

3
777775F; m5l (53)

where s̃i; i ¼ 1;2; . . . ;N are the dimensionality reduced SFVs.
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Appendix B. Bayesian decision rules

Let {c1,c2,yck} denote the finite set of k classes (modes) of patterns (mode-shapes) based on the feature vectors
f ¼ (f1,f2,yf1)T which are assumed to have a probability density function conditioned on the pattern class. For any pattern f
belonging to class cj can be considered as an observation drawn randomly from the class-conditional probability function

PðfjcjÞ. P(cj) describes the prior probability of an individual being of the class cj. Thus the posterior probability PðcjjfÞ can be

calculated from PðfjcjÞ by the Bayes formula:

PðcjjfÞ ¼
PðfjcjÞPðcjÞ

PðfÞ
(54)

where the evidence PðfÞ is

PðfÞ ¼
Xk

j¼1

PðfjcjÞPðcjÞ (55)

Then the Bayesian decision rule may be stated as assigning a pattern f to class cj if the conditional risk

RðcijfÞ ¼
Xk

j¼1

lðci; cjÞPðcjjfÞ (56)

is a minimum, where l(ci,cj), known as the loss function, is the loss incurred in deciding to take class ci when the true
class is cj.
B.1. Parzen window

In real applications that the prior probabilities are easy to obtain but the class-conditional probability density functions
are difficult to estimate in parametric forms. The Parzen window method [35] provides a non-parametric technique for
such estimates. The probability density function can be estimated by

P̂ðfÞ ¼
1

hl

1

N

XN
i¼1

t f � fi

h

� � !
(57)

where fi, i ¼ 1,2,y,N represent the SFVs of the N samples, t( � ) is the Parzen window (or kernel function) such that

tðuÞ � 0 and

Z
u
tðuÞdu ¼ 1 (58)

h is the width of t(u) in one dimension and hl is the volume of the l-dimensional hyper-cubic. One of the common choices
for the Parzen window is the multidimensional Gaussian function written as

tGðuÞ ¼
1

ð2phÞl=2jRj1=2
exp �

1

2h2
ðu� uiÞ

TR�1
ðu� uiÞ

� �
(59)

Appendix C. Curvature and bending energy

Suppose g(t) ¼ {x(t),y(t)} is the parametric representation of a 2D curve. The curvature KðtÞ of g(t) is defined
as [36],

KðtÞ ¼
_xðtÞ€yðtÞ � €xðtÞ_yðtÞ

ð_xðtÞ2 þ _yðtÞ2Þ3=2
(60)

where t, the parameter of the variables x and y, is commonly defined as the normalised curve length by

t ¼
s

L
; t 2 ½0;1� (61)

where s denotes a position measured along the curve and L is the total length.
The bending energy of a 2D curve can be defined as:

DBE ¼
1

L

Z
Curve

KðtÞ2 dt (62)
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