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a b s t r a c t

By using the transfer matrix method this paper presents a study of the complex band

structure, attenuation spectra and localization of bending waves in a periodic/

disordered fourfold composite beam constructed by inserting thin piezoelectric or soft

rubber layer at each interface of original elastic composite structures. Numerical

examples are presented and the accuracy is validated by the wavelet method. The

results show that the piezoelectricity can adjust the band gaps and the soft rubber can

enlarge the degree of the localization and the frequency ranges of the complex band

gaps. The localization factor resembles the shape of the attenuation curve in the

complex band gaps. Subtle differences between the random disorder and the

deterministic disorder are observed, except at lower frequencies. The behavior of the

wave propagation and localization in random disordered beams can be altered by tuning

different inserting position. The existence of piezoelectricity and/or soft rubber layers

lends new insight into the vibration control of composite beams.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the problem of classical such as electromagnetic, acoustic or elastic wave propagation in periodic or disordered
structures has received increasing interest [1–13]. Most of these works in literatures focused on the existence of complete
elastic/acoustic band gaps within which sound and vibrations are all forbidden in perfectly periodic structures, and on
investigating the influences of different geometrical and material parameters on these gaps. In view of applications, more
attention should be paid to the attenuation and the localization properties since real periodic structures are usually
disordered due to the material defects or the manufacturing errors.

Beams are popular structural elements widely used in many kinds of engineering constructions. Recently, flexural wave
propagation in periodic/disordered beams has been investigated both theoretically and experimentally [4–8]. Unlike the
non-periodic engineering structures, the periodic ones have many special dynamic characteristics such as pass-bands and
stop-bands. Moreover, the disordered periodic structures may exhibit wave and vibration localization. Wave and vibration
localization enables us to control and operate the propagation of waves and vibrations and hence has many potential
engineering applications such as in acoustic filters, vibration isolation and design of new transducers. On the other hand,
wave and vibration localization may lead to local energy concentration which may influence the reliability, durability
and the service-life of engineering structures. For this reason, special and anomalous dynamic characteristics of periodic
and disordered structures have received considerable attention in recent years. As well known, intelligent materials and
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structures possess the abilities of self-adaptive and active control. They can perceive the changes of outer environment and
properly respond to these changes. Among various intelligent materials, piezoelectric composite materials are more and
more widely applied in aeronautic field. Besides, as for the applications in sound or vibration shelter, the size of periodical
structures is of crucial importance. Conventional elastic-wave band-gap material operating under the principle of Bragg
reflection mechanism can hardly fulfill it because of the long sound wavelength in common elastic solids. The pioneering
work of Liu et al. [9] advanced the locally resonant mechanism where very soft rubber was used and showed that narrow
gap with low frequency existed. In Refs. [4–7], band gaps have been analyzed by using the Bragg reflection mechanism. In
Ref. [8], the bending wave attenuation in a slender beam with periodically attached local resonators has been studied under
the local resonance theory illustrated by Liu et al. in their pioneering work [9]. To the knowledge of the authors, only few
studies on fourfold composite beams with both piezoelectric and soft rubber layers in disordered periodic structures have
been performed. Chen et al. [7] studied the flexural wave localization in a disordered periodic piezoelectric beam and
analyzed the effects of several disorder parameters on the localization factor. However, the complex band structure was not
calculated in [7] to clarify the physical meaning of the localization factor in a direct way. Moreover, the locally resonant
mechanism which may lead to novel wave localization phenomenon was not considered in [7].

In this paper, in order to find the key function of piezoelectricity and soft rubber to give better design guidelines for
flexural wave attenuation of slender composite beams, a comprehensive study of the attenuation and localization of
bending waves in periodic/disordered beams is presented, where the effects of both the piezoelectric and the soft rubber
layers are considered. In the composite beams investigated in this paper, thin piezoelectric or soft rubber layers are
periodically inserted at each interface of the original composite beams. A concise presentation of the transfer matrix (TM)
theory for layered slender beams is given. Then it is validated with the wavelet (WL) method [10], and the expression of the
localization factor is presented. Numerical examples are given and the influences of the piezoelectric or soft rubber layers
on the complex band structures of the periodic composite beams are analyzed. In addition, disorders of the piezoelectric or
soft rubber layers in different inserting position are investigated and discussed. Some design instructions in view of the
applications are drawn from the present study as conclusions.

2. Transfer matrix method for composite beams

A schematic sketch of a periodic fourfold composite structure studied in the paper is shown in Fig. 1. It is constructed by
inserting continuously thin piezoelectric or soft rubber layers at each interface of the original composite beam which is
composed of two different elastic materials. The local coordinates of each monolayer are also given in this figure. Assuming
that the lengths of the monolayers are ai ði ¼ 1;2; . . . ;4Þ, respectively, and the beam length between the two consecutive
unit cells or the so-called lattice constant is a.

For a slender beam as shown in Fig. 1, the equations of wave motion in the elastic and the piezoelectric layers can be
expressed, respectively as follows [7]

ElIlu
IV
l þ rlA €ul ¼ 0, (1)

ErIruIV
r þ ErIrbu00r þ rrA €ur ¼ 0, (2)

where ul and ur are the displacements in the y-direction, El and Er the Young’s moduli, Il and Ir the moments of inertia with
respect to the axis perpendicular to the beam axis, and rl and rr the mass densities with l referring to the elastic beams and
r to the piezoelectric beams; A is the area of the cross-section; b ¼ �e31e15A=�11ErIr with e31, e15 and e11 being the
piezoelectric constants and the dielectric constant; the superscript IV denotes the fourfold spatial derivatives; and double
dots over a quantity stand for temporal derivatives. By considering the normal-mode condition and assuming the time-
harmonic solution the displacements may be written as

ulðxl; tÞ ¼ UlðxlÞ expð�iotÞ, (3)

urðxr ; tÞ ¼ UrðxrÞ expð�iotÞ, (4)

where i ¼
ffiffiffiffiffiffiffi
�1
p

; o is the circular frequency; and UlðxlÞ and UrðxrÞ are the amplitudes of the displacements.
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Fig. 1. A beam periodically inserted with piezoelectric or soft rubber layers at each interface.
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With substitution of Eqs. (3) and (4) into Eqs. (1) and (2), the solutions of Eqs. (1) and (2) for the displacement
amplitudes of the beam can be written as

Ul ¼ Al1 coshðSlZlÞ þ Al2 sinhðSlZlÞ þ Al3 cosðSlZlÞ þ Al4 sinðSlZlÞ, (5)

Ur ¼ Br1 coshðSrZrÞ þ Br2 sinhðSrZrÞ þ Br3 cosðSrþ1ZrÞ þ Br4 sinðSrþ1ZrÞ, (6)

where

Sl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlAo2=ElIl

4
q

a0; Sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrAo2=ErIr þ b2=4

q
� b=2

r
a0,

Srþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrAo2=ErIr þ b2=4

q
þ b=2

r
a0, (7)

Zl ¼ xl=a0 and Zr ¼ xr=a0 are the normalized local coordinates, with a0 being the mean value of the lengths of the elastic
beams. In Eqs. (5) and (6), Alk and Brk (k ¼ 1,2,3,4) are the unknown coefficients to be determined by the boundary
conditions.

Applying the continuity conditions of the displacements, slopes, bending moments and shear forces at the left and the
right sides of each monolayer in the mth unit cell, one can obtain, for the left coefficients vector

cðmÞ
lL
¼ fUðmÞ

lL
; yðmÞ

lL
; Ō
ðmÞ
lL ; T̄

ðmÞ
lL g

T (8)

and the right coefficients vector

cðmÞ
lR
¼ fUðmÞ

lR
; yðmÞ

lR
;�Ō

ðmÞ
lR ; T̄

ðmÞ
lR g

T (9)

of the elastic monolayers in the mth unit cell, the following relation

cðmÞ
lR
¼ T0lc

ðmÞ
lL

. (10)

In Eq. (10), T0l is the transfer matrix which is defined by

T0l ¼ P0lP
�1
l ,

where the matrices Pl and P0l can be written as

Pl ¼

1 0 1 0

0 Sl 0 Sl

�S2
l 0 S2

l 0

0 S3
l 0 �S3

l

2
666664

3
777775, (11)

P0l ¼

coshðSld
ðmÞ
l
Þ sinhðSld

ðmÞ
l
Þ cosðSld

ðmÞ
l
Þ sinðSld

ðmÞ
l
Þ

Sl sinhðSld
ðmÞ
l
Þ Sl coshðSld

ðmÞ
l
Þ �Sl sinðSld

ðmÞ
l
Þ Sl cosðSld

ðmÞ
l
Þ

�S2
l coshðSld

ðmÞ
l
Þ �S2

l sinhðSld
ðmÞ
l
Þ S2

l cosðSld
ðmÞ
l
Þ S2

l sinðSld
ðmÞ
l
Þ

S3
l sinhðSld

ðmÞ
l
Þ S3

l coshðSld
ðmÞ
l
Þ S3

l sinðSld
ðmÞ
l
Þ �S3

l cosðSld
ðmÞ
l
Þ

2
66666664

3
77777775

. (12)

Here, dl ¼ al=a0 is the dimensionless length of each elastic monolayer; ym, Om and Tm represent the rotation angle, moment
and shear force, respectively; and the subscripts L and R denote the left and the right sides of the elastic monolayers in the
mth unit cell.

Similarly, we obtain for the piezoelectric layer

cðmÞrR ¼ T0rc
ðmÞ
rL , (13)

where the transfer matrix T0r is defined by

T0r ¼ P0rP�1
r , (14)

in which the matrices Pr and P0r are given by

Pr ¼

1 0 1 0

0 Sr 0 Srþ1

�S2
r 0 S2

rþ1 0

0 S3
r 0 �S3

rþ1

2
666664

3
777775, (15)
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P0r ¼

coshðSrdðmÞr Þ sinhðSrdðmÞr Þ cosðSrþ1dðmÞr Þ sinðSrþ1dðmÞr Þ

Sr sinhðSrdðmÞr Þ Sr coshðSrdðmÞr Þ �Srþ1 sinðSrþ1dðmÞr Þ Srþ1 cosðSrþ1dðmÞr Þ

�S2
r coshðSrdðmÞr Þ �S2

r sinhðSrdðmÞr Þ S2
rþ1 cosðSrþ1dðmÞr Þ S2

rþ1 sinðSrþ1dðmÞr Þ

S3
r sinhðSrdðmÞr Þ S3

r coshðSrdðmÞr Þ S3
rþ1 sinðSrþ1dðmÞr Þ �S3

rþ1 cosðSrþ1dðmÞr Þ

2
6666664

3
7777775

. (16)

Considering the following relationships

cðmþ1Þ
1L ¼Wk1c

ðmÞ
4R ; cðmÞ4R ¼ T0k4c

ðmÞ
4L ; cðmÞ4L ¼Wk2c

ðmÞ
3R ; cðmÞ3R ¼ T0k3c

ðmÞ
3L ,

cðmÞ3L ¼Wk3c
ðmÞ
2R ; cðmÞ2R ¼ T0k2c

ðmÞ
2L ; cðmÞ2L ¼Wk4c

ðmÞ
1R ; cðmÞ1R ¼ T0k1c

ðmÞ
1L , (17)

we obtain the following equation for the (m+1)th unit cell

cðmþ1Þ
1L ¼Wk1 � T

0
k4 �Wk2 � T

0
k3 �Wk3 � T

0
k2 �Wk4 � T

0
k1 � c

ðmÞ
1L ¼ TmcðmÞ1L , (18)

where the elements of the matrix Wkj (k ¼ l, r; j ¼ 1,2,3,4) can be written as

Wk1 ¼

1 0 0 0

0 1 0 0

0 0 E4=E1 0

0 0 0 E4=E1

2
66664

3
77775; Wk2 ¼

1 0 0 0

0 1 0 0

0 0 E3=E4 0

0 0 0 E3=E4

2
66664

3
77775, (19)

Wk3 ¼

1 0 0 0

0 1 0 0

0 0 E2=E3 0

0 0 0 E2=E3

2
66664

3
77775; Wk4 ¼

1 0 0 0

0 1 0 0

0 0 E1=E2 0

0 0 0 E1=E2

2
66664

3
77775. (20)

In Eq. (18), Tm is the transfer matrix between the two consecutive unit cells.
As for a randomly disordered beam, the localization factor can be used to describe the wave propagation and

localization effectively [11]. The localization factor is defined by the smallest positive Lyapunov-exponent wd and is given by

wd ¼ lim
n!1

1

n

Xn

m¼1

ln kĉ
ðmÞ
4R;dk, (21)

where

ĉ
ðmÞ
4R;d ¼ cðmÞ

4R;d
� ðcðmÞ

4R;d
; vðmÞ

d�1
ÞvðmÞ

d�1
� � � � � ðcðmÞ

4R;d
; vðmÞ1 Þv

ðmÞ
1 ; vðmÞ

d
¼

ĉ
ðmÞ
4R;d

kĉ
ðmÞ
4R;dk

. (22)

In Eq. (22), vðmÞ
d

are orthogonal unit vectors; ( � , � ) denotes the dot-product; and n represents the number of unit cells of the
periodic structures.
3. Numerical results and discussions

In this section, numerical simulation for periodic/disordered elastic and piezoelectric composite structures is performed
to study the behavior of the attenuation and localization of bending waves with different frequencies. The used material
constants are listed in Table 1.
Table 1
Material constants of the elastic and piezoelectric layers.

Materials Mass density r (kg/m3) Young’s modulus E (Pa) Piezoelectric constant (C/m2) Dielectric constants e11 (10�10 F/m)

e31 e15

Pb 11600 4.07�1010

Epoxy 1180 4.3�109

Rubber 1300 1.13�105

PZT-5H 7500 12.6�1010
�6.5 17.44 150.3
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3.1. The complex band structure and localization in a perfectly periodic beam

First, we consider a perfectly periodic beam consisting of two different elastic materials Pb and Epoxy alternately. Then,
we investigate the influences of thin piezoelectric and soft rubber layers on the propagation and localization of bending
waves by inserting them at each interface of the composite beam. For comparison purpose, the length ratio of the Pb and
Epoxy layers or beams is fixed as aPb=aEpoxy ¼ 2 and the same material, i.e., either PZT-5H or rubber, is inserted to the
composite beam.

For three kinds of perfectly periodic composite structures, i.e., Pb–Epoxy, Pb–PZT–Epoxy–PZT and Pb–Rubber–
Epoxy–Rubber composites, Figs. 2–4 show the complex band structure, the attenuation and the localization factor of bending
waves. For convenience, a dimensionless frequency is introduced as oaEpoxy=cT;Epoxy, where cT,Epoxy denotes the shear wave
velocity of Epoxy. The localization factors are illustrated in the Figs. 2–4(a), while Figs. 2–4(b) present the real wavenumber
and Figs. 2–4(c) show the absolute value of the imaginary part of the wavenumber, in which the solid circles and the dashed
lines denote the propagating and near-field wave components as discussed in Ref. [12], respectively. It can be observed from
these figures that perfectly periodic structures have the properties of frequency pass-bands and stop-bands or band gaps. For
example, as seen in Fig. 2(a) by the solid lines, the frequency interval oaEpoxy=cT; Epoxy 2 ð0:12;0:18Þ, in which the
localization factors are zero, is called the pass-band, and the interval oaEpoxy=cT;Epoxy 2 ð0:18;0:28Þ is known as the
stop-band or band gap, in which the localization factors are larger than zero in the considered frequency range. Fig. 2(b)
shows a comparison of the band structures of the composite beam obtained by the transfer matrix method and the wavelet
method [10], which is described briefly in the Appendix A. It can be seen that they are in very good agreement and the
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accuracy of the transfer matrix method is therefore validated. Moreover, the band structure of Fig. 2(b) has pass-bands and
stop-bands exactly in the same frequency range of Fig. 2(a), which validate each other. It can also be seen that the shape of the
attenuation curve described by the solid circles in Fig. 2(c) strongly resembles the localization factor in Fig. 2(a), which
implies that the localization factor can be used to describe the attenuation properties in the band gaps. However, there are
some differences between Figs. 4(a) and (c) at higher frequencies, which means that the localization factor only characterizes
the ‘‘average’’ exponential rate of decay of the wave amplitudes. It can also be seen that the attenuation curve (solid circles)
shown in Fig. 3(c) has a peak, which means that the attenuation is the strongest at the low frequency end of the gap and it
becomes weaker with increase of the frequency. This resembles the Fano-like interference phenomena in phononic crystals
with locally resonant structures [14].

From Figs. 2–4, we can also see that for different composite beams the complex band structures and the localization
factors have obvious changes. In these figures, the behaviors of the band structures (for instance near
oaEpoxy=cT;Epoxy ¼ 0:1) are notably different, which means that the piezoelectric and the soft rubber layers have
significant effects on the band structures although their length is only 1/10th of the length of the Epoxy layer.

The amplitudes of the displacement |u(x)| associated with the frequency bands for Pb–Epoxy and Pb–PZT–Epoxy–PZT
composite beams are presented in Fig. 5. The band-edge frequency oaEpoxy=cT;Epoxy ¼ 0:01683 corresponds to the
boundary mode frequency in Fig. 5(a) which is discussed in [13]. The boundary mode is associated with as an increase in
the displacement towards the end of the Pb layer in one period. The curves for oaEpoxy=cT;Epoxy ¼ 0:0021 outside the band
gap correspond to a vibration mode, and elastic waves can propagate at this frequency. In contrast, the curves for
oaEpoxy=cT;Epoxy ¼ 0:2385 inside the band gap correspond to vibration isolation, and the propagation of elastic waves is
prohibited at this frequency. It can also be seen that the amplitude of the displacement within the thin piezoelectric layers
abruptly drops, which shows that the piezoelectric layer has obvious effects on the displacement of the composite beam.

Similarly, the amplitudes of the displacement |u(x)| associated with the frequency bands for Pb–Epoxy and
Pb–Rubber–Epoxy–Rubber composite beams are shown in Fig. 6. The curves for oaEpoxy=cT;Epoxy ¼ 0:00071329 outside
the band gap correspond to a vibration mode at which elastic waves can propagate. In contrast to this, the curves for
oaEpoxy=cT;Epoxy ¼ 0:2385 inside the band gap correspond to vibration isolation, and elastic waves cannot propagate at this
frequency. It can also be seen that the amplitude of the displacement within the thin rubber layers jumps and becomes
larger because the mass of rubber layer is much smaller than Pb and Epoxy layers at the same thickness.

In the following examples, we consider the effects of the elastic layers or beams (Pb, Epoxy) and inserted piezoelectric or
rubber disorders. Five kinds of length disorders are considered, i.e., the length a1 (Pb), the length a2 (PZTleft, Rubberleft), the
length a3 (Epoxy) and the length a4 (PZTright, Rubberright) of the piezoelectric or rubber layers, and both (Pb+Epoxy,
PZTleft+right, Rubberleft+right) disorders simultaneously. For the randomly disordered beam, a random parameter L denoting
a1, a2, a3 or a4 is introduced. Here, L is assumed to be a uniformly distributed random variable with the mean value L0 and
the variation coefficient d. So L is a random variable in the interval

L 2 ½L0ð1�
ffiffiffi
3
p

dÞ; L0ð1þ
ffiffiffi
3
p

dÞ�. (23)

Introducing a standard uniformly distributed random variable t 2 ð0;1Þ, then L can be expressed as

L ¼ L0½1þ
ffiffiffi
3
p

dð2t � 1Þ�. (24)

It should be noted here that the assumption of uniformly distributed disorders or uniformly distributed random variables
L and t is made in this analysis arbitrarily just for simplicity, although the method presented in this paper is applicable to
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any kind of random distributions when their statistical information is available. Indeed, according to the central limit
theorem, one would expect that normally distributed disorders are the typical situation in practical applications, where a
large number of independent stochastic variables occur. On the other hand, uniformly distributed disorders represent the
simplest case in practical applications which are hence often assumed in similar analyses.
3.2. Disorder in the length of the elastic layers (Pb, Epoxy) with piezoelectric layers

For the comparison purpose with Ref. [7], it is assumed that a1 ¼ 2a2 ¼ 2a3 ¼ 2a4, that is to say, the length of the
piezoelectric layer is half of the Pb layer. For the Pb–PZT–Epoxy–PZT system, the variations of the localization factor with
the dimensionless frequency for some selected values of d are shown in Fig. 7. Similar phenomenon as shown in Fig. 3 of
Ref. [7] is observed here. For example, Fig. 7(a) implies that in the interval of oaEpoxy=cT;Epoxy 2 ð0:146;0:246Þ the
localization factor is zero for the case of d ¼ 0 and this frequency interval is a pass-band. But in this pass-band the
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localization factor is positive in the case of da0, i.e., the localization phenomenon appears. Moreover, with the increase of
the variation coefficient d, the localization factor is no longer zero in the pass-bands and the degree of the localization
increases. On the other hand, in the interval of oaEpoxy=cT;Epoxy 2 ð0:25;0:33Þ the localization factor is positive and this
interval is known as a stop-band. In general, in the stop-band the localization factor of the random structure (da0) is less
than that of the corresponding periodic structure (d ¼ 0). From Fig. 7, it can also be seen that the localization behaviors are
different for various disorders of the elastic layers. For instance, in the high frequency range the localization factor for
Epoxy disorders is much smaller than that for Pb disorders or a combination of Pd and Epoxy disorders. This example
shows that the localization behavior depends on the disorder type of the elastic layers in each unit cell.
3.3. Disorder in the length of the piezoelectric layers at different location

For three kinds of disordered periodic piezoelectric composite structures, assume that a1 ¼ 2a2 ¼ 2a3 ¼ 2a4, Fig. 8
shows the variations of the localization factor versus the dimensionless frequency for d ¼ 0, 0.05 and 0.1. It is observed that
similar localization phenomenon as shown in Fig. 7 can occur in the case of piezoelectric disorders. For example, Fig. 8(a)
shows that for disordered piezoelectric layers the localization factor is non-zero but positive in the frequency pass-bands of
the corresponding tuned periodic structures, i.e., in the interval oaEpoxy=cT;Epoxy 2 ð0:146;0:246Þ, which means that the
phenomenon of wave localization occurs. Comparing Fig. 7 with Fig. 8 it can be concluded that the localization induced by a
disorder in the length a4 of the piezoelectric layers as given in Fig. 8(b) is more obvious than that induced by a disorder in
the length a3 of the Epoxy layers as shown in Fig. 7(b) at lower frequencies, i.e., in the first pass-band, and vise versa at
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Fig. 7. The localization factors versus the dimensionless frequency for disordered Pb and Epoxy layers with piezoelectric layers: (a) Pb disorder; (b) Epoxy

disorder; (c) Pb and Epoxy disorders.
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higher frequencies. Furthermore, the localization induced by a disorder in the lengths a2 and a2+a4 of the piezoelectric
layers as shown in Figs. 8(a) and (c) is more noticeable than that induced by a disorder in the lengths a1 and a1+a3 of the
elastic layers as presented in Figs. 7(a) and (c)) at all frequencies considered, which was not found in binary cases [7]
before. Moreover, in the stop-band the localization factor of the random structure (da0) may be larger than that of the
corresponding periodic structure (d ¼ 0) at some frequencies, for instance in the frequency interval oaEpoxy=cT;Epoxy 2

ð0:12;0:14Þ of Fig. 8(a), which is quite different from that of Fig. 7.
It can also be seen from Fig. 8 that for different disordered periodic piezoelectric composites the behaviors of wave

localization are distinct. For example, in the first stop-band the localization factors in Figs. 8(a) and (b) as well as Figs. 8(a)
and (c) are rather different. The degree of the wave localization of Fig. 8(b) is strongest among them. Also, the localization
degree in the second and the third stop-bands of Fig. 8(a) is much larger than those of Figs. 8(b) and (c), which means that
the location of the piezoelectric disorders has significant effects on the wave localization.

Next, we investigate the difference between a random disorder and a deterministic disorder by assuming that a2

randomly and deterministically changes. According to Eq. (23), a variation coefficient d ¼ 0.2 corresponds to
0:65L0oLo1:35L0. Here, as a random disorder, we change a2 by introducing a standard uniformly distributed random
variable t 2 ð0;1Þ in Eq. (24), while, as a deterministic disorder, we increase a2 with fixed step-length in the range of
0:65L0oLo1:35L0. In Fig. 9, the left figure shows the localization factor for a random disorder while the right figure
presents that for a deterministic disorder. It can be seen from Fig. 9 that in the considered case the localization factor for a
random disorder is similar to that for a deterministic disorder at most frequencies except at lower frequencies and at least
in the considered cases.
3.4. Disorder in the length of the elastic layers (Pb, Epoxy) with rubber layers

Now we consider disorders in the length of the elastic layers (Pb, Epoxy) with thin rubber layers and assume
a1 ¼ 2a3 ¼ 20a2 ¼ 20a4. Fig. 10 shows the variations of the localization factor versus the dimensionless frequency for d ¼ 0,
0.05 and 0.1. It is observed here that similar localization phenomenon as shown in Fig. 7 can occur in the case of Pb, Epoxy
or both disorders simultaneously in disordered periodic composite structures with thin rubber layers. By comparing Fig. 10
with Fig. 7 it can be seen that the existence of the soft rubber layers enlarge the band gaps and the degree of the
localization. It can also be seen from these figures that there are little differences between Figs. 10(a) and (c). However, in
Fig. 10(b), the localization behavior is quite different from that in Figs. 10(a) and (c), which shows that the Pb and Epoxy
disorders at different position may have remarkable effects on the localization behaviors.
3.5. Disorder in the length of the rubber layers at different location

Assume a1 ¼ 2a3 ¼ 20a2 ¼ 20a4, Fig. 11 displays the variations of the localization factor versus the dimensionless
frequency for d ¼ 0, 0.05 and 0.1. Here, only slight differences between Figs. 11(a) and (b) are noted. However, in the
frequency range oaEpoxy=cT;Epoxy 2 ð0:2;0:4Þ the degree of the wave localization in the case of Fig. 11(c) is stronger than
that of Figs. 11(a) and (b). A comparison of Fig. 11 with Fig. 10 shows that the localization induced by a disorder in the length
of the rubber layers (see Fig. 11) is more perceivable than that induced by a disorder in the length of the elastic layers (see
Fig. 10) at lower frequencies. Besides, the localization induced by a disorder in the lengths a2 and a2+a4 of the rubber layers
as shown in Figs. 11(a) and (c) is less noticeable than that induced by a disorder in the length a1 and a1+a3 of the elastic
layers as shown in Figs. 10(a) and (c) at higher frequencies. However, a disorder in the length a4 of the rubber layers as
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Fig. 11. The localization factors versus the dimensionless frequency for rubber disorders: (a) disorder in a1; (b) disorder in a3; (c) disorder in a1 and a3.
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shown in Fig. 11(b) or in the length a3 of the elastic layers as given in Fig. 10(b) has similar effects on the wave propagation
and localization in the same range of higher frequencies.

4. Conclusions

In this paper, the influences of thin piezoelectric and soft rubber layers on the complex band structures and the
localization of bending waves in a periodic/disordered composite beam are investigated. The transfer matrix method is
applied for this purpose. The following conclusions can be drawn from this analysis:
�
 For the perfectly periodic structures, the piezoelectric layers can adjust the band gaps and the soft rubber layers can
enlarge the frequency range and the attenuation coefficient in complex band structures. The localization factor
resembles the shape of the attenuation curve in the complex band gaps.

�
 The effects of a random disorder and a deterministic disorder on the localization factor are quite similar except at lower

frequencies and at least for the considered cases in this paper.

�
 For disordered piezoelectric layers, the localization induced by a disorder in the length a4 of the piezoelectric layers is

more obvious than that induced by a disorder in the length a3 of the elastic layers at lower frequencies, i.e., in the first
pass-band, and vise versa at higher frequencies. Besides, the localization induced by a disorder in the lengths a2 and
a2+a4 of the piezoelectric layers is more perceivable than that induced by a disorder in the lengths a1 and a1+a3 of the
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elastic layers at all considered frequencies. Moreover, in the stop-band the localization factor of the random structure
(da0) is larger than that of the corresponding periodic structure (d ¼ 0) at certain frequencies.

�
 For disordered rubber layers, the localization induced by a disorder in the length of the rubber layers is more remarkable

than that induced by a disorder in the length of the elastic layers at lower frequencies. Moreover, the localization
induced by a disorder in the lengths a2 and a2+a4 of the rubber layers is less obvious than that induced by a disorder in
the lengths a1 and a1+a3 of the elastic layers at higher frequencies. However, a disorder in the length a4 of the rubber
layers or in the length a3 of the elastic layers has similar effects on the wave propagation and localization in the same
range of higher frequencies.

�
 The behavior of the wave propagation and localization in disordered composite beams can be altered by adjusting

elastic disorders at different position or placing thin piezoelectric or soft rubber layers at different inserting location.
Thus, desirable wave propagation and localization behaviors can be achieved by properly designing disordered periodic
composite structures with thin piezoelectric or soft rubber layers at suitable inserting positions.
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Appendix A. The wavelet method

In this appendix, the wavelet method for Eqs. (1) and (2) is presented. For convenience and without loss of generality,
Eqs. (1) and (2) may be rewritten as follows

q2

qx2
a1ðxÞ

q2uðx; tÞ

qx2

" #
þ

q
qx

a2ðxÞ
quðx; tÞ

qx

� �
þ a3ðxÞ

q2uðx; tÞ

qt2
¼ 0, (A.1)

where ai(x) (i ¼ 1,2,3) are periodic functions of the variable x denoting EI, EIb, and rA in Eqs. (1) and (2) with the purely
elastic periodic beam (b ¼ 0) and the piezoelectric one (ba0), and uðx; tÞ is the displacement in y-direction.

For a periodic structure, Bloch’s theorem asserts that the time-harmonic solution uðx; tÞ to Eq. (A.1) can be written as

uðx; tÞ ¼ eiðkx�otÞukðxÞ, (A.2)

where o is the angular frequency, k is restricted within the first Brillouin-zone (BZ) [�p/a,p/a] of the reciprocal lattice, and
uk(x) is a function with the same periods ai(x), which can be expanded in the form of bior1.1 wavelets and scaling functions
as [10]

f ðxÞ ¼
X
n2Z

snjbior1:1
j0;n

ðxÞ þ
X
j2Z
j�j0

X
n2Z

dj;nc
bior1:1
j;n ðxÞ, (A.3)

ukðxÞ ¼
X

bm2Cj0 ;J

ũk;mbm, (A.4)

where f(x) stands for EI, EIb, and rA, respectively; sn ¼ hcbior1:1
j0;n

; f i and dj;n ¼ hc
bior1:1
j;n ; f i are the wavelet coefficients; the set

Cj0;J
is given by

fjj0 ;n
: n ¼ 0; . . . ;2j0 � 1g [ fcj;n : n ¼ 0; . . . ;2j

� 1; j ¼ j0; . . .1; J � 1g.

Each function in this set is the wavelet and the scaling functions. The integer J determines the approximation degree as
well as the maximum number 2J of the wavelets and the scaling basis functions used in the expansion.

According to the variational principle, Eq. (A.1) can be recast into the following integral form
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where v is an arbitrary square integrable function, and substituting Eqs. (A.2) and (A.4) into Eq. (A.5), we obtain

Akũk;m ¼ o2Bkũk;m, (A.6)

where Ak and Bk are sparse matrices and ũk;m is the displacement vector. This leads to an eigenvalue problem of a
2Jþ1

� 2Jþ1 matrix. The matrix elements are given by

ðAkÞp;q ¼

Z
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þ ik
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þ ik
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ðBkÞp;q ¼

Z
O
a3ðxÞbpb̃q dx. (A.8)

Using the bior1.1 wavelet expansion (A.3) for the functions EI, EIb, and rA, Eqs. (A.7) and (A.8) are transformed into
the calculation of a linear combination of the wavelets integrals, for more mathematical details see for instance Ref. [10].
Eq. (A.6) is an infinite set of linear equations. In practice, only a finite number of wavelet basis functions are employed in
the calculation. We employ 128 wavelets in this paper and the convergence of the method is ensured.
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