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a b s t r a c t

This paper proposes an angular velocity bounded robust adaptive control design for

attitude maneuver and vibration reduction in the presence of external disturbances and

uncertainties in the inertia matrix. The control design is Lyapunov based to ensure

closed-loop stability, boundedness of system states and tracking error convergence.

Specifically, an adaptive controller based on backstepping technique with the

assumption of bounded elastic vibrations is first designed that ensures the equilibrium

points in the closed-loop system uniform ultimate bounded stability in the presence of

unknown inertia matrix and bounded disturbances, incorporating constraints on

individual angular velocity. The prescribed robust performance is also evaluated by

L2-gain, less than any given small level, from a torque level disturbances signal to a

penalty output. Then this controller is redesigned such that this assumption is released

by using an elastic vibration estimator, which supplies their estimates. The external

torque disturbances attenuation along with estimate errors with respect to the

performance measure are also ensured in the L2-gain sense and the induced vibrations

can be actively reduced as well. The novelty of our approach is in the strategy to

construct such a Lyapunov function under bounded angular velocity recursively that

ensures not only stability of a tracking error system but also an L2-gain constraint.

Compared with the conventional methods, the proposed scheme guarantees not only

the stability of the closed-loop system, but also the good performance as well as the

robustness. Simulation results for the spacecraft model show that the precise attitudes

control and vibration suppression are successfully achieved.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most important problems in spacecraft design is of attitude stabilization and control. Although the missions of
space vehicles and their attitude requirements vary greatly, high pointing accuracy is an important part of the overall design
problem for spacecraft control system. However, the orbiting attitude slewing or maneuvering operation will introduce certain
levels of vibration to flexible appendages, which will deteriorate its pointing performance. In addition, dynamics of large
rotational maneuvers is time varying and nonlinear, and affected by various disturbances coming from the environment and
knowledge about system parameters such as the inertia matrix and modal frequencies, which are usually not well known.
A more significant challenge arises when all these issues are treated simultaneously for the designers.
All rights reserved.
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In face of increasingly complex and highly uncertain nature of spacecraft dynamical systems requiring controls, many
studies related to attitude control of flexible spacecraft have been done, and robust linear and nonlinear control systems
have been designed. Control laws based on linearization and nonlinear inversion have been presented in Ref. [1]. Optimal
and nonlinear control systems for the control of flexible spacecraft have been developed in Ref. [2, 3]. Variable structure
control (VSC) to certain types of disturbances and uncertainties also makes it attractive for spacecraft control problems
[4–7]. However, these design methods based on VSC require the information on the bounds on the uncertainties/
disturbances for the computation of the control gains. Unlike these methods, nonlinear adaptive control methods do not
require these bounds, instead, by including an adaptation mechanism for tuning the time-varying controller gains. A
variety of adaptive spacecraft controllers have been developed [8–10]. Recently, researches have also been focused on the
combination of VSC and adaptive control to develop simple and adaptive robust spacecraft controllers that work for a wide
range of practical systems [11–14]. Although much progress in these works [4–14] has been made for flexible spacecraft
attitude control in the presence of inertia matrix uncertainties and external disturbances, there are no means of
incorporating constraints on individual angular velocity. Constraints on rigid body angular velocity might be practically
required for many applications, such as rendezvous of spacecraft.

A recursive control system design methodology called adaptive backstepping [15] has received much attention in recent
years. Backstepping is a nonlinear control design technique that employs Lyapunov synthesis to recursively determine
controller for systems satisfying a particular cascaded structure called ‘lower-triangular-feedback’ form. In this approach,
some system states are used as virtual control inputs for subsystems of other states, by defining a positive definite control
Lyapunov function and dynamic feedback control law at each intermediate step. Based on this technique, a direct adaptive
fuzzy backstepping control is presented for a class of nonlinear systems in Ref. [16]. For attitude stabilization and tracking
of rigid spacecraft, the backstepping controllers with or not adaptive mechanism were presented in Refs. [17–19] and
reference therein. However, in these researches, highly aggressive controllers are produced due to the unbounded inputs
for the standard adaptive backstepping design. In Ref. [20], a called constrained adaptive backstepping method by using the
command filters calculates the derivatives of the virtual controls such that this limitation can be removed. It should be
mentioned that the main attention of these control schemes is focused on only stability analysis and evaluation for the
control performance is not considered explicitly in the control system design. Even if there are some relative researches on
robotic tracking control with HN or L2-gain performance to guarantee arbitrary transient performance as well as arbitrary
disturbance attenuation, these control approaches for flexible robotic systems including states constraint has not been
studied enough at this point. To the best of the authors’ knowledge, there has been little research effort expended to study
flexible spacecraft attitude control system with incorporating constraints on individual angular velocity as well as control
performance evaluation in the adaptive backstepping control design paradigm.

The contributions of this paper are described as follows. First, the proposed control scheme enlarged the previous
methods [4–14] by incorporating the criterion of tracking performance given by L2-gain constraint in controller synthesis.
The novelty is in the strategy to construct such a Lyapunov function recursively that ensures not only stability of the
tracking error system but also satisfies the dissipation inequality ensuring L2-gain performance. Besides, the proposed
scheme was extended so as to deal with elastic vibration suppression by incorporating an elastic mode estimator to supply
their estimates such that the external torque disturbances attenuation along with estimate errors with respect to the
performance measure are also ensured in the L2-gain sense and the induced vibrations can be actively reduced as well.
Second, the constraints on individual angular velocity components have been considered during the whole control system
design such that rigid body angular velocity operates within the given domain. Finally, both equilibrium points in the
closed-loop system are proved to be stable with the choice of backstepping variables, which comprises exploiting the
redundancy in the quaternion parameter representation and implies as a side effect that the shortest rotation path is
always used when a given attitude change is commanded. In addition, the essential ideas and results from computer
simulations are presented to illustrate the performance of the controller developed in this paper.

The paper is organized as follows. The next section states flexible spacecraft modeling and control problems. Attitude
maneuver control laws based on adaptive backstepping and elastic mode estimator for vibration reduction with L2-gain
performance are derived in Section 3. Next the results of numerical simulations demonstrate various features of the
proposed control law. Finally, the paper is completed with some concluding comments.

2. Mathematical model of flexible spacecraft and control problems

2.1. Kinematic equation

The unit quaternion is adopted to describe the attitude of the spacecraft for global representation without singularities
[21]. The unit quaternion q̄ is defined by

q̄ ¼
cosðF=2ÞÞ

n sinðF=2Þ

" #
¼

q0

q

" #
(1)

where n is the Euler axis, F is Euler angle, q0 and q are the scalar and vector components of the unit quaternion,
respectively, but subject to the constraint: qT qþ q2

0 ¼ 1. Then the kinematic equation in terms of unit quaternion can be
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given by

_q0

_q

" #
¼

1

2

�qT

q0I þ SðqÞ

" #
o (2)

where o 2 R3 is the angular velocity of a body-fixed reference frame of a spacecraft with respect to an inertial reference
frame expressed in the body-fixed reference frame, I 2 R3�3represents the identity matrix, and S(q) denotes a skew-
symmetric matrix which is given by

SðqÞ ¼

0 �q3 q2

q3 0 �q1

�q2 q1 0

2
64

3
75 (3)

2.2. Relative attitude error kinematics

Let q̄e ¼ ½q0e qT
e �

T denotes the relative attitude error from a desired reference frame to the body-fixed reference frame of
the spacecraft, then one may have

q̄e ¼ q̄� q̄�1
d ¼ ½q0e qT

e �
T (4)

where q̄�1
d denotes the inverse of the desired quaternion q̄d with the definition q̄�1

d ¼ ½q0d � qT
d
�T and � is the operator for

quaternion multiplication, which is defined by

q̄a � q̄b ¼
q0aq0b � qT

aqb

q0aqb þ q0bqa � SðqaÞqb

" #
(5)

for any given two groups of quaternion of qa and qb. As a result, the relative attitude error can be obtained by

_q0e

_qe

" #
¼

1

2

�qT
e

q0eI þ SðqeÞ

" #
ðoðtÞ � RdodðtÞÞ (6a)

or

_q0e

_qe

" #
¼

1

2

�qT
e

q0eI þ SðqeÞ

" #
oðtÞ for od ¼ 0 (6b)

where Rd is the rotation matrix from the desired reference frame to the body-fixed reference frame, and od is the angular
velocity of the desired reference frame with respected to the inertial reference frame expressed in the desired reference
frame. Note that in this paper we consider the case od ¼ 0, for convenient, to develop the control law. It is worth noting
that the developed approach can be generalized to the case oda0 by properly changing the designed controller form (or to
say by adding the terms with relative to od and _od, respectively, as the feed-forward control inputs of the attitude control
system).

2.3. Flexible spacecraft dynamics

Under the assumption of small elastic displacements, the dynamic equations of spacecraft with flexible appendages can
be found in Ref. [22] and references therein, and given by

J _oþ dT €Z ¼ �o� ðJoþ dT _ZÞ þ uðtÞ þ dðtÞ (7a)

€Zþ C _Zþ KZþ d _o ¼ 0 (7b)

where J is the symmetric inertia matrix of the whole structure, d is the coupling matrix between the elastic and rigid
structure, Z is the modal coordinate vector, u(t) is control torque acting on the main body and generated by, such as reaction
wheels, and d(t) is external disturbance; C ¼ diagf2xiL

1=2
i

; i ¼ 1;2; . . . ;Ng and K ¼ diagfLi; i ¼ 1;2; . . . ;Ng are the damping
and stiffness matrices, respectively, in which N is the number of elastic modes considered, L1=2

i
is the natural frequency,

and xi is the corresponding damping ratio.

Remark 1. The above dynamics of the spacecraft are obtained by computing the kinetic and potential energies and
then applying the Lagrange equations with the assumption of small elastic displacement approximation. This
simplified equation is easy to manipulate and more suitable for control law design. Of course, the exact model,
time-varying and more difficult to handle, can be used instead for verifying the effectiveness of the control law derived on
the basis of the simplified model, to accomplish the rational maneuver and vibration reduction for the closed-loop
simulation later.
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Throughout the remainder of this paper, the following two assumptions are taken:

Assumption 1. The inertia matrix J defined in Eq. (7a) is positive definite symmetric and uniformly bounded but unknown.

That is, the knowledge of inertia matrix is not known for the controller design but there exist positive constants lJ
min

and

lJ
max, the lower and upper bounds of inertia matrix, which satisfies lJ

min
I � J � lJ

maxI. Moreover, we assume that matrix

ðJ � dTdÞ remains positive definite symmetric even if the inertia matrix J is unknown.

Assumption 2. The external disturbance d(t) in the spacecraft system (3) is unknown but bounded, i.e., the external
disturbance has the property of dðtÞ 2 L2ð0; TÞ, where L2ð0; TÞ denotes the space consisting of all functions whose 2-norm is
finite.

Remark 2. For Assumption 1, it requires the knowledge of the bounds of the inertia matrix; however, this is not a strict
assumption, since it can be found easily by the information of the upper bounds on parameters; for the assumption that the
matrix ðJ � dTdÞ is positive definite, this can be guaranteed by properly selecting spacecraft mass center and body frame; for
Assumption 2, it is feasible from the point of practical view.

2.4. Control problem statements

In this work, the objective of control design is to achieve attitude maneuver control under bounded angular velocity
constraint and vibration reduction with Assumptions 1 and 2. The robust adaptive controller is designed to ensure that the
angular velocity is bounded during attitude maneuver and the dissipation inequality ensuring L2-gain performance is
guaranteed from the disturbance input to the penalty output, less than a prescribed value, in the controller synthesis. More
specifically, for a prescribed level of disturbance attenuation g40 and the penalty parameters r140 and r240 of the
errors, there exists a control law such that the closed-loop system (6) and (7) satisfy:
(a)
 equilibrium points in the closed-loop system uniform ultimate bounded stability with the angular velocity constraint:
o 2 Oo ¼ fo : joij � omax; 8t40; i ¼ 1;2;3g and here omax is the maximum value of the required angular velocity;
(b)
 arbitrary disturbances/modal estimate errors attenuation with respect to both error attitude quaternion and angular
velocity, the penalty signal z̄ ¼ ½r1zT

1 r2zT
2�

T , are ensured in the L2-gain sense;

(c)
 the induced elastic vibrations of flexible appendages during attitude maneuvering operations are also actively damped

out, i.e., limt!1Z ¼ 0, and limt!1 _Z ¼ 0.
In what follows, we shall develop such a control for attitude maneuver in flexible spacecraft.

3. Angular velocity bounded adaptive L2-gain control of flexible spacecraft

In this section, two different controllers based on error quaternion attitude representation under the angular velocity
constraints are developed to solve the problem that has just been stated above.

3.1. Basic controller design

For the above attitude maneuver control problem, under angular velocity constraint, a robust adaptive backstepping
control strategy is investigated in this paper. Adaptive backstepping is a recursive Lyapunov-based scheme and the idea of
it is to design a controller recursively by considering some of the state variables as ‘virtual controls’ and designing for them
intermediate control laws. The advantage of adaptive backstepping compared with other control methods lies in its design
flexibility, due to its recursive utilization of Lyapunov function such that cancellations of useful nonlinearities are avoided
and often additional nonlinear terms are introduced to improve transient performance.

To carry out the controller design, let d̄ denote the lumped perturbation of the rigid dynamics system, defined as
d̄9dðtÞ � dT €Z�o� dT _Z, and then Eq. (7a) can be rewritten as

J _o ¼ �o� Joþ uðtÞ þ d̄ðtÞ (8)

From Assumption 2, if the elastic vibrations are assumed to be bounded during the whole attitude rotational maneuvering
process, then the lumped perturbation d̄ will be bounded. In general, this assumption is feasible and satisfied from point of
the practical view; especially, when the actuators can produce the bigger enough control torque than the lumped ones.
Note that in later section this assumption will be released for more general cases.

To give a clear idea of such controller design procedure, the following variables are defined as [18]

z1 ¼
1� jq0ej

qe

" #
(9a)
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z2 ¼ o� aðq0e;qeÞ (9b)

where aðq0e; qeÞ.

Remark 3. For kinematics of spacecraft described by Eq. (2), since the unit quaternion parameter set is redundant, a given
physical attitude for a rigid body will have two mathematical representation, in which one of these includes a rotation of
2p about an axis relative to the other, such that it has two equilibrium points, i.e., (1,0) and (�1,0). With the choice of
backstepping variables for z1, two equilibrium points q̄e ¼ ½�1 0�T will be shown to be uniformly asymptotically stable in
later proof statements when d̄ ¼ 0, or be stable in the sense of uniform ultimate bounded stability when d̄a0 such that qe

will be regulated to the equilibrium point that comprises the shortest path of rotation as compared with only one
equilibrium point being considered in the literatures.

Step 1. By considering z2 as the virtual control variable, based on above assumption, the derivate of Eq. (9a) is defined as

_z19
�sgnðq0eÞ _q0e

_qe

" #
¼

1

2
Q ðq̄eÞo (10)

with the definition

Q ðq̄eÞ9
sgnðq0eÞq

T
e

q0eI þ SðqeÞ

" #T

.

Remark 4. For the definition of variablez1in Eq. (9a), it is not differentiable due to jq0ej mathematically. In order to this,
here for simplicity, it is assumed that the sgn of the scalar parameter of quaternion does not change, i.e., sgnðq0eðt0ÞÞ ¼

sgnðq0eðtÞÞ for all t4t0. Note that this assumption is imposed for technical reasons to obtain the derivative of variables z1.
From a physical viewpoint, since both equilibriums correspond to the same orientation it is important to make a choice of
the equilibrium point to be stabilized, depending on the given initial condition; logically, one aims at minimizing the path
length for the desired rotation which can be ensured by choosing the equilibrium point corresponding to the sign of q0eðt0Þ.
It should be noted that the definition of _z1 given in Eq. (10) will be just used to state two different rotations based on the
assumption that the sgn of the scalar parameter q0e of quaternion does not change. This will be visualized in the numerical
simulation in Section 4.

Define the following stabilizing function

a ¼ �GQ ðq̄eÞz1 (11)

where G ¼ GT40 is the designed feedback gain and the argument of the matrix aðq0e; qeÞ has been left out for readability
and convenience. Note that in this step, the task is to stabilize Eq. (10) with respect to the Lyapunov function V1 ¼ zT

1z1 and
the time derivate of V1 can be given by

_V1 ¼ 2zT
1
_z1 ¼ zT

1QT
ðq̄eÞo ¼ zT

1QT
ðq̄eÞðz2 þ aÞ ¼ zT

1QT
ðq̄eÞz2 � zT

1QT
ðq̄eÞGQ ðq̄eÞz1 (12)

Step 2. The z2 subsystem is considered, and the time derivate of z2 left-multiplied by inertia matrix J, with respect to Eq. (8),
can be obtained

J_z2 ¼ J _o� J _a ¼ �SðoÞJoþ uþ d̄� J _a (13)

From Assumption 2, even if the inertia matrix J is unknown for the system design, it can observed that the inertia
parameters Ji;j where i; j ¼ 1;2;3, appear linearly in Eq. (13). To isolate these parameters, a linear operator L : R3 ! R3�6

acting on b ¼ ½b1 b2 b3�
T by

LðbÞ ¼

b1 0 0 0 b3 b2

0 b2 0 b3 0 b1

0 0 b3 b2 b1 0

2
64

3
75

is defined as the same in Ref. [23].
Letting Y9½J11 J22 J33 J23 J13 J12�

T , it follows that Jb ¼ LðbÞY and then Eq. (13) can be rewritten as

J_z2 ¼ ½�SðoÞLðoÞ � Lð _aÞ�Yþ uþ d̄9Fðo; q0e; qeÞYþ uþ d̄ (14)

with Fðo;q0e;qeÞ9� SðoÞLðoÞ � Lð _aÞ.
The task in this step is to stabilize a new Lyapunov function while the constraint of angular velocity,

o 2 Oo ¼ fo : joij � omax; 8t40; i ¼ 1;2;3g, is considered at the same time, defined as

V2 ¼ V1 þ
1

2
z2JzT

2 þ
1

2
b ln

l6

ðl2 � z2
21Þðl

2
� z2

22Þðl
2
� z2

23Þ

 !
þ

1

2
Ỹ

T
PỸ (15)
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with jz2ijol is the elements of z2(i ¼ 1,2,3), Ỹ ¼ Y� Ŷ, b40 is a constant number and P is a positive definite matrix. Then
the following statements can be concluded. We mention that the log-term in our Lyapunov function is motivated by the
Lyapunov function introduced in Ref. [24].

Theorem 1. For the system (6b) and (8) under the constraint of angular velocity, suppose that Assumptions 1 and 2 are satisfied.

If the lumped perturbation d̄ is bounded, and the robust control law is designed by

u ¼ �
b_z21

ðl2 � z2
21Þ

b_z22

ðl2 � z2
22Þ

b_z23

ðl2 � z2
23Þ

" #T

� Q ðq̄eÞz1

� Fðo; q0e; qeÞŶ� Hz2 (16)

with the parameters updating law

_̂Y ¼ P�1Fðo; q0e; qeÞz2 (17)

in the presence of parameter constraints

0or2
1Iol1I � QT

ðq̄eÞGQ ðq̄eÞ � l̄1I and G ¼ GT40 (18a)

0o
1

4g2
þ r2

2

� �
Iol2I � H � l̄2I and H ¼ HT40 (18b)

0olþ l̄1oomax (18c)

where li and l̄i ði ¼ 1;2Þ denote the minimum and maximum eignvalues of the matrices G and H, respectively, then for the zero

initial conditions, the following control objectives can be guaranteed: (i) the equilibrium points q̄e and o can be made uniformly

ultimately bounded; (ii) the L2-gain control performance from the perturbation to z̄ is achieved; (iii) if d̄ ¼ 0, the equilibrium

points q̄e and o can be made uniformly asymptotically stable.

Proof. Using Eq. (12) the time derivate V2 along Eq. (9) is given by

_V2 ¼
_V1 þ z2J_zT

2 þ zT
2

b_z21

ðl2 � z2
21Þ

b_z22

ðl2 � z2
22Þ

b_z23

ðl2 � z2
23Þ

" #T

þ Ỹ
T

P
_̃Y

¼ zT
1QT
ðq̄eÞz2 � zT

1QT
ðq̄eÞGQ ðq̄eÞz1 þ zT

2ðFðo; q0e; qeÞYþ uþ d̄Þ þ Ỹ
T

P
_̃Y

þ zT
2

b_z21

ðl2 � z2
21Þ

b_z22

ðl2 � z2
22Þ

b_z23

ðl2 � z2
23Þ

" #T

¼ zT
2 ðFðo; q0e; qeÞYþ uþ dÞ þ Q ðq̄eÞz1 þ

b_z21

ðl2 � z2
21Þ

b_z22

ðl2 � z2
22Þ

b_z23

ðl2 � z2
23Þ

" #T
8<
:

9=
;

� zT
1QT
ðq̄eÞGQ ðq̄eÞz1 þ Ỹ

T
Fðo; q0e; qeÞz2

¼ � zT
1QT
ðq̄eÞGQ ðq̄eÞz1 � zT

2Hz2 þ zT
2d̄ (19)

By adding and subtracting the term ðg2kd̄k2 � kz̄k2Þ on the right side of Eq. (19), it can be rewritten as

_V2 ¼ � zT
1QT
ðq̄eÞGQ ðq̄eÞz1 � zT

2Kz2 þ zT
2d̄� kz̄k2 þ ðr2

1kz1k
2 þ r2

2kz2k
2Þ � g2kd̄k2 þ g2kd̄k2

� � zT
1ðQ

T
ðq̄eÞGQ ðq̄eÞ � r2

1Þz1 � zT
2 H �

1

4g2
þ r2

2

� �
I

� �
z2 � kz̄k

2 þ g2kd̄k2

� � kkzk2 � kz̄k2 þ g2kd̄k2 (20)

where z̄ ¼ ½r1zT
1 r2zT

2�
T is used and

k ¼min ðl1 � r2
1Þ; l2 �

1

4g2
þ r2

2

� �� �� �
.

Take d̄ ¼ 0, from Eq. (20), one can have

_V2 � �kkzk2 � kz̄k2 � 0 (21)

According to the LaSalle–Yoshizawa theorem, this establishes that both of the equilibrium points q̄e ¼ ½�1 0�T are
uniformly asymptotically stable, which implies that q0e !�1, qe ! 0 and o! 0 as t!1; moreover, in the whole
process, the angular velocity has to lie in within the hyper-rectangle with sides 2l by the constraint joijoloomax. The
proof for case (iii) is completed. &
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For the case d̄a0, integrating the above inequality from t ¼ 0 to any T � 0 with zero initial conditions yields

V2ðtÞ � V2ð0Þ � g2
Z t

0
kd̄k2dt �

Z t

0
kz̄k2 dt (23)

Using the results of Ref. [25] we can conclude that the closed-loop system is globally stable in the sense of uniform ultimate
bounded stability, and the L2-gain attenuation level of g is also guaranteed for the physically realizable initial conditions.
The proof for cases (i) and (ii) are completed.

Remark 5. It is seen that control scheme Eq. (16) with proper designed parameters not only achieve the control objectives
(i–iii) even under the constraint of angular velocity o 2 Oo ¼ fo : joij � omax; 8t40; i ¼ 1;2;3g, but also both equilibrium
points in the closed-loop system are proved to be stable with the choice of backstepping variables, which comprises
exploiting the redundancy in the quaternion parameter representation and implies as a side effect that the shortest
rotation path is always used when a given attitude change is commanded.

To guarantee the boundedness of Ŷ, a projection operator [26] is adopted in the parameter update law and then the
modified one is given by

_̂Y ¼ ProjðŶ; P�1Fðo; q0e;qeÞz2Þ (24)

where the projection operator is defined as

ProjðŶ;P�1Fðo; q0e; qeÞz2Þ ¼

0 if Ŷi ¼ Yi max and ðP�1Þii½Fðo; q0e; qeÞz2�io0

ðP�1Þii½Fðo; qe0;qeÞz2�i

if Yi minoŶioYi max

or Ŷi ¼ Yi min and ðP�1Þii½Fðo;q0e; qeÞz2�i � 0

or Ŷi ¼ Yi min and ðP�1Þii½Fðo;q0e; qeÞz2�i � 0

8>><
>>:

0 if Ŷi ¼ Yi min and ðP�1Þii½Fðo; q0e; qeÞz2�i40

8>>>>>>>><
>>>>>>>>:

(25)

Yi max and Yi min are real numbers denoting the upper and lower bounds of the ith element Ŷ, respectively, ðP�1Þii is the

(i, i) element of P�1, and ½Fðo;q0e; qeÞz2�i is the ith element of Fðo; q0e; qeÞz2.

3.2. Modified controller design

In subsection 3.1, we have shown how to design a stable system by adaptive backstepping control for the flexible
spacecraft system with unknown inertia matrix and disturbances. However, the assumption for boundedness of the
lumped perturbation must be satisfied in advance, this is to say, the elastic vibrations should be bounded during the whole
attitude rotational maneuvers. Moreover, active attenuation of the flexible oscillations induced by spacecraft maneuvers is
not explicitly considered for improving the precision pointing. To overcome this problem and relax the assumption, a
modified adaptive backstepping controller is proposed hereinafter, which makes use of spacecraft position and angular
velocity measures to estimate what we need are information are regarding the modal variable Z and velocity _Z. The
estimate of the modal variables from measurements of q̄e and o is possible since the rigid dynamics are influenced by the
flexible ones through the coupling matrix d. The observer is given by

ẐiðsÞ ¼ �

P3
j¼1dijojðsÞs

s2 þ 2xiL
1=2
i

sþLi

(26)

where dij denotes the (i, j) element of d.
Let Z̃ ¼ Z� Ẑ, then we have

€̃Zþ C _̃Zþ KZ̃ ¼ 0 (27)

From Eq. (27), it can be easy to obtain the time response of Z̃, which can be algebraically rearranged as

Z̃iðtÞ ¼ e�xiL
1=2
i

t Z̃ið0Þ sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

i

q
L1=2

i
tÞ þ

L1=2
i

_̃Zið0Þ þ xiZ̃ið0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

i

q cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

i

q
L1=2

i
tÞ

0
B@

1
CA (28)

It can be seen that Z̃iðtÞ tends to zero as t!1. Then we have the following statements.

Theorem 2. Consider the system (6b) and (8) under Assumptions 1 and 2 using the following control law

u ¼ �
b_z21

ðl2 � z2
21Þ

b_z22

ðl2 � z2
22Þ

b_z23

ðl2 � z2
23Þ

" #T

� Q ðq̄eÞz1 � Fðo;q0e;qeÞŶ� Hz2

þ ½SðoÞdT
� dT C� _̂Z� dT KẐ (29)
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with the parameters updating law

_̂Y ¼ P�1Fðo; q0e; qeÞz2 (30)

under the parameters constraints

0or2
1Iol1I � QT

ðq̄eÞGQ ðq̄eÞ � l̄1I and G ¼ GT40 (31a)

0o
1þ l̄2

3

4g2
þ r2

2

 !
Iol2I � H � l̄2I and H ¼ HT40 (31b)

0ol3 � k½ðd
T C � SðoÞdT

Þ dT KÞ�k � l̄3 (31c)

0olþ l̄1oomax (31d)

Then the closed-loop system satisfies: (i) the equilibrium points q̄e and o can be made uniformly ultimately bounded; (ii) the L2-

gain control performance from the perturbation to z̄ is achieved.

Proof. Define the following Lyapunov function candidate

V3 ¼ V1 þ
1

2
z2ðJ � dTdÞzT

2 þ
1

2
b ln

l6

ðl2 � z2
21Þðl

2
� z2

22Þðl
2
� z2

23Þ

 !
þ

1

2
Ỹ

T
PỸ (32)

When Eqs. (29) and (30) are applied, the Lyapunov derivative in Eq. (32) can be algebraically rearranged in steps identical to
those employed in deriving Eq. (19), namely,

_V3 ¼ � zT
1QT
ðq̄eÞGQ ðq̄eÞz1 � zT

2Hz2 þ zT
2dþ zT

2½ðd
T C � SðoÞdT

Þ dT KÞ�½ _̃ZT Z̃T
�T

� kz̄k2 þ ðr2
1kz1k

2 þ r2
2kz2k

2Þ � g2kdk2 þ g2kdk2

� � zT
1QT
ðq̄eÞGQ ðq̄eÞz1 � zT

2Hz2 �
1

2g
z2 � gd

				
				2

� kz̄k2 þ
1

4g2
kz2k

2 þ ðr2
1kz1k

2 þ r2
2kz2k

2Þ þ g2kdk2

�
l3

2g kz2k � gk½ _̃Z
T Z̃T
�k

				
				2

þ
l̄2

3

4g2
kz̄k2 þ g2k½ _̃ZT Z̃T

�k2

� � zT
1ðl1 � r2

1Þz1 � zT
2 l2 �

1þ l̄2
3

4g2
þ r2

2

 !
I

" #
z2 � kz̄k

2 þ g2ðkdk2 þ k½ _̃ZT Z̃T
�k2Þ

� � kkzk2 � kz̄k2 þ g2ðkdk2 þ k½ _̃ZT Z̃T
�k2Þ (33)

where

k ¼min ðl1 � r2
1Þ; l2 �

1þ l̄2
3

4g2
þ r2

2

 ! !( )
.

The validation of the specifications on cases (i) and (ii) follows the same argument developed in subsection 3.1. This
completes the proof. &

Remark 6. The effect of the elastic mode estimate errors Z̃ and _̃Z are also considered into robustness design, since a poor
state estimation will lead to an unexpected transient response. The arbitrary attenuation of both disturbances and estimate
errors is achieved for a prescribed level of attenuation g in the sense of L2-gain. In addition, to guarantee the boundedness
of the estimated parameter Ŷ, the modified parameter updating law in Eq. (25) can be adopted for this new adaptive
backstepping control law.

Remark 7. Notice that the computation of the designed control uðtÞ requires the use of _z2i ði ¼ 1;2;3Þ, which can hardly be
used in practical, even if Eq. (9b) is employed. The following difference equation is used in this work

_z2iðt � TcÞ ¼
z2iðt � TcÞ � z2iðt � 2TcÞ

Tc
¼
½oiðt � TcÞ �oiðt � 2TcÞ� � ½aiðt � TcÞ � aðt � 2TcÞ�

Tc
(34)

for this computation, instead of _z2i for computation control voltage u(t) and here Tc is selected as the control update period.

Remark 8. In Theorem 1 and 2, there are many parameters to be determined by the designers, such as g, r1, r2, G and H.
Note that here parameters r1 and r2 are the weighting coefficients of penalty signal z̄ and usually selected as 1,
respectively; while the high robustness to external disturbance/elastic vibrations is guaranteed by a prescribed level g.
Theoretically we can select infinitely smaller g for the given G and H, which satisfied the inequalities (18) or (31); however,
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such a small choice of g allows excessive large control input. Since saturation for actuators is inevitable in practical
problems, trade-off is required between choice of smaller g and practical tracking performance. The proper value of g, G and
H will only be found by trial-and error through the simulations. While for parameters l̄3 and l3, they can also be easily
determined according to the plant parameters and the boundedness of the angular velocity.

4. Simulation and comparison results

The numerical application of the proposed control scheme to the attitude control of flexible spacecraft is presented
using MATLAB/SIMULINK software. The spacecraft is characterized by a nominal main body inertia matrix [22]

J ¼

350 3 4

3 270 10

4 10 190

2
64

3
75kg m2

and the coupling matrices

d ¼

6:45637 1:27814 2:15629

�1:25619 0:91756 �1:67264

1:11687 2:48901 �0:83674

1:23637 �2:6581 �1:12503

2
6664

3
7775kg1=2 m=s2

respectively; the first four elastic modes have been taken into account in the model used for simulating the spacecraft at
on1 ¼ 0:7681 rad=s, on2 ¼ 1:1038 rad=s, on3 ¼ 1:8733 rad=s, on4 ¼ 2:5496 rad=s with damping x1 ¼ 0:0056, x2 ¼ 0:0086,
x3 ¼ 0:013, x4 ¼ 0:025, while for designing the controller only first three mode have been involved.

Here the rest-to-rest maneuver is considered in the simulation, and the initial conditions have been set at q0 ¼

0:173648, q1 ¼ �0:263201, q2 ¼ 0:789603 and q3 ¼ �0:526402, i.e., a rotation of 1601 is to be considered in the attitude
maneuvering. Note that, due to the commanded change in reference, the controller regulates the quaternion to the
equilibrium point [1,0,0,0], since this is the closest equilibrium point in terms of rotation path. In addition, the initial modal
variables and its time derivative Zið0Þ and _Zið0Þ ði ¼ 1;2;3;4Þ are supposed given by Zið0Þ ¼ _Zið0Þ ¼ 0, i.e., the flexible
appendages are un-deformed. To examine the robustness to external disturbance, simulation was done corresponding to
the periodic disturbance torque

TdðtÞ ¼ ½0:3 cosð0:01tÞ þ 0:1 0:15 sinð0:02tÞ þ 0:3 cosð0:025tÞ 0:3 sinð0:01tÞ þ 0:1�T (35)

was considered. The angular velocity bounds are chosen to be: ox
max ¼ 6 deg=sec, oy

max ¼ 15 deg=sec and
oz

max ¼ 10 deg=sec.
For the purpose of comparison, four different sets of simulation are conducted to demonstrate the effective of the

proposed approach:
A.
 Attitude control using the proposed adaptive backstepping control law in Eq. (16).

B.
 Attitude control with using the modified adaptive backstepping control law in Eq. (29) with elastic mode estimator.

C.
 Attitude control using traditional proportional-integral-derivative (PID) control scheme.

D.
 Attitude control using backstepping control scheme given in Ref. [18].

In the following simulations, the control and adaptation gains were selected by trial-and-error until a good performance
was obtained for above cases. The controller parameters of the different methods: proposed adaptive backstepping, PID and
OVSC were determined so that all the settling time was almost the same in all the schemes; they are tabulated in Table 1. In
addition, simulations have been rendered more realistic by considering saturation on the inputs. The maximum value of
control torque of actuators (reaction wheel) is assumed to be 20.0 Nm. All computations and plots shown in the paper were
performed using MATLAB/SIMULINK software package.

4.1. Attitude maneuver control using the proposed adaptive backstepping

In this case, firstly, to show the effect of the proposed adaptive backstepping controller in Eq. (16), simulation was done
under the initial condition and velocity bounded requirements. The responses of quaternion, velocity of the spacecraft,
modal displacement and the required control torque are shown in Fig. 1 (a–d, solid line). It is noted that an acceptable
desirable orientation response is achieved, and the spacecraft reached the demanded angle with a settling time less than
20 s. Furthermore, Fig. 1(e) shows the plots of estimated inertia parameters corresponding to update law of Eq. (25). From
these plots, it is clear that although rigid body angular velocity is well with in the prescribed bounds, there exist serve
oscillations for the flexible appendages because no vibration mode information is used in the feedback loop to reduce the
oscillations.
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For comparison, to reduce the flexible oscillations, the system is also controlled by using the proposed adaptive
backstepping law with elastic modal estimator in Eq. (29). The same simulation case is repeated with the control law, and
the results are shown in Fig. 1 (a–e, dotted line). For this case, it can be observed that not only desired attitude rotational
maneuver can be achieved but also the oscillations are actively suppressed during maneuvering. The estimated modal
displacement was shown in Fig. 1 (d, dashed line), in which the modal displacement can be well estimated by this
estimator. Moreover, it is clear that angular velocity is well with in the prescribed bounds and the regulation performance
of the controllers is marginally better with the elastic modes estimator than the first case. These results completely support
the theoretical result that performance of the controller can be improved with the estimated elastic modes even if the
inertia matrix is unknown.

4.2. Attitude maneuver control using the OVSC and PID

For the purpose of comparison, the system is also controlled by using the traditional PID control. The same simulation
cases are repeated with PID under the angular velocity bounds. The results of simulation are shown in Fig. 2 (a–d, dotted
line). For this case, it can be observed that no desired attitude rotational maneuver can be achieved, and serve oscillations
are also excited during maneuvering as shown in Fig. 2 (d, dotted line). Moreover, there exists the saturation value of
angular velocity of y-axis. Despite the fact that there still exists some room for improvement with different design
parameter sets, there is not much improvement in the attitude and velocity responses.
Fig. 1. Attitude maneuvers control using the proposed methods. Case1: Proposed adaptive backstepping controller (solid line); Case2: Proposed adaptive

backstepping controller with elastic mode estimator (dotted line); Case3: The estimated modal displacements (dashed line). (a) Time response of

quaternion, (b) time response of angular velocity, (c) time response of control torque, (d) time response of vibration displacements and (e) time responses

of estimated parameters.

Table 1
Design parameters for the different controllers.

Parameter and value

Proposed controller in Eq. (16) g ¼ 0:01, b ¼ 1, r1 ¼ r2 ¼ 1, K1 ¼ 10I3, l ¼ 5, H ¼ 10I3, P ¼ diagf10;5;5g

Proposed controller in Eq. (29) g ¼ 0:01, b ¼ 1, r1 ¼ r2 ¼ 1, K1 ¼ 10I3, l ¼ 5, H ¼ 10I3, P ¼ diagf10;5;5g

Backstepping controller K1 ¼ 10I3, K2 ¼ 500I3

PID controller Kp ¼ 800I3, Ki ¼ 0:001I3, Kd ¼ 2800I3
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Fig. 1. (Continued)
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Fig. 2. Attitude maneuvers control using the conventional methods. Case1: Backstepping controller (solid line); Case2: PID controller (dotted line). (a)

Time response of quaternion, (b) time response of angular velocity, (c) time response of control torque and (d) time response of vibration displacements.
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For the purpose of further comparison, optimal variable structure controller designed in Ref. [18] is also employed for
the system. The same simulation case is repeated with this variable structure controller and the results of simulation are
shown in Fig. 2 (solid line). As one can see in Fig. 2 (solid line), even if the responses of attitude and velocity can be
improved a lot, but severe vibration are the results of the control law as compared with the proposed methods. From the
comparison between Figs. 1 and 2, the performance of the proposed two designs is better than the last two even if these
designs will adapt the system parameters under the external disturbances.

Extensive simulations were also done using different control parameters, and disturbance inputs. These results show
that in the closed-loop system attitude control and vibration stabilization are accomplished in spite of disturbances in the
system. Moreover, the flexibility in the choice of control parameters can be utilized to obtain desirable performance while
meeting the constraints on the control magnitude and elastic deflection.

From the comparison of above cases, it is shown that the proposed approach cannot only accomplish the quick attitude
rotational maneuver with least control chattering, but also simultaneously suppress the undesired vibrations of the flexible
appendages even though uncertainties and disturbances are explicitly considered, so as to obtain the precise attitude
control of flexible spacecraft. Furthermore, the information of upper bound of the perturbations and uncertain is not
required beforehand when the adaptive law of the developed control is adopted. This control approach provides the
theoretical basis for the practical application of the advanced control theory to flexible spacecraft attitude control system.

5. Conclusions

In this paper, an adaptive backstepping controller has been designed for flexible spacecraft attitude maneuver and
elastic vibration control which explicitly takes into consideration the bounds on angular velocity. The adaptive control
formulation in this paper is based upon Lyapunov’s direct stability theorem by incorporating the performance criterion
given by L2-gain constraint in controller synthesis. The uniform ultimate bounded stability of the system is ensured and the
robustness to both disturbance and elastic mode estimation error is also guaranteed with the L2-gain less than any given
small level. The control designs are evaluated using numerical simulation comparisons between the developed approach
and other referred schemes have been made, where the expected performances have been shown. In addition, the proposed
control law is shown to work well in the presence of bounded angular velocity constraints fully consistent with the stability
analysis presented. While the simulation results presented in this paper merely illustrate formulations for a particular
attitude maneuver, further testing would be required to reach any conclusions about the efficacy of the control and
adaptation laws for tracking arbitrary maneuvers.
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