
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 327 (2009) 173–182
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Subharmonic response of a single-degree-of-freedom nonlinear
vibroimpact system to a randomly disordered periodic excitation
Haiwu Rong a,�, Xiangdong Wang a, Wei Xu b, Tong Fang b

a Department of Mathematics, Foshan University, Guangdong 528000, PR China
b Department of Mathematics, Northwestern Polytechnical University, Xi’an 710072, PR China
a r t i c l e i n f o

Article history:

Received 24 December 2008

Received in revised form

30 May 2009

Accepted 2 June 2009

Handling Editor: L.G. Tham
Available online 23 June 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.06.006

responding author.

ail addresses: ronghw@foshan.net, zhangyy@f
a b s t r a c t

The subharmonic resonant response of a single-degree-of-freedom nonlinear vibroim-

pact oscillator with a one-sided barrier to narrow-band random excitation is

investigated. The analysis is based on a special Zhuravlev transformation, which

reduces the system to one without impacts or velocity jumps, thereby permitting the

applications of asymptotic averaging over the period for slowly varying random

processes. The averaged equations are solved exactly and algebraic equation of the

amplitude of the response is obtained in the case without random disorder. A

perturbation-based moment closure scheme is proposed and an iterative calculation

equation for the mean square response amplitude is derived in the case with random

disorder. The effects of damping, nonlinear intensity, detuning, and magnitudes of

random excitations are analyzed. The theoretical analyses are verified by numerical

results. Theoretical analyses and numerical simulations show that the peak amplitudes

may be strongly reduced at large detuning or large nonlinear stiffness, and when

intensity of the random disorder increase, the steady-state solution may change from a

limit cycle to a diffused limit cycle, and even change to a chaos one.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

An impact oscillator, often named vibroimpact system, is the term used to represent a system, which is driven in some
way and which also undergoes intermittent or a continuous sequence of contacts with motion limiting constraints [1].
Analyses of impact systems may be important in various engineering applications. Certain useful applications of vibration
are known where impacts are involved, such as vibratory pile drivers, tie placers, etc. Analyses of impact motions may be
important in the proper design of the corresponding machines and devices [2]. However, it is very difficult to investigate
those systems. The main difficulty is that the dynamics of such systems are not continuous, but rather of intermittent type.
In practice, engineering structures are often subjected to time dependent loadings of both deterministic and stochastic
nature, such as the natural phenomena due to wind gusts, earthquakes, ocean waves, and random disturbance or noise
which always exists in a physical system. The influence of random disturbance on the dynamical behavior of an impact
dynamical system has caught the attention of many researchers. Some analyses methods, e.g. linearization method [3],
quasi-static approach method [4,5], Markov processes method [6,7], stochastic averaging method [8–10], variable
transformation method [11,12], energy balance method [13], mean impact Poincaré map method [14], and numerical
simulation method [15] have been developed. In Ref. [2], the authors have tried to review and summarize the existing
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methods, results and literatures available for solving problem of stochastic vibroimpact systems. However, most of
researches are focused on responses of linear impact oscillator (here, ‘‘linear’’ means that the differential equation of
motion between impacts is linear) under wide-band random excitations and few are focused on the responses of linear [16]
or nonlinear impact oscillator under narrow-band random excitation.

In this paper, the subharmonic response of a single-degree-of-freedom nonlinear vibroimpact oscillator with a one-
sided barrier to narrow-band random excitation is investigated. The impact considered here is an instantaneous impact
with restitution factor e. The paper is organized as follows. In Section 2, the Zhuravlev transformation and stochastic
averaging method are used to obtain the mean square amplitude of the response. In Section 3, the directly numerical
simulations verify the analytical result. Conclusions are presented in Section 4.
2. System description and theoretical analyses

Considering a single-degree-of-freedom nonlinear vibroimpact oscillator to random excitations:

€yþ 2b_yþ yþ ay3 ¼ f ðtÞ; y4� D
_yþ ¼ �e_y�; y ¼ �D

(
, (1)

where dot indicates differentiation with respect to time t, b is the damping coefficient, a represents the intensity of the
nonlinear term, 0oe � 1 is the restitution factor to be a known parameter of impact losses, whereas subscripts ‘‘minus’’
and ‘‘plus’’ refer to value of response velocity just before and after the instantaneous impact. Thus _yþ and _y� are actually
rebound and impact velocities of the mass, respectively. They have the same magnitude whenever e ¼ 1, therefore this
special case is that of elastic impacts, whereas in case eo1 some impact losses are observed, and f(t) is a random process
governed by the following equation [17]:

f ðtÞ ¼ h sin jðtÞ; _jðtÞ ¼ Oþ gxðtÞ, (2)

where h40 and O40 are the amplitude and frequency of the random excitation, respectively, and x(t) is a stationary
Gaussian white noise of unit intensity, which describes random temporal deviations of the excitation frequency from its
expected or mean O. The process f ðtÞ has the following power spectral density [15]:

Sf ðoÞ ¼
1

4p
h2g2ðO2

þo2 þ g4=4Þ

ðO2
�o2 þ g4=4Þ2 þO2g4

. (3)

This process will be assumed to be narrow-band, which is clearly seen to be in the case provided that g! 0, and it is
assumed that g5O in this paper. The expression (3) is of the same form as one for the power spectral density of the narrow-
band filtered Gaussian white noise.

Following Zhuravlev [18], the non-smooth transformation of state variables is introduced as follows:

y ¼ jxj � D; _y ¼ _x sgn x, (4)

where sgn x is the signum function such that sgn x ¼ 1 for x40 and sgn x ¼ �1 for xo0. Obviously, this transformation
makes the transformed velocity _x continuous at the impact instants (i.e. x ¼ 0) in the special case of elastic impact (i.e.
e ¼ 1), thereby reducing the problem to one without velocity jumps. However, this is not the case with a general
vibroimpact system with impact losses, the jump of the transformed velocity _x becomes proportional to 1�e instead of 1+e

for the jump of original velocity _y. This jump may be included in the transformed differential equation of motion by using
the Dirac delta function d(x). Since xðt�Þ ¼ 0 at the impact instant t� and dðt � t�Þ ¼ j_xjdðxÞ, the impulsive term can be
obtained as

ð_xþ � _x�Þdðt � t�Þ ¼ ð1� eÞ_xj_xjdðxÞ,

the transformed equation of motion can be written by substituting (4) into Eq. (1) as

€xþ x ¼ �2b_xþD sgn x� ð1� eÞ_xj_xjdðxÞ � aðjxj � DÞ3 sgn xþ h sgn x sin jðtÞ. (5)

Thus, the original impact system (1) is reduced to the ‘‘common’’ vibration system (5) without impact. The term
ð1� eÞ_xj_xjdðxÞ on the right hand side of Eq. (5) describes the impact losses of system, which can be regarded as an impulsive
damping term. The transformed Eq. (5) permits rigorous analytical study by the asymptotic method of averaging over the
period, as long as coefficients a;b;D;h, and 1�e are all small and proportional to a small parameter. Moreover, only
subharmonic resonant responses will be considered, i.e. frequency O of the random excitation is near the subharmonic
resonant responses 2n, OE2n, where n is an arbitrary positive integer. The detuning parameter m is defined according to
m ¼ O�2n, m is assumed to be small and proportional to a small parameter. Then the response of Eq. (5) can be
approximately represented as

x ¼ AðtÞ sin FðtÞ; _x ¼ AðtÞ cos FðtÞ. (6)
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By introducing a new slowly varying phase shift yðtÞ ¼ jðtÞ � 2nFðtÞ, Eq. (5) can be transformed to the following pair of
first-order equations:

_A ¼ cosF½�2bA cosFþ DsgnðsinFÞ � ð1� eÞA cosFjA cosFjdðA sinFÞ

�aðjA sinFj �DÞ3sgnðsinFÞ þ hsgnðsinFÞ sinðyþ 2nFÞ�;
_y ¼ mþ gxðtÞ þ 2n sinF

A ½�2bA cosFþ DsgnðsinFÞ � ð1� eÞA cosFjA cosFjdðA sinFÞ

�aðjA sinFj �DÞ3sgnðsinFÞ þ hsgnðsinFÞ sinðyþ 2nFÞ�:

8>>>>><
>>>>>:

(7)

Under the foregoing assumption that damping, nonlinearity intensity, impact losses and excitation terms are small, the
right hand sides of both Eq. (7) are proportional to a small parameter, then A and y are two slowly varying random
processes with respect to time t, and F is a fast varying random process. By averaging over the fast state variable F [19], the
following shortened equations can be obtained:

_A ¼ � bþ
1� e

p

� �
Aþ q cos y;

_y ¼ ðm� 3naD2
Þ �

q

A
sin yþ

r
A
þ na 8

p
DA�

3

4
A2

� �
þ gxðtÞ;

q ¼
4nh

ð4n2 � 1Þp
; r ¼ 4nD

p ð1þ aD
2
Þ:

8>>>>>>>><
>>>>>>>>:

(8)

Eq. (8) show that the difference between elastic impact (e ¼ 1) and inelastic impact ðeo1Þ is that inelastic impact increase
the damping of the system from b to bþ ð1� e=pÞ.

Consider first steady-state response for the case of a perfect periodicity as g ¼ 0, Eq. (8) become

_A ¼ � bþ
1� e

p

� �
Aþ q cos y;

_y ¼ ðm� 3naD2
Þ �

q

A
sin yþ

r
A
þ na 8

p
DA�

3

4
A2

� �
:

8>>><
>>>:

(9)

The steady-state solutions of Eq. (9) can be found by putting A ¼ A0, y ¼ y0, and _A ¼ 0, _y ¼ 0, this leads to the following
result:

bþ
1� e

p

� �
A0 ¼ q cos y0;

rþ ðm� 3naD2
ÞA0 þ na 8

pDA2
0 �

3

4
A3

0

� �
¼ q sin y0:

8>>><
>>>:

(10)

Squaring and adding Eq. (10) yields the frequency-response equation

bþ
1� e

p

� �2

A2
0 þ rþ ðm� 3naD2

ÞA0 þ na 8

p
DA2

0 �
3

4
A3

0

� �� �2

¼ q2. (11)

Eq. (11) can be solved numerically for given parameters of the system. Eq. (11) have more than one steady-state solutions in
some parameter areas, the stability of these steady-state responses can be examined by introducing some perturbation
terms as

A ¼ A0 þ A1; y ¼ y0 þ y1, (12)

where A0 and y0 are governed by Eqs. (10) and (11), A1 and y0 are perturbation terms. Substituting Eq. (12) into Eq. (9) and
neglecting the nonlinear terms, one obtains the following linearization of the modulation Eq. (9) at A0, y0

_A1 ¼ � bþ
1� e

p

� �
A1 � q sin y0y1;

_y1 ¼
q

A2
0

sin y0 �
r
A2

0

þ na 8

pD�
3

2
A0

� �" #
A1 � bþ

1� e

p

� �
y1:

8>>>><
>>>>:

(13)

The eigenvalues of the coefficient matrix of system (13) are

l1;2 ¼ � bþ
1� e

p

� �
�

ffiffiffi
c
p
; c ¼ �

q

A2
0

sin y0 �
r
A2

0

þ na 8

p
D�

3

2
A0

� �" #
q sin y0. (14)

Therefore the necessary and sufficient condition of the stability of the steady-state solutions A0 and y0 is that the real parts
of the eigenvalues l1;2 are less than zero, i.e. c � 0, or

bþ
1� e

p

� �2

4c; c40. (15)
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Next, we determine the steady-state response of system (8) in the stochastic case as ga0. Introducing another new pair
of state variables

u ¼ A cos y; v ¼ A sin y. (16)

Eq. (8) can be transformed to

_u ¼ � bþ
1� e

p

� �
u� ðm� 3naD2

Þv�
rvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

�nav
8

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
�

3

4
ðu2 þ v2Þ

� �
þ q� gvxðtÞ;

_v ¼ � bþ
1� e

p

� �
vþ ðm� 3naD2

Þuþ
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

þnau
8

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
�

3

4
ðu2 þ v2Þ

� �
þ guxðtÞ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(17)

In generally, Eq. (17) are taken as Stratonovich stochastic differential equations, or physical equations, which should be
transformed to Ito ones by adding Wong–Zakai [15] correction terms for convenience, then Eq. (17) can be converted to the
Ito-type stochastic differential equations as follows:

du ¼ � bþ
1� e

p
þ
g2

2

 !
u� ðm� 3naD2

Þv�
rvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p � nav

8

p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
�

3

4
ðu2 þ v2Þ þ q

� �" #
dt � gv dWðtÞ;

dv ¼ � bþ
1� e

p þ
g2

2

 !
vþ ðm� 3naD2

Þuþ
ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p þ nau

8

pD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
�

3

4
ðu2 þ v2Þ þ q

� �" #
dt þ gu dWðtÞ;

8>>>>><
>>>>>:

(18)

where W(t) is an unit Wiener process.
It should be noted that an exact analytical study to system (18) seems impossible due to nonlinear nature. Thus,

approximate solutions of the second-order moments of the subharmonic response are proposed. Denoting uk and vk be the
values of u and v in the kth iterative calculation, and substituting all terms u2+v2 in the right hand side of Eq. (18) by the
mean square amplitude ðA�kÞ

2 ¼ EA2
k ¼ Eðu2

k
þ v2

k
Þ approximately, an iterative calculation equations of Eq. (18) can be

obtained as follows:

dukþ1 ¼ ½�aukþ1 � bkvkþ1 þ q�dt � gvkþ1 dWðtÞ;

dvkþ1 ¼ ½�avkþ1 þ bkukþ1�dt þ gukþ1 dWðtÞ;

a ¼ bþ
1� e

p
þ
g2

2
;

bk ¼ m� 3naD2
þ

r
A�k
þ na 8

p
DA�k �

3

4
ðA�kÞ

2
� �

;

k ¼ 0;1;2; . . . :

8>>>>>>>>>><
>>>>>>>>>>:

(19)

Eq. (19) are linear Ito equations, so by using the Ito rule the steady-state moments Eukþ1 and Evkþ1 can be obtained by the
moment method [17]. For the steady-state moments, one has

dEukþ1

dt
¼

dEvkþ1

dt
¼ 0.

Taking expectation on both sides of Eq. (19), one obtains

aEukþ1 þ bkEvkþ1 ¼ q; aEvkþ1 � bkEukþ1 ¼ 0. (20)

Eq. (20) have the following solutions:

Eukþ1 ¼
aq

a2 þ b2
k

; Evkþ1 ¼
abk

a2 þ b2
k

. (21)

Although the procedure can be easily extended to predict response moments of any order, only mean square amplitude
ðA�kþ1Þ

2 ¼ Eðu2
kþ1 þ v2

kþ1Þ will be considered here. From Eq. (19), one obtains

dA2
kþ1

dt
¼ 2ukþ1

dukþ1

dt
þ 2vkþ1

dvkþ1

dt
¼ �2aA2

kþ1 þ 2qukþ1. (22)

For the steady-state moments, one has dEA2
kþ1=dt ¼ 0. Taking expectation on both sides of Eq. (22), one obtains

ðA�kþ1Þ
2 ¼ EA2

kþ1 ¼
qEukþ1

a
¼

q2

a2 þ b2
k

. (23)
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The initial value A�0 of the iterative calculation can be taken as A0, which is governed by Eq. (11). This iteration scheme
may be expected to converge at least for small values of g, when the mean amplitude is close to the deterministic value as
governed by Eq. (11). Actually, this scheme works well in the numerical simulation. Then, the approximation mean square
amplitude of system (18) can be taken as

ðA�Þ2 ¼ lim
k!1
ðA�kþ1Þ

2 ¼ lim
k!1

q2

a2 þ b2
k

. (24)

3. Numerical simulation

In this section, the analytical results will be shown and compared with the directly numerical results. All the directly
numerical simulations by using Monte-Carlo method are based on the original system dominated by Eq. (1), and can give
powerful validation with analytical results. For the method of numerical simulation, readers can refer to Zhu [20] and
Shinozuka [21,22]. In this paper, the power spectrum of xðtÞ is taken as

SðoÞ ¼
1

2p; 0oo � 2O

0; o42O
:

8<
:

For numerical simulation it is more convenient to use the pseudorandom signal given by [20]

xðtÞ ¼

ffiffiffiffiffiffiffi
2O
Np

r XN
k¼1

cos
O
N
ð2k� 1Þt þjk

� �
;

where jk’s are independent and uniformly distributed in ð0;2p�, and N is a larger integer number.
Monte-Carlo simulations are focused on the first-order subharmonics ðn ¼ 1;O � 2Þ, although the higher-order

subharmonics ðO � 2n; n ¼ 2;3;4; . . .Þ simulations should be of the same importance. In the numerical simulation, the
parameters in system (1) are chosen as h ¼ 0.5, e ¼ 0.9, D ¼ 0.05, n ¼ 1. The governing Eq. (1) is numerically integrated by
the fourth-order Runge–Kutta algorithm between impacts, which is valid until the first encounter with the barriers, that is
until the equality y ¼ D is satisfied. The impact condition _yþ ¼ �e_y� is then imposed, using the numerical solution _y�. This
results in the rebound velocity _yþ, thereby providing the initial values for the next step numerical calculation. The
numerical results are shown from Figs. 1–6.

We first consider the perfectly periodic excitation in the case g ¼ 0, a ¼ 0.05, b ¼ 0.15, and a ¼ 0.05, b ¼ 0.1. The
variations of the steady-state response A0 with O are shown in Fig. 1, for comparison the theoretical results given by Eq. (11)
are also shown in Fig. 1. From Eq. (6), one has A2

¼ x2 þ _x2
¼ ðyþ DÞ2 þ _y2, therefore the mean square response amplitude

was calculated as A2
0 ¼ A2

� ¼ hðyþ DÞ2i þ hð_yÞ2i in numerical simulation, where angular brackets denote common time
averaging for the response sample. Fig. 1 shows that the deterministic response predicted by the averaging method is in
good agreement with that obtained by numerical simulations.

It can be seen from Fig. 1 that the response amplitude will decrease when the damping b increases, which is in
accordance with the physical intuition. The peak response amplitude will become large when the frequency O is near the
2
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Fig. 1. Frequency response of system (1) a ¼ 0:05; g ¼ 0: —— theoretical solution (b ¼ 0.1), – – – theoretical solution (b ¼ 0.15), * * * numerical solution

(b ¼ 0.1), and 3 3 3 numerical solution (b ¼ 0.15).
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Fig. 2. Frequency response of system (1) (O ¼ 1.95, b ¼ 0.1, g ¼ 0.0): —— theoretical solution and 3 3 3 numerical solution.
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resonant frequency O ¼ 2, and will decrease strongly when O departs from the resonant frequency. Comparing with the
numerical solution, the accuracy of the analytical solution is seen to be reduced a little in the case of large detuning, this
may be partly due to some inaccuracy of the Krylov–Bogoliubov averaging method at large detuning.

Now we consider the effect of the intensity of nonlinearity a on the response amplitude A0 of the system. The variations
of the steady-state response A0 with a are shown in Fig. 2 for the case O ¼ 1:95; b ¼ 0:1; g ¼ 0:0, for comparison the
theoretical results given by Eq. (11) are also shown in Fig. 2. It can be seen from Fig. 2 that the response amplitude A0 will
decrease strongly when a increases, therefore the nonlinearity should be considered in the analysis of deterministic impact
system.

The response time history of system (1) and the phase plot are shown in Fig. 3 in the case g ¼ 0; a ¼ 0:05; b ¼
0:15; O ¼ 2:0, where zðtÞ ¼ _yðtÞ denotes the velocity of the mass. Clearly, the response is a period one while the phase
trajectory is a limit cycle.

Next, we determine the effect of the noise term x(t) on the primary response. The variations of the steady-state response
A* with O in the case g ¼ 0.25, a ¼ 0:05; b ¼ 0:15 and a ¼ 0:05; b ¼ 0:1 are shown in Fig. 4, for comparison the theoretical
results given by Eq. (24) are also shown in Fig. 4.

Similarly, high accuracy of the analytical method can also be claimed for the case under non-perfectly periodic
excitation as can be seen from Fig. 4. Once again, strongly reduction of the peak response amplitude due to large damping
and large detuning can be seen. Noting that the parameters of system (1) corresponding to Figs. 1 and 4 are the same except
for g, a rather drastic reduction of peak response amplitudes due to random disorder x(t) in the excitation can be seen form
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Fig. 4 in comparison with Fig. 1. Such phenomena can also be illustrated in Fig. 5, where the parameters of system (1) are
g ¼ 0:25; b ¼ 0:15;O ¼ 2:0, which are the same corresponding to Fig. 3 except for g.

In comparison with Fig. 3, it can be seen from Fig. 5 that random noise x(t) will reduce the peak response amplitude, and
change the steady-state response of system (1) from a periodic solution to a quasi-periodic one such that change the phase
trajectory from a limit cycle to a diffused limit cycle. Further numerical simulations show that the width of the diffused
limit cycle will be large when the intensity of the random disorder increases.

Now we consider the effect of the intensity of nonlinearity a on the response amplitude A* of the system. The variations
of the steady-state response A* with a are shown in Fig. 6 for the case O ¼ 1:95; b ¼ 0:1; g ¼ 0:25, for comparison the
theoretical results given by Eq. (24) are also shown in Fig. 6. It can be seen from Fig. 6 that the response amplitude A* will
decrease strongly when a increases, therefore the nonlinearity should also be considered in the analysis of stochastic
impact system.

Eq. (11) will have multiple real and positive stable solutions in some parameter domain, and then system (1) may have
multiple stable steady-state responses. Such phenomena is found in the following numerical simulations, where the
parameters of system (1) are

a ¼ 0:05; b ¼ 0:25; h ¼ 2:5; e ¼ 0:8; D ¼ 0:35; O ¼ 2:45; n ¼ 1.
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Eq. (11) has three real and positive solutions A0 ¼ 1.3509, 3.0017, 5.5333, and only the two solutions A0 ¼ 1.3509, 3.0017 are
stable according to condition (15). The numerical results for system (1) are shown in Figs. 7–9 for different g. The time
history of the response and the phase trajectory are plotted in Fig. 7 in the case g ¼ 0.

The response of system (1) shown in Fig. 7 is a period-two one, and will become quasi-periodic ones when g increase, as
shown in Fig. 8 in case g ¼ 0.004, 0.001.

The phase trajectories shown in Fig. 8 represent the responses are similar to period-two solutions and have some
pervasion, one may call them quasi-periodic-two solutions. The pervasion of the phase trajectory will strengthen as g
increases, and such pervasion will even destroy the topological property of the phase trajectory as shown in Fig. 9 in case
g ¼ 0.06. The phase trajectories shown in Fig. 9 are different completely from which shown in Figs. 7 and 8, and one may
call such response a stochastic chaos.
4. Conclusions and discussion

In this paper, the methods of Zhuravlev transformation and stochastic averaging are used to analyze the response of a
nonlinear impact system under disordered periodic excitation. So far, exact solutions of nonlinear impact system under
random excitation are only available for a very limited number of problems. Thus, approximate methods have been
developed and used to treat many of these problems. These include the method of equivalent or stochastic linearization,
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perturbation methods, stochastic averaging and series expansions, etc. In fact, even if in the single degree of
freedom nonlinear deterministic system it is difficulty or impossible to solve exactly, hence approximate method have
widely used in the analysis of determine nonlinear system. These include small parameter method, method of
coordinate transformation, multiple scale method, method of slowly varying parameter, KBM method, method of
equivalent linearization, method of harmonic balance, etc. The approximate methods in determine system can be
extended to random system. For example, in recent year, Rajan and Davies [23], Nayfeh and Serhan [24] have
extended the method of multiple scales to the analysis of nonlinear systems under random external excitations, and the
authors of this paper [25,26] extended this method to the analysis of nonlinear systems under random parameter
excitation. Harmonic balance method [27] and polynomial approximation method [28] have also been extended to random
systems.

Theoretical analyses and numerical simulations show that the peak response amplitude will decrease when the
intensity of the random disorder g in the periodic excitation, damping b, and nonlinear intensity a increase. The random
disorder x(t) will change the steady-state response of system (1) from a periodic solution to a quasi-periodic one, and even
to stochastic chaos.

The model in Eq. (2) may be less accurate in some applications, therefore other model such as filtered Gaussian white
noise may be more appropriate for the basic narrow-band excitation, this will be continuation of this research.
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