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a b s t r a c t

The paper is focused on the nonlinear damping capacity of built-up structures owing to

presence of frictional joints. To quantify and characterise the nonlinear dynamic

behaviour of built-up structures, a novel experimental procedure is introduced based on

the wavelet transform providing equivalent modal parameters identification. In order to

analyse the influence of the interfacial pressure and the interface area on the dynamic

behaviour of built-up structures, an experimental study conducted on a simple built-up

structure consisting of two bolted beams is presented. Results in terms of equivalent

modal parameters are finally discussed and rationalised.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Complex mechanical systems are generally composed of simple elements assembled by connections such as bolted,
riveted and welded joints. The presence of those mechanical joints affects the dynamic behaviour in terms of
eigenfrequency and damping [1,2]. Moreover, the complex transfer behaviour of mechanical joints introduces
nonlinearities into the dynamic response of assembled structures. This influence has to be taken into account during
the stage of engineering design in order to predict and then optimise the dynamic behaviour. Mechanical joints have also
been recognised as one of the main sources of the energy dissipation in complex built-up structures [3,4]. Although this
sort of dissipation can be related to many physical phenomena [1], friction between the substructures is considered the
most important [2]. The term slip damping is used to refer to this mechanism.

The earliest studies of the slip damping were devoted to analysis of simple built-up structures. The joints were idealised
by introducing assumptions such as a uniform interfacial pressure [5–7]. Experimental analyses were accompanied by
analytical calculations leading to mathematical relations linking the energy dissipation or slip damping to different
parameters such as friction coefficient, contact pressure, amplitude of loading, etc. Interesting results coming out of these
studies were the existence of an optimal pressure value giving the maximal slip damping [5] and the slip damping
dependence proportional to the cube of the loading force amplitude [4].

One of the most important earlier experimental works on slip damping was carried out by Ungar [1]. In his work light
assembled structures of the type used in aircrafts were analysed in order to find the origin of the energy dissipation taking
place in mechanical joints. The influence of the type of structure and frequency on slip damping was also studied. Ungar
proposed a number of semi-empirical equations providing the evaluation of the loss energy factor for some specific
structures.
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More recently, analysis of the slip damping has been oriented to more complex built-up structures. The use of numerical
methods such as the finite element method allows to perform complex nonlinear contact analysis giving an insight into the
distribution and amount of friction taking place in joints during vibrations. However, these analyses are very difficult to
carry out owing to particularly large models that result from a fine discretisation of contact surfaces guaranteeing the
numerical stability. Hence, several approaches have been suggested to simplify the numerical analysis of assembled
structures. One of the approaches is to apply constitutive models of mechanical joints that use degrees of freedom natural
to the scale of structural dynamics. Many constitutive models have been proposed such as Valanis model [8], Iwan model
[9,10], Ren’s model [11] and the point contact model worked out by Sanliturk and Ewins [12]. The constitutive models are
fully defined by a certain number of parameters depending on properties of a given joint. Their determination can be done
by using either experimental [9] or numerical approaches [10].

Another way to represent the nonlinear transfer behaviour of mechanical joints is by extending the modal analysis to
nonlinear structures. Ferreira and Ewins proposed a method of nonlinear impedance based on the Multi-Harmonic
Describing Function [13]. The method consists of taking into account the harmonic oscillations at multiples of the
excitation frequency.

The frequency response function (FRF) depending on the excitation amplitude was proposed by Siller [14] who
developed a method for detecting, localising, identifying and quantifying the nonlinearities using the amplitude dependent
FRF.

Finally, equivalent modal parameters [15] representing the variation of modal parameters with respect to the vibration
amplitude has been used [16,17] in order to characterise the dynamical nonlinearities introduced into the system through
mechanical joints.

In this paper, we use the equivalent modal parameters to assess the influence of mechanical joints on the dynamic
behaviour of assembled structures. First, a mathematical definition of the equivalent modal parameters is introduced for
the case of a general mdof system having non-coupled eigenmodes. Then an experimental method for identification of the
equivalent modal parameters is proposed. The identification is based on analysis of free-decay responses using the wavelet
transform.

The last part of the paper describes an experimental study dealing with a simple built-up structure represented by two
overlapped bolted beams. The proposed identification method is applied to analyse the dependence of the equivalent
modal parameters on the vibration amplitude, interfacial pressure and surface of the contact area.

2. Definition of equivalent modal parameters

In this paper, we focus on assembled structures consisting of linear substructures. Thus those structures can be
considered as dynamic systems locally nonlinear due to the friction in joints. Furthermore, we assume that the friction does
not substantially affect the eigenvector linearity. To characterise dynamic systems that meets all these assumptions, the
approach of equivalent modal parameters was chosen. According to the well known small-parameter method proposed by
Krylov and Bogoljubov [15], the eigenfrequency and modal damping of a locally nonlinear system can be seen as
parameters depending on the vibration amplitude. Evolutions of the equivalent modal parameters with respect to the
amplitude of vibrations provide information about both the type and the degree of nonlinearities of analysed systems.

The dynamic free motion of a locally nonlinear structure can be approximated by a discrete model whose free dynamic
response is defined as a superposition of free motions of N single dof nonlinear oscillators as follows:

x ¼ Vq, (1)

xi ¼
XN
j¼1

Vi;jajðtÞ cosYjðtÞ ¼
X
j¼1

Ai
jðtÞ cosYjðtÞ, (2)

where x, V and q denote the displacement vector, the modal matrix containing all eigenvectors and the vector of modal
coordinates, respectively. A particular modal coordinate qj is characterised by its amplitude aj and phase Yj.

According to the small-parameter method, the equivalent modal eigenfrequency and damping of N single dof nonlinear
modal oscillators are defined by the following set of differential equations:

daj

dt
¼ ��ezjðajÞn;eOjaj, (3)

dYj

dt
¼ d;eOjðajÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n;eOjðajÞ

2 � �2ðezjðajÞn;linOjÞ
2

q
, (4)

where the damped eigenfrequency d;eOj and the modal damping ezj represent the set of equivalent modal parameters and �
denotes the small parameter. As in the case of linear dynamic systems, the equivalent modal damped eigenfrequency is
linked to the non-damped equivalent modal eigenfrequency n;eOi and equivalent damping coefficient ezi.

It should be pointed out that the present definition of equivalent modal parameters (Eqs. (3) and (4)) is valid only for
systems having non-coupled eigenmodes. In such a case, the contribution of adjacent eigenmodes can be neglected when
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systems vibrate at frequencies close to a given eigenmode. Under those assumptions, an experimental method for the
equivalent modal parameters identification was developed.
3. Experimental identification of equivalent modal parameters

The proposed experimental method extracts the equivalent modal parameters from the free-decay system response
which is assumed to satisfy Eq. (2).

The identification is based on the use of the continues wavelet transform [18,19] which is applied on the free-decay time
response. Many experimental studies utilising a wavelet based identification for linear [20–23] and nonlinear systems
[24,25] have been published in past two decades. Therefore, only a basic concept of our identification method will be
described.

The projection of a free-decay time response provided by the ith accelerometer to the time–frequency domain is defined
by the following wavelet transform formula:

Txi
ðs; tÞ ¼ hxiðtÞ;cs;ti ¼

1ffiffi
s
p

Z 1
�1

xiðtÞc
t � t

s

� �
dt, (5)

where s, t, cððt � tÞ=sÞ are the scaling parameter being reciprocally related to the frequency, the time shift and the complex
conjugate shifted and scaled mother wavelet function, respectively. The mother wavelet represents a specific function
satisfying many mathematical conditions [18,19] such as its well localisation in time and frequency. The choice of a
particular mother wavelet is determined by the nature of the time signal to be treated. In our study we deal with oscillating
signals being well localised in frequency which implies that the mother wavelet has to be an oscillating function being well
localised in frequency. One of the wavelet functions satisfying this requirement is the Morlet function chosen as the mother
wavelet for our identification method. The analytical solution of the wavelet transform formula Eq. (5) can be found under
the assumption of the asymptotic property of the analysed free-decay response xiðtÞ. The physical meaning of such a
property is that the rate of phase change is much more important than that of amplitude change. If this assumption is
satisfied, the free-decay response is projected to the time–frequency domain in the form of a complex 2D function
described approximately by the following equation:

Txi
ðs; tÞ �

XN
j¼1

ffiffi
s
p

2
Vi;jajðtÞĉðsoðtÞÞe

iðYjðtÞÞ, (6)

where ĉðsoðtÞÞ is the complex conjugate Fourier transform of the wavelet function. The absolute value of complex wavelet
transform coefficients can be interpreted as a surface in the time–frequency space as shown in Fig. 1.

The main feature of such a surface is the presence of ridges corresponding to the system eigenfrequencies (Fig. 1). A
ridge characterises the variation of a particular eigenfrequency in time that can be considered as an indicator of the
stiffness linearity. Such a linearity may be approved by existence of a unique scale value determining the position of the
ridge within the entire time interval.

Many algorithms and methods providing the ridge identification and extraction have been proposed [18,19]. The
simplest one based on the maximum absolute value of the wavelet transform coefficients is used in our study. Consider a
ridge sa;jðtÞ which corresponds to the jth eigenfrequency. In practical computations, the wavelet transform is calculated
only for a discrete vector of scales s1 . . . sn. Then the jth ridge laying within a scale interval sa . . . sb is considered to
correspond to scales satisfying the following equation:

Txi
ðsa;jðtÞ; tÞ ¼ maxðjTxi

ðsa:::sb; tÞjÞ. (7)
Fig. 1. Example of the time–frequency representation of a free-decay response: (a) time response, (b) module of wavelet transform coefficients.
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The jth component of the signal amplitude Ai
jðtÞ and phase YjðtÞ identified at the ith accelerometer can be reconstructed

using the wavelet coefficients corresponding to the ridge scales by applying the following equations:

Ai
jðtÞ ¼

2ffiffiffiffiffiffiffiffiffiffiffiffi
sa;jðtÞ

q jTxi
ðsa;jðtÞ; tÞj, (8)

YjðtÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffi

sa;jðtÞ
q argðTxi

ðsa;jðtÞ; tÞÞ. (9)

The introduction of Eqs. (8) and (9) into Eqs. (3) and (4) leads to Eqs. (10) and (11) showing that the equivalent modal
damping is linked to the logarithm of the module of wavelet coefficients and the equivalent damped eigenfrequency is
related to the argument of these coefficients:

ezj
i
ðtÞ ¼ �

1

n;linOj

d ln
2ffiffiffiffiffiffiffiffiffiffiffiffi

sa;jðtÞ
q jTx;iðsa;jðtÞ; tÞj

0
B@

1
CA

dt
; j ¼ 1;2; . . . ;N, (10)

d;eOj
i
ðtÞ ¼

d argðTxi
ðsa;jðtÞ; tÞÞ

dt
; j ¼ 1;2; . . . ;N. (11)

Note that the computation of Eqs. (10) and (11) requires the use of a numerical derivation scheme being a very sensitive
operation when it is applied on standard measured signals containing a certain level of noise. Therefore, the derivative was
computed using the Savitzky–Golay FIR (Finite Impulse Response) smoothing filter.

The time evolution of equivalent modal parameters can be converted to corresponding amplitude dependencies by
using the time variation of amplitude Ai

jðtÞ evaluated by Eq. (8). When several free-decay responses xi; i ¼ 1; . . . ; k, from
different places of the structure are provided, the proposed experimental method allows to identify non-normalised
eigenvectors. They are related to both the ratio of the absolute value of the wavelet ridge coefficients and their relative
phase shifts. Consider two free-decay responses xi, xk and the ridge scales sa;j corresponding to the jth eigenfrequency. Then
the kth component of the jth non-normalised eigenvector is calculated by the following formulas:

jak;jðtÞj ¼
Txk
ðsaj

; tÞ

Txi
ðsaj

; tÞ

�����
�����, (12)

argðTxk
ðsaj

; tÞÞ � argðTxi
ðsaj

; tÞÞ ¼ 0! ak;jðtÞ ¼ jak;jðtÞj, (13)

argðTxk
ðsaj

; tÞÞ � argðTxi
ðsaj

; tÞÞ ¼ �p! ak;jðtÞ ¼ �jak;jðtÞj. (14)

After having normalised those eigenvectors they can be assembled into the modal matrix Vi;jðtÞ which may be used to
calculate the eigenmode amplitude ajðtÞ as follows:

ajðtÞ ¼ Ai
jðtÞ=Vi;jðtÞ. (15)

Finally, all the equivalent modal parameters identified on each accelerometer can be evaluated as functions of the
eigenmode amplitude (Eqs. (16) and (18)):

ezj
i
ðtÞ�!ezj

i
ðajðtÞÞ, (16)

d;eOj
i
ðtÞ�!d;eOj

i
ðajðtÞÞ, (17)

Vi;jðtÞ�!Vi;jðajðtÞÞ. (18)

The identified equivalent modal eigenmodes allow for a verification of the assumption of quasi-constant eigenmodes that
represents the basic hypothesis the proposed identification method relies on. Furthermore, the identification can be
approved by comparing the equivalent modal parameters identified on different accelerometers that should be
theoretically identical. Thus those experimentally identified parameters are required to be equal within admissible
identification error tolerances Dz, DO as expressed by

ezj
i
ðajðtÞÞ ¼ ezj

k
ðajðtÞÞ �Dz ¼ ezjðajðtÞÞ � Dz 8i; k, (19)

d;eOj
i
ðajðtÞÞ ¼ d;eOj

k
ðajðtÞÞ � DO ¼ d;eOjðajðtÞÞ � DO 8i; k. (20)
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4. Experimental investigation of a simple built-up structure

A simple built-up structure with an isolated frictional joint was analysed by using the previously presented
experimental identification method. As it has been mentioned, the interfacial pressure and the interface area are the crucial
factors determining the final impact of the frictional joint on the dynamic behaviour of the whole structure. Therefore, the
experiment was conducted in a way allowing to control those two parameters in order to study their influence on the
evolution of equivalent modal parameters.

4.1. Experimental set-up

The analysed structure consisted of two steel beams of dimensions 700� 50� 15 mm and 700� 50� 5 mm. The beams
were assembled by means of three bolts M6 distributed along the beams length. A tube equipped with a strain gauge was
inserted between the head of the bolt and the beam (Fig. 2) in order to provide the measurement of the axial force in bolts.
Although the axial force gives only an indirect information about the interfacial pressure, the term prestress will be used in
the following text to refer to axial force values measured by the strain gauges.

Four different beam assemblages were tested to evaluate the effect of the interface area:
�
 direct assemblage of two beams (assemblage w0);

�
 washers inserted between the beams at bolt axes;
� small washer with an outer diameter of 8 mm (assemblage w1);
� intermediate washer with an outer diameter of 12 mm (assemblage w2);
� large washer with an outer diameter of 16 mm (assemblage w3).
In order to simulate free-free boundary conditions, the structure was suspended by means of two wires connected to one of
the beams at approximately calculated node positions of the first bending eigenmode. The experimental configuration
including measurement equipment is shown in Fig. 2. Although the identification method was based on analysis of free-
decay dynamic responses, an electromagnetic shaker was used for the dynamic excitation located at the extremity of the
beams where a force transducer and a piezoelectric accelerometer were also placed. Four other accelerometers were
distributed along the beam length allowing the eigenmode identification. The use of the electromagnetic shaker for
excitation purposes instead of e.g. hammer allowed to enlarge the amplitude interval within which the equivalent modal
parameters were identified by using the presented identification method. It was achieved by using a sinusoidal excitation
at a frequency close to the desired one that emphasised the presence of the particular eigenfrequency in the response
spectrum. The free-decay system response was then obtained by using a system disconnecting the shaker from the
structure. This system was realised by means of an electromagnet attached to the bar of the shaker and connecting the
force transducer and accelerometer that were both fixed on the structure. An electromagnet power supply control system
linked to the data acquisition system was used for synchronising the time of disconnection with the start of the data
acquisition.

The complete measurement set-up scheme showing all acquired data is depicted in Fig. 3. Note that an indirect
measurement of the interfacial pressure variation during the vibration was allowed by acquiring the strain gauge signals
during vibrations.
Fig. 2. Experimental set-up and design of two assembled beams.
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4.2. Measurement technique

The experiment on the assembled beams was focused on the identification of equivalent modal parameters
corresponding to the first bending mode. The measurement procedure used for such an identification consisted of two
main steps. First, the structure was excited by a harmonic signal at a frequency close to that of the first eigenmode and then
the free-decay response was recorded after the shaker disconnection from the structure by using the system described
above. The second step consisted of applying the proposed wavelet based equivalent modal parameters identification on
the recorded free-decay responses. The overall identification technique comprised the following identification steps:
�
 computation of the global wavelet transform using a large frequency band;

�
 localisation of the ridge corresponding to the first eigenfrequency;

�
 computation of the local wavelet transform using a narrow frequency band around the localised eigenfrequency;

�
 identification of the first eigenfrequency ridge;

�
 computation of the time evolution of equivalent modal parameters by using the wavelet transform coefficients

corresponding to the first eigenfrequency ridge;

�
 filtering of the free-decay response for obtaining the first eigenmode component, this step was performed by a pseudo-

inverse wavelet transform which is the standard inverse wavelet transform that uses only those wavelet coefficients
that correspond to the first eigenfrequency ridge;

�
 conversion of the filtered acceleration response to displacement, this step allowed the conversion from the time

dependencies of equivalent modal parameters to their variations with respect to the displacement amplitude.

4.3. Preliminary modal analysis

First, a preliminary modal analysis using a random noise excitation technique was carried out in order to identify the
first bending mode and analyse the influence of prestress on the FRF. Fig. 4 shows a shift of the first eigenfrequency towards
higher values when increasing the prestress. Such an effect indicates an increasing stiffness of the assembled structure.
Furthermore, the half-power bandwidth decreases when increasing the prestress. Moreover, the FRFs of different
assemblages measured at a same applied axial force of 500 N (Fig. 5) show considerable differences in damping expressed
by a varying half-power bandwidth. The beams in direct contact display a much higher value of damping than that
identified in the case of assemblages with inserted washers. Although the FRFs of beams with inserted washers of different
sizes reveal only small changes in the half-power bandwidth, the damping clearly increases with increasing washer size.
Hence, as the prestress and the interface area influence the amount of the relative motion between two beams, the
experimental results suggest that changes in the friction taking place at the frictional joint are the main cause of observed
variations in the equivalent modal parameters.

4.4. Eigenmode nonlinearity

In order to evaluate the impact of the interface area on the eigenvector linearity, a linear finite element model of the
assemblage without washers was prepared (Fig. 6) so that the coincident interfacial nodes of two beams were fixed one to
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Fig. 4. FRFs measured on beams in direct contact tightened by different bolt axial forces.

Fig. 5. FRFs obtained on all tested assemblages tightened by an axial force of 500 N.

Fig. 6. The finite element mesh of a linearised FEM model and the calculated first eigenmode.
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the other i.e. the friction and contact were not considered in the computation. The first bending mode shown in Fig. 6 was
then compared to that identified experimentally with respect to the vibration amplitude as it has been explained above.

Figs. 7 and 8 show a comparison between the calculated eigenmode and the mean value of the measured one both
expressed in the normalised form. The comparison showing a relative error never exceeding 16 percent proves that the
frictional interface of the bolted joint has only a slight influence on the shape of the first eigenvector. Nevertheless, the
error distribution along the beam length is not symmetric which might suggest a slight deviation from the eigenmode
symmetry due to the frictional joint. Then the normalised experimentally identified eigenvector Vi;1ðtÞ; i ¼ 1; . . . ;5, was
used to convert the identified vibration amplitudes Ai

1; i ¼ 1; . . . ;5, from all accelerometers to the eigenmode amplitude
a1ðtÞ ð� aðtÞÞ as discussed in Section 3 so that we could express all identified modal parameters with respect to the
eigenmode amplitude.

After having identified the eigenmode amplitude, the experimental identification of equivalent modal parameters was
approved by comparing data from measurements on different accelerometers that were supposed to give the same results
within an identification error tolerance as expressed by Eqs. (19) and (20). The identified results satisfied this condition in
all measured configurations, an example of this agreement is depicted in Fig. 9 showing the results for an axial force of
5000 N and an assemblage of type w0.

As explained previously, the proposed experimental identification of equivalent modal parameters is developed under
the assumption of an eigenmode quasilinearity. Thus to verify such a linearity, the amplitude dependence of the relative
deviation of eigenvector components DrVi;1ðaðtÞÞ from their values at the minimal vibration amplitude was evaluated using
the following equation:

DrVi;1ðaðtÞÞ ¼
Vi;1ðaðtÞÞ � Vi;1ðaminÞ

jVi;1ðaminÞj
, (21)
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Fig. 7. Comparison of the first eigenmode obtained by FE analysis and measurement.
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where Vi;1ðaminÞ denotes the value of the ith component of the first eigenvector at the minimal vibration amplitude reached
within free vibrations, whereas Vi;1ðaðtÞÞ represents its instantaneous value.

The evolution of the relative deviation of the third component of the first eigenvector component is shown in Fig. 10 as a
representative example. The recorded data were affected by the presence of signal noise (see markers in Fig. 10
representing data points) and therefore a curve fitting was applied on the measured values (solid lines in Fig. 10) to
highlight the trend of plotted evolutions. In the case of a linear system no amplitude dependence of eigenvectors exists
which would correspond to dashed line in Fig. 10. In contrast, the present dynamic system clearly shows an amplitude
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Fig. 10. Amplitude dependence of the relative deviation of the third component of the first eigenvector from its value reached at the minimal vibration

amplitude. The dashed line indicates the evolution in the case of an ideal linear system.

L. Heller et al. / Journal of Sound and Vibration 327 (2009) 183–196 191
dependence of the measured eigenvector. This dependence becomes more important with decreasing prestress that might
be interpreted as increasing eigenmode nonlinearity when the role of friction in the dynamic behaviour of the system
becomes more important. In the case of higher prestresses (10 000 and 5000 N) only a slight maximum absolute value of
the relative deviation of the eigenvector component was identified ðo1Þ percent that was reached already at small
amplitudes and did not increase further. However, in the case of a very low prestress (1000 N) the effect of friction on the
eigenvector amplitude dependence seems to be more important as the absolute value of the relative deviation shows a
higher value ð	3:5Þ percent and an increasing tendency with increasing amplitude. Nevertheless, as the identified relative
deviation of the eigenvector components is limited to few percents, the assumption of the eigenmode quasilinearity seems
to be satisfied in the case of the analysed dynamic system.

The eigenvectors could also be affected by a modal coupling due to the nonlinear damping forces. Nevertheless, the very
small relative errors indicate that this coupling did not occur, although the orthogonality of the eigenmodes was not
verified.

A negligible eigenvector variation with respect to the amplitude and prestress justifies the use of the proposed
identification method relying on the Single Degree of Freedom approach. In that situation, a single sensor located anywhere
on the structure except on a nodal line allows the identification of the modal equivalent parameters. It is clear that this
approach would no longer be valid in the case of a modal coupling due to the nonlinear damping forces. In that case, a
Multi-Degree of Freedom technique would be necessary and the questions of the number and locations of sensors would
have to be addressed.

4.5. Evolution of equivalent eigenfrequency

As each of studied assemblages has a slightly different geometry, the identified damped eigenfrequencies do not lie at
the same frequency level (Fig. 11). However, all assemblages exhibit a nearly linear decrease of the eigenfrequency when
increasing the vibration amplitude. The slope of such a decrease depends on the assemblage type i.e. on the interface area.
This would suggest that the amplitude dependence of the eigenfrequency can be attributed to the friction at the interface.

The nonlinearity degree of the damped eigenfrequency expressed by the slope of its amplitude dependence dramatically
changes when decreasing the axial force as can be seen in Fig. 12. It may be explained by the fact that slightly tightened
bolts allow for an important friction motion giving rise to the slip damping that increases with increasing amplitude of
vibrations. Consequently, such a vibration amplitude sensitivity of the slip damping is directly projected to the amplitude
evolution of the damped eigenfrequency through their relation given by Eq. (4). As the applied prestress increases, the
damped eigenfrequency becomes almost constant due to a restricted friction at the interface that limits the role of the slip
damping. This stabilisation or linearisation of the eigenfrequency is better represented by the prestress dependence of the
eigenfrequency for different amplitude levels as depicted in Fig. 13 which shows data corresponding to the assemblage w0
(no washer inserted). The damped eigenfrequency asymptotically tends to a same limit value for all amplitudes of
vibration. Such a limit value can be considered as the eigenfrequency of a corresponding virtual linear system being free of
friction.

4.6. Evolution of equivalent damping

The identified equivalent damping showed in Fig. 14 reveals a clear relation between the interface area and the damping
level. It increases with increasing interface area for all applied prestresses at a given vibration amplitude. The equivalent
damping of the assemblage w0 having beams in direct contact was found to be several times higher than in the case of
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Fig. 11. Effect of the interface area on the vibration amplitude evolution of the damped eigenfrequency at different applied prestresses.
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Fig. 12. Effect of the axial bolt force on the vibration amplitude evolution of the damped eigenfrequency corresponding to different assemblage types.
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Fig. 14. Effect of the interface area on the vibration amplitude evolution of the equivalent damping coefficient at different applied prestresses.

L. Heller et al. / Journal of Sound and Vibration 327 (2009) 183–196 193
assemblages with inserted washers. It would suggest that the slip damping plays an important role in the overall energy
dissipation of the structure and that the area where an important friction occurs is not limited to a small perimeter around
the bolt but is larger than the diameter of the largest washer ðd ¼ 16 mmÞ.

Fig. 15 also shows an important effect the prestress has on the character of the equivalent damping variation with
respect to the vibration amplitude. The equivalent damping variation corresponding to lower prestresses seems to satisfy a
power law while a linear evolution is observed in the case of higher prestresses. Moreover, at low prestresses, the
assemblages with inserted washers show damping variations satisfying a power law and a local maximum at higher
amplitude seems to exist. It could be explained by the existence of a limited perimeter around the bolt axis beyond which
the interfacial pressure vanishes. Hence, when the friction area reaches this limit upon increasing vibration amplitude, any
further amplitude increase is not accompanied by a damping increase. This local maxima in the equivalent damping
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Fig. 16. Asymptotic evolution of the equivalent damping coefficient with increasing prestress.
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evolution should also exists in the case of the assemblage with direct contact owing to a presumable local distribution of
the interfacial pressure around the bolt axis. Such a localised pressure should also posses a limited perimeter beyond which
the pressure vanishes. Therefore, when the continuing increase of vibration amplitude would deploy the friction area
beyond this perimeter, the dissipation by friction would no longer increase. In order to verify this hypothesis, an
experiment with a sufficiently strong excitation deploying the friction area over such a perimeter would have to be done.
Unfortunately, the used electromagnetic shaker was not sufficiently powerful to allow such an excitation.

Besides qualitative changes in damping variations with respect to the prestress, one can also observe important
quantitative damping changes when decreasing the prestress. In the case of assemblage w0, an increase of damping as
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large as 500 percent was observed upon a prestress decrease from 10 000 to 500 N. As the friction between two beams is
strongly conditioned by the applied prestress, those results proves that the frictional joints may provide a high passive
damping capacity when the relative motion between substructures is not fully restricted.

Finally, an asymptotic damping stabilisation due to increasing prestress was identified as in the case of the damped
eigenfrequency. Fig. 16 shows that when the prestress grows up the equivalent damping asymptotically tends to a same
value for any applied vibration amplitude. In other words, the damping is getting linear upon increasing prestress owing to
a restricted nonlinear slip damping.
5. Conclusions

The aim of this paper was to analyse the influence of frictional joints and their functional parameters on the global
dynamic behaviour of built-up structures. For such a purpose an experimental study was carried out on a simple built-up
structure consisting of two bolted beams designed so that the prestress and the interface area could be modified. To
characterise its presumably nonlinear dynamic behaviour, the equivalent modal parameters were chosen. The
identification of equivalent modal parameters was performed by a new experimental method developed under the
assumptions of linear substructures and non-coupled quasilinear eigenmodes. The method is based on the use of
the wavelet transform applied on the free-decay response. This method was used in the experiment for analysing the global
dynamic behaviour of the studied assembled structure with regard to the functional parameters of the frictional joint
represented by the prestress and the interface area. The results and main conclusions of the experiment may be
summarised as follows:
�
 the frictional joint affects the dynamic behaviour of the whole structure only within a limited range of bolt axial forces
and vibration amplitudes;

�
 the frictional joint influences only negligibly the eigenmode linearity at all applied prestresses and vibration

amplitudes;

�
 at low bolt axial forces (up to 2000 N), the frictional joint gives rise to an important slip damping resulting in nonlinear

amplitude dependent equivalent modal parameters;

�
 the equivalent modal parameters tend to stabilise at constant amplitude independent values when increasing the bolt

axial force beyond a limit value;

�
 the equivalent eigenfrequency shows a linearly decreasing tendency with increasing amplitude at low bolt axial forces;

�
 at low bolt axial forces, the equivalent damping is strongly dependent on the vibration amplitude, bolt axial forces and

interface area;

�
 at important vibration amplitudes, the equivalent damping reaches extreme values that are several times higher

compared to its stabilised amplitude independent value at high axial bolt forces;

�
 the extreme values of the equivalent damping increases substantially with increasing interface area.

The experiment confirmed that the frictional joints are main sources of energy dissipation in built-up structures when
applied prestresses allow for a relative motion of substructures. Under those circumstances the studied structure showed a
high passive damping capacity as large as 2.5 percent that was five times more than under highly tightened conditions. The
experiment also proved that the friction is not restricted at a localised area around the bolt but it is extended to much
larger interface area. Hence, the passive damping capacity may be considerably increased by extending the interface area.
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