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This paper present a design of boundary controllers actuated by hydraulic actuators at

the top end for global stabilization of a three-dimensional riser system. First, a set of

partial and ordinary differential equations describing motion of the riser and hydraulic

systems is developed. Second, several important properties of the riser system are

derived. Based on these properties, we show that the conventional formula to calculate

the riser effective tension is oversimplified and a new formula is provided. Next,

boundary controllers are designed based on Lyapunov’s direct method, the backstepping

technique, the derived properties of the riser system dynamics, and Poincare’s

inequalities. Finally, the Galerkin approximation method is used to prove existence

and uniqueness of the solutions of the closed loop control system.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The need for production of oil and/or gas from the sea bed has made control of the dynamics of a marine riser, which is a
structure connecting a oil and/or gas offshore platform with a well at the sea bed, a necessity for both ocean and control
engineers. In general, the riser is subject to nonlinear deformation dependent hydrodynamic loads induced by waves, ocean
currents, control forces exerted at the top, distributed/concentrated buoyancy from attached modules, its own weight,
inertia forces and distributed/concentrated torsional couples. Before reviewing control techniques for the flexible marine
risers, we here mention some early work on static analysis of the risers. In [1–3], the static models of both two- and three-
dimensional risers are first presented based on the work in [4]. Then numerical simulations are carried out to analyze the
effect of the system parameters on the riser equilibria. It should be also mentioned the recent work in [5], where the
authors carry out static stability of a riser based on the variational method. Since the riser dynamics is essentially a
distributed system and its motion is governed by a set of partial differential equations (PDE) in both time and space
variables, modal control and boundary control approaches are often used to control the riser in the literature.

The modal control approach, see [6,7], involves with controlling a certain number of modes of a distributed system.
Basically, a distributed system is discretized to obtain a lumped-parameter system described in terms of modal
coordinates. The advantage of this approach is that many available control design techniques, see [8,9], can be applied to
design various controllers for the resulting lumped-parameter system. However, there are two main disadvantages of the
modal control approach. The first drawback is difficulty in computing infinite dimensional gain matrices. This difficulty can
be avoided by using the independent modal-space control method, but this method requires a distributed control force,
which is impractical to implement. In practice, a truncated model consisting of a limited number of modes is usually used.
However, the truncated model can be of a very large dimension to describe the behavior of a distributed system
satisfactorily, i.e. it is impractical to control all modes. Therefore, the second disadvantage of the modal approach is
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Nomenclature

a � b dot product of vectors a and b

a� b cross product of vectors a and b

AiH ; i ¼ 1;2;3 ram area of the cylinder of the i

hydraulic system
Ar cross section area of the riser
biH ; i ¼ 1;2;3 combined coefficient of the modeled

damping and viscous friction
B bending rigidity of the riser
CiHD; i ¼ 1;2;3 discharge coefficient of the i hydraulic

system
CiHT ; i ¼ 1;2;3 coefficient of the total internal leakage

of the cylinder of the i hydraulic system
CLD linear drag coefficient
CND nonlinear drag coefficient
E Young’s modulus of the riser
F internal force vector
gi; i ¼ 1;2 initial displacement and velocity vectors
G torsional rigidity of the riser
H initial torsional moment around the t̂ axis
IiH ; i ¼ 1;2;3 current input to the i hydraulic system
Ir second moment of the riser cross section area
kiHv; i ¼ 1;2;3 servovalve gain of the i hydraulic sys-

tem
KE kinetic energy
LA modified Lagrangian
m external distributed moment vector
miH ; i ¼ 1;2;3 mass of the piston of the i hydraulic

system
mo oscillating mass of the riser per unit length
M internal moment vector
M

b̂
component of M along the b̂ direction

Mn̂ component of M along the n̂ direction
Mt̂ component of M along the t̂ direction
PE potential energy
Pi1; i ¼ 1;2;3 pressure in upper compartment of the

cylinder of the i hydraulic system

Pi2; i ¼ 1;2;3 pressure in lower compartment of the
cylinder of the i hydraulic system

PiHS; i ¼ 1;2;3 supply pressure of the i hydraulic
system

q external distributed force vector
QiH ; i ¼ 1;2;3 load flow of the i hydraulic system
s arc length of the riser center line
ViH ; i ¼ 1;2;3 total volume of the cylinder and hoses of

the i hydraulic system
Vn relative flow velocity normal to the riser
w displacement vector of a riser center line point
wre effective riser weight per unit length
WiH ; i ¼ 1;2;3 spool area of the i hydraulic system
xiH ; i ¼ 1;2;3 position of the piston of i hydraulic

system

biHe; i ¼ 1;2;3 effective modulus of the oil in the i

hydraulic system
dWc variation of the virtual work
D̂ estimate of D
k curvature of the riser center line
lc continuous Lagrangian multiplier
m shear modulus of the riser
riH ; i ¼ 1;2;3 density of the oil inside the i hydraulic

system
rr density of the riser
tiHv; i ¼ 1;2;3 time constant of the i hydraulic system

b̂ unit vector in binormal direction
n̂ unit vector in principal direction
t̂ unit vector in tangent direction
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restricted to control of a few critical modes. The other modes, which are not controlled, could be unstable. This can be
understood as follows [10]. A truncation of a distributed system divides the system into three groups of modes: modeled
and controlled, modeled and uncontrolled (residual), and un-modeled. The control design considers only the modeled
modes. The output of these modeled modes is provided by observers from the actual distributed system, and is then fed to
the control design. The use of these observers and truncated models of distributed system results in a spill-over
phenomenon. This means that the control action from actuators affects not only the controlled modes but also influences
the residual and un-modeled modes, which can be unstable.

In the boundary control approach, the original PDE model is considered and the boundary control inputs are
implemented at the boundaries to control all the modes. Therefore, the boundary control approach is much more practical
than the modal control approach in the sense that it excludes the effect of both observation and control spill-over
phenomenon. In addition, no distributed actuators and sensors are required. The main tools used to design boundary
controllers for a distributed system are functional analysis and semi-group theory, see [11,12], and the Lyapunov direct
method, see [13,14]. The Lyapunov direct method is widely used since the control Lyapunov functions/functionals can be
mimicked by those developed for discrete systems [13]. Using the Lyapunov direct method, various boundary controllers
have been proposed for flexible beam-like systems, see [15–17] for boundary controllers to reduce transverse vibration of
an axially moving string, [18–20] for boundary controllers stabilizing transverse motion of a beam. It is noted that in all the
above boundary control designs, except for the one in [20], disturbance distributed forces including the structures’ own
weight are ignored, and no proof of existence and uniqueness of the solutions of closed loop systems was given. Recently, in
[21–23] the authors proposed an elegant method, which was developed for stabilizing an unstable heat equation in [24], to



ARTICLE IN PRESS

K.D. Do, J. Pan / Journal of Sound and Vibration 327 (2009) 299–321 301
design boundary controllers for strings and beams with simple dynamics. The fundamental idea is to find a coordinate
change to transform the string or beam system to a target system, which can be stabilized by a boundary controller.
However, the method in [21–23] is hard to apply to the riser system addressed in this paper due to difficulties in solving a
partial differential equation to find a proper kernel.

In the above references, the beams or strings were assumed to deform in only one plane, and only transverse motion
was considered and controlled in the above control designs. Mathematical work in [25] shows that even slight space
curvature introduces significant changes in the beam natural frequencies and especially on mode shapes, i.e. the coupling
of the out-of-plane wave types, and extensional and flexural waves exhibits in the flexible beams. The coupling between
these wave types due to the curved shape of the riser, boundary constraints and external forces made the energy exchange
from one wave type to other possible. Therefore, the control problem of a flexible marine riser that deforms in three-
dimensional space is necessary.

In this paper, we consider a control problem of global stabilization for a three-dimensional nonlinear inextensible
flexible marine riser system. The riser is controlled by hydraulic systems installed at the top end of the riser. This paper is
not a straightforward extension of our work in [20] where the riser was restricted to move in one vertical plane, and only
transverse motion was considered and controlled. In three-dimensional space, there are strong couplings between motions
of a flexible marine riser along the X-, Y- and Z-axis, see Section 2.1. These couplings cause more difficulties to control a
flexible marine riser in three-dimensional space than the one studied in [20]. As such, we propose to solve the control
problem under consideration in several stages. First, a set of partial and ordinary differential equations and boundary
conditions describing motion of the riser and hydraulic systems are developed based on balancing internal and external
forces/moments, and the Hamilton principle. Second, various important properties of the equations of motion of the riser
system are derived, see Lemma 1 of this paper. As a by-product of this derivation, we show that the conventional formula to
calculate the riser effective tension is oversimplified and a new formula is provided, see Remark 4. The derived properties of
the riser system dynamics and Poincare’s inequalities are extensively used in bounding the derivatives of the Lyapunov
function candidates, which are crucial for the success of the boundary controller design. Third, we use Lyapunov’s direct
method (where a nontrivial Lyapunov function candidate is proposed, see (35)), the backstepping technique, and Poincare’s
inequalities to design boundary controllers to stabilize the riser at its equilibrium position. The proposed controllers
guarantee that when there are no environmental disturbances, the riser is globally exponentially stabilized at its
equilibrium position, and that when there are environmental disturbances, the riser is stabilized in the neighborhood of its
equilibrium position. Finally, the Galerkin approximation method is used to prove existence and uniqueness of the
solutions of the closed loop control system.

2. Mathematical model and control objective

2.1. Mathematical model

In this section, we develop equations of motion of the riser and of the hydraulic systems. These equations will be used
for the boundary control design in the next section. In developing the equations of motion of the riser, we make the
following assumption:

Assumption 1. (1) The riser can be modeled as a beam rather than a shell since the diameter-to-length of the riser is small,
i.e. we consider the riser as a slender structure.

(2) Plane sections remain plane after deformation, i.e. warping is neglected.

(3) The riser is locally stiff, i.e. cross sections do not deform and Poisson effect is neglected.

(4) The riser material is homogeneous, isotropic and linearly elastic, i.e. it obeys Hooke’s law.

(5) The riser is initially straight and vertical.

(6) Torsional and distributed moments induced by environmental disturbances are neglected.

(7) The riser is inextensible.

Remark 1. Items (1)–(4) mean that the riser will be modeled as a Bernoulli-type of beam and not a Timoshenko-type, and
that the extension of the riser axis small. Bernoulli–Euler models are satisfactory for modeling low frequency vibrations of
beams. Item (5) generally holds in practice, and is made to simplify the development of the mathematical model and
boundary controller. This item can be readily removed. Item (6) implies that we consider fluid/gas transportation risers
rather than drilling risers, and that moment induced by the asymmetry of the relative flow due to vortex shedding is
ignored.

2.1.1. Riser coordinate system

The riser system considered in this paper is presented in Fig. 1. The boundary forces exerted at the top of the riser along
the x-, y- and z-axes are provided by three independent hydraulic systems installed on the ship/rig along the x-, y- and
z-axes, respectively, see Figs. 1(a) and 1(b). The riser coordinates are presented in Fig. 1(a). In this figure, we have two
coordinate systems. The earth-fixed system is (OXYZ), where O is the bottom ball-joint of the riser, and the OZ axis is along
the initial riser. Let r0ðs0; t0Þ ¼ ½x0; y0; z0� be the position vector of the point P0 of the initial riser centerline at the time t0
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Fig. 1. General riser coordinate system, hydraulic system, and forces and moments acting on a riser element. (a) General riser coordinate system;

(b) hydraulic system; (c) forces and moments on a riser element ds.
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and the arc length s0 from the point O. Hence at the time t4t0, the point P0 moves to the point P of the deformed riser
centerline. The position of the point P is denoted by rðs; tÞ ¼ ½xðs; tÞ; yðs; tÞ; zðs; tÞ� at the arc length s from the point O.
Moreover, let wðs; tÞ ¼ ½wxðs; tÞ;wyðs; tÞ;wzðs; tÞ�

T be the vector from the point P0 to the point P. Then we have

r ¼ r0 þw (1)

where from now onward whenever it is not confusing, we drop the arguments ðt; sÞ and ðt0; s0Þ of r;w and r0, respectively
for clarity. The body-fixed system is ðt̂; n̂; b̂Þ, whose axes are the tangent, principal normal and binormal unit vectors. These
vectors can be expressed in terms of the fixed system as

t̂ ¼ rs; n̂ ¼ t̂s=k; b̂ ¼ t̂ � n̂ (2)

where the subscript s denotes the partial derivative with respect to the arc-length s, and k is curvature of the riser center
line at s depicting the rate of change of the orientation of the normal plane ðn̂; b̂Þ defined by k ¼ krssk. The above definition
of the body-fixed coordinate system means that ðt̂; n̂; b̂Þ form a right handed orthonormal triad.

2.1.2. Equations of motion of the riser

Now from Fig. 1(c), balancing the forces and moments on a component ds of the deformed riser results in

mowtt ¼ Fs þ q

Jot ¼ Ms þ t̂ � F þm (3)

where from now onward, we use the subscript t to denote the partial derivative with respect to the time t, mo ¼ rrAr is the
oscillating mass of the riser per unit length with Ar being the riser cross section area, and rr being the density of the riser,
J ¼ rrIr with Ir being the second moment of the riser cross section area about the b̂ axis, F and M are internal force and
moment vectors, q and m are the external distributed force and moment vectors, and ot ¼ n̂� n̂tt þ b̂� b̂tt is the angular
acceleration of a point on the centerline. The distributed moment vector m is induced by the asymmetry of the relative flow
due to vortex shedding. Let ðMt̂ ;Mn̂;Mb̂

Þ be the components of M along the t̂; n̂; b̂ axes of the body-fixed system,
respectively. We then can write M as

M ¼ Mt̂t̂ þMn̂n̂þM
b̂
b̂ (4)

Since the riser is assumed to be straight at the initial time t0, we have the following constitutive relations, see [4,26]:

M
b̂
¼ Bk; Mn̂ ¼ 0; Mt̂ ¼ Gtþ H (5)
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where B ¼ EIr is the bending rigidity of the riser with E being Young’s modulus; H is the initial torsional moment around
the t̂ axis; G ¼ 2mIr is the torsional rigidity of the riser with m being the shear modulus.

Since we neglect the torsional moment Gtþ H, distributed moment m and rotary inertia rJ, the equations of motion of
the riser given in (3) are simplified to

mowtt ¼ Fs þ q

rs � ðBwsss þ FÞ ¼ 0 (6)

where we have used M ¼ M
b̂
b̂ ¼ Brs � rss (see (2) and (4)), and the fact that rsss ¼ wsss due to the initial straight condition

of the riser.

Remark 2. In [27], a local coordinate system ða1; a2; a3Þ where a3 coincides with t̂, different from the local coordinate
ðt̂; n̂; b̂Þ in this paper is used. Using the local coordinate ða1; a2; a3Þ results in complexities in calculating the curvatures of the
riser in the ða1; a3Þ and ða2; a3Þ planes. Indeed, one can rotate the coordinate system ða1; a2; a3Þ round the t̂ axis angle to
have the coordinate system ðt̂; n̂; b̂Þ. In [26], the constitutive equation for the moment in the normal direction, Mn̂, is
misgiven, since Mn̂ is always zero for the riser under consideration.

Environmental disturbance vector q: The external disturbance vector q per unit length consists of fluid drag force, any
concentrated forces exerted on the riser by attached cables and/or buoys modeled by Dirac functions, and effective
riser weight defined as the weight of the riser plus contents in water. It is noted that the effective rather than the actual
riser weight is used because the effective tension is used instead of the actual tension. In this paper, we do not consider
cables or buoys attached to the riser. The fluid drag force is found by the use of a generalization of Morison’s formula to
account for cylinders, which are not oriented normal to the relative flow [28]. Taking the effective riser weight into account,
we have

qðs; t;wt ; rsÞ ¼ t̂ � ðWre � t̂Þ þ 1
2rwCLDDHVn þ

1
2rwCNDDHkVnkVn (7)

where CLD and CND are the linear and nonlinear drag coefficients, respectively; DH is the local riser hydrodynamic
diameter; Wre ¼ �½0 0 wre�

T with wre is the effective riser weight per unit length; Vn is the component of the relative flow
velocity normal to the riser centerline. Letting V be the (bounded) liquid flow velocity due to waves and currents. Then
taking the riser motion into account, the relative flow velocity normal to the riser centerline, Vn, is given by

Vn ¼ t̂ � ððV �wtÞ � t̂Þ ¼ ðI3�3 � rsrT
s ÞðV �wtÞ (8)

where I3�3 is the three-dimensional identity matrix. Substituting (8) into (7) results in the equation for external
disturbance vector q as follows:

qðs; t;wt ; rsÞ ¼ ðI3�3 � rsrT
s ÞWre þ

1
2rwCLDDHðI3�3 � rsrT

s ÞðV �wtÞ

þ 1
2rwCNDDHkðI3�3 � rsrT

s ÞðV �wtÞkðI3�3 � rsrT
s ÞðV �wtÞ (9)

Initial and boundary conditions: The initial conditions of the riser consist of the initial position and velocity functions.
They are

wðs; t0Þ ¼ g1ðsÞ; wtðs; t0Þ ¼ g2ðsÞ; 8s 2 ð0; LÞ (10)

where g1ðsÞ and g2ðsÞ are sufficiently smooth and bounded function vectors of s, and compatible with the boundary
conditions. We first provide the kinetic and potential energies, modified Lagrangian, and variation of the virtual work done
by nonconservative force q and by the virtual momentum transport at the boundary, then use the extended Hamilton
principle to derive the boundary conditions.

The kinetic energy KE of the riser and the pistons of the hydraulic systems, and the potential energy PE of the riser with a
length of L are

KE ¼
1

2

Z L

0
mowt �wt dsþ

1

2
wtðL; tÞMHwtðL; tÞ

PE ¼
1

2

Z L

0
Bwss �wss ds (11)

where MH ¼ diagðm1H ;m2H ;m3HÞ with m1H , m2H and m3H being the mass of the piston of the hydraulic system that
provides the boundary force at the top end of the riser along the x-, y- and z-axis, respectively; diagðm1H ;m2H ;m3HÞ denotes
the diagonal matrix with the diagonal elements being m1H , m2H and m3H . Since the riser response must satisfy the kinetic
constraint of the unit tangent vector t̂, i.e. rs � rs ¼ 1 in terms of deformation applying along the riser, the modified
Lagrangian LA of the riser is given as follows:

LA ¼ KE � PE þ
lc

2

Z L

0
ðrs � rs � 1Þds (12)
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where lc is the continuous Lagrangian multiplier. To derive the boundary conditions, we now use the following extended
Hamilton principle: Z t2

t1

ðdLA þ dWc þ dWbÞdt ¼ 0

dwðs; t1Þ ¼ dwðs; t2Þ ¼ 0 (13)

where t1 and t2 denote time, dWc is variation of the virtual work done by nonconservative force, and dWb is variation of
the virtual work done by the virtual momentum transport at the boundary. The variation of the virtual work dWc done by
nonconservative force qðs; t;wt ; rsÞ is given by

dWc ¼

Z L

0
qðs; t;wt ; rsÞdwðz; tÞdz (14)

The variation of the virtual work dWb done by the virtual momentum transport at the boundary is given by

dWb ¼ ðAHPH �Dðt;wtðL; tÞÞ � BHwtðL; tÞÞdwðL; tÞ (15)

where

PH ¼ ½P11 � P12; P21 � P22; P31 � P32�
T

AH ¼ diagðA1H ;A2H ;A3HÞ

BH ¼ diagðb1H ; b2H ;b3HÞ

Dðt;wtðL; tÞÞ ¼ ½D1ðt;wtðL; tÞÞ;D2ðt;wtðL; tÞÞ;D3ðt;wtðL; tÞÞ�
T (16)

In (16), Pi1 with i ¼ 1;2;3 and Pi2 are the pressures in the upper and lower compartments of the cylinder i, see Fig. 1(b), AiH

is the ram area of the cylinder i, biH represents the combined coefficient of the modeled damping and viscous friction forces
on the cylinder rod i, and Diðt;wtðL; tÞÞ is the un-modeled force acting on the cylinder i of the hydraulic system i. This un-
modeled force can include un-modeled friction between the cylinder and the piston of the hydraulic system i, and the
external disturbance from the cylinder of the hydraulic system i acting on the piston i of the hydraulic system i. It is noted
that all the cylinders of the hydraulic systems can be either fixed to the vessel/rig or an active heave compensation system
fixed to the vessel/rig, see [29] for more details. The vessel/rig is stabilized at its desired location by a separating dynamic
positioning system. Since many dynamic positioning systems are available in the literature, see [30], we do not include the
dynamics of the vessel/rig in this paper. However, we take effects of motion of the vessel/rig around its equilibrium point
on the riser through the disturbance Diðt;wtðL; tÞÞ. Substituting (15), (14) and (11) into (13) and using the boundary
specifications of the riser under consideration result in

mowtt ¼ Fs þ q; s 2 ð0; LÞ

rs � ðBwsss þ FÞ ¼ 0; s 2 ð0; LÞ

MHwttðL; tÞ ¼ �BHwtðL; tÞ � FðL; tÞ þ AHPH � Dðt;wtðL; tÞÞ,

wð0; tÞ ¼ 0; wssð0; tÞ ¼ 0; wssðL; tÞ ¼ 0 (17)

where we have taken lc ¼ F � rs � Bk2 motivated by (6).

Remark 3. The riser dynamics (17) is one-dimensional (with respect to the spatial variable s). This means that a point on
the riser cross section, other than the point on the centerline, cannot be traced after deformation takes place. In this paper,
we consider the deformation of the riser centerline, which is, in general, a three-dimensional space curve.

2.1.3. Equations of motion of the hydraulic systems

The second equation in (17) represents the dynamics of the pistons of the hydraulic systems with

wðL; tÞ ¼ xH

wtðL; tÞ ¼ _xH (18)

where xH ¼ ½x1H ; x2H ; x3H�
T is the position vector of the pistons of the hydraulic system, see Fig. 1(b). Neglecting the leakage

flows in the cylinder and the servovalve, the actuator or the cylinder dynamics is written as [31]

V̄H
_PH ¼ �AH _xH � CHT PH þ QH (19)
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where

V̄H ¼ diag
V1H

4b1He
;

V2H

4b2He
;

V3H

4b3He

� �

CHT ¼ diagðC1HT ;C2HT ;C3HT Þ

QH ¼ ½Q1H ;Q2H ;Q3H�
T (20)

In (20), ViH ; i ¼ 1;2;3 is the total volume of the cylinder i and the hoses between the cylinder i and the servovalve i, biHe is
the effective bulk modulus, CiHT is the coefficient of the total internal leakage of the cylinder i due to pressure, QiH is the
load flow of the hydraulic system i. The load flow vector QH is related to the spool displacement vector of the servovalve,
xHv, by [31]

QH ¼ CxHv (21)

where C ¼ diagðC1;C2;C3Þ with

Ci ¼ CiHDWiH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiHS � tanhðxiHv=siÞPiH

riH

s

Here, CiHD; i ¼ 1;2;3 is the discharge coefficient, WiH is the spool valve area gradient, PiHS is the supply pressure of the
fluid, si is a small positive constant, and riH is density of the oil of the hydraulic system i. It is noted that since the supply
pressure PiHS is always higher than the load pressure PiH , i.e. there exists a strictly positive constant � such that
PiHS � tanhðxiHv=siÞPiH � �. Hence, Eq. (21) is well-defined for all xHv 2 R

3. Moreover, the function tanhðxiHv=siÞ has been
used to replace the signum function sgnðxiHvÞ originated in [31]. It is noted that the use of the function tanhðxiHv=siÞ not
only makes the function Ci differentiable with respect to xiHv but also represents the actual dynamics of the spool
dynamics. This is because there is always certain round-off of sharp edges in manufacturing the servovalve, i.e. the flow in
the servovalve does not change its direction immediately. The servovalve dynamics can be described as

THv _xHv ¼ �xHv þ KHvIH (22)

where

THv ¼ diagðt1Hv; t2Hv; t3HvÞ

KHv ¼ diagðk1Hv; k2Hv; k3HvÞ

IH ¼ diagðI1H ; I2H ; I3HÞ (23)

with tiHv; i ¼ 1;2;3 and kiHv are the time constant and gain of the servovalve i, respectively, IiH is the current input to the
hydraulic system i. We now write the equations of motion of the riser and the hydraulic systems consisting of (17), (20),
(21) and (22) in a standard form for control design in the next section as follows:

mowtt ¼ Fs þ q; s 2 ð0; LÞ

rs � ðBwsss þ FÞ ¼ 0; s 2 ð0; LÞ

_x1 ¼ x2

_x2 ¼ M�1
H ð�BHx2 � FðL; tÞ þ AHx3 �Dðt; x2ÞÞ

_x3 ¼ V̄
�1
H ð�AHx2 � CHT x3 þCx4Þ

_x4 ¼ T�1
Hv ð�x4 þ KHvIHÞ

wð0; tÞ ¼ 0; wssð0; tÞ ¼ 0; wssðL; tÞ ¼ 0 (24)

where we have defined

x1 ¼ wðL; tÞ; x2 ¼ wtðL; tÞ; x3 ¼ PH ; x4 ¼ xHv (25)

Moreover, we have the following results, which will be used extensively in the control design in the next section.

Lemma 1. For the riser dynamics (the first two equations and the last equation of (24)) and under the inextensible condition of

the riser, the following equations hold:

wsðs; tÞ � rsðs; tÞ ¼ 1
2wsðs; tÞ �wsðs; tÞ; 8ðs; tÞ 2 ð½0; L�;R

þ
Þ (26)

wsðs; tÞ �wsðs; tÞ � 2; 8ðs; tÞ 2 ð½0; L�;RþÞ (27)



ARTICLE IN PRESS

K.D. Do, J. Pan / Journal of Sound and Vibration 327 (2009) 299–321306
Fðs; tÞ �wssðs; tÞ ¼ �Bwsssðs; tÞ �wssðs; tÞ; 8ðs; tÞ 2 ð½0; L�;R
þ
Þ (28)

Fðs; tÞ �wsðs; tÞ ¼ � Bwsssðs; tÞ �wsðs; tÞ þ Fðs; tÞ � rsðs; tÞwsðs; tÞ � rsðs; tÞ

þ Bwsssðs; tÞ � rsðs; tÞrsðs; tÞ �wsðs; tÞ; 8ðs; tÞ 2 ð½0; L�;R
þ
Þ (29)

Fðs; tÞ � rsðs; tÞ ¼ FðL; tÞ � rsðL; tÞ �
B

2
wssðs; tÞ �wssðs; tÞ

þ

Z L

s
qðs; t;wtðs; tÞ; rsðs; tÞÞ � rsðs; tÞds; 8ðs; tÞ 2 ðð0; LÞ;RþÞ (30)

Fsðs; tÞ �wttðs; tÞ ¼ � Bwssssðs; tÞ � rsðs; tÞ þ Bwsssðs; tÞ � rsðs; tÞwttðs; tÞ �wssðs; tÞ

þ Fðs; tÞ � rsðs; tÞwttðs; tÞ �wssðs; tÞ; 8ðs; tÞ 2 ð½0; L�;R
þ
Þ (31)

rsðL; tÞ:wðL; tÞ ¼

Z L

0
wssðs; tÞ �wðs; tÞdsþ

1

2

Z L

0
wsðs; tÞ �wsðs; tÞ; 8ðs; tÞ 2 ðð0; LÞ;R

þ
Þds (32)

ðFðs; tÞ þ Bwsssðs; tÞÞ �wstðs; tÞ ¼ 0 (33)

Proof. See Appendix A.

Remark 4. Since Fðs; tÞ � rsðs; tÞ is the actual tension at the point P, see Fig. 1(a), and at the time t, Eq. (30) is a formula that
can be used to calculate the actual tension of the riser at any point along the riser center line and at any time t. This
equation also indicates that the actual tension in the riser depends on the curvature of the riser center line due to the term
�ðB=2Þwssðs; tÞ �wssðs; tÞ. In existing literature [26], the formula for calculating the riser actual tension is oversimplified in
the sense that the curvature of the riser is not included. Noticing that the magnitude of the term �ðB=2Þwssðs; tÞ �wssðs; tÞ is
not necessarily small since the bending stiffness B can be large despite of small curvature kwssðs; tÞk.

2.2. Control objectives

Under Assumption 1, design the control IH for the riser-hydraulic system (24) to stabilize the riser at its vertical position
in the sense that all the states of the riser-hydraulic system are bounded and that:
(1)
 when the external disturbance vector q is ignored, all the terms kwðs; tÞk,
R L

0 wsðs; tÞ �wsðs; tÞds,
R L

0 wtðs; tÞ �wtðs; tÞds andR L
0 wssðs; tÞ �wssðs; tÞds exponentially converge to zero for all s 2 ½0; L� and t � t0,R R
(2)
 when the external disturbance vector q is present, all the terms kwðs; tÞk, L
0 wsðs; tÞ �wsðs; tÞds, L

0 wtðs; tÞ �wtðs; tÞds andR L
0 wssðs; tÞ �wssðs; tÞds exponentially converge to some small positive constants for all s 2 ½0; L� and t � t0.
It is seen that the control objective imposes on both the displacement and integration of square of the slope, velocity, and
curvature of the riser along the riser length.

3. Boundary control design

A close look at the entire system (24) shows that the system is of a strict-feedback form [9]. Therefore, we will use the
backstepping technique [9] to design the control input IH to achieve the control objective stated in the previous section.
The control design consists of three steps as follows.

3.1. Step 1

At the this step, we consider the hydraulic force AHPH , i.e. AHx3, as a control to design a boundary control law (i.e. a
control law only uses wðL; tÞ and its spatial and time derivatives) such that it stabilizes the riser at a small neighborhood of
its vertical position. Ideally, we want to stabilize the riser at its vertical position but this is impossible due to the distributed
external disturbances q induced by waves, wind and ocean currents. As such, we define

x3e ¼ AHx3 � a1 (34)

where a1 is a virtual control of AHx3. To design the virtual boundary control a1, we use Lyapunov’s direct method. Consider
the following Lyapunov function candidate:

W1 ¼
mo

2

Z L

0
wt �wt dsþ

B

2

Z L

0
wss �wss dsþ

l
2

Z L

0
ws �ws dsþ g

Z L

0
swt �ws ds�

g
2

Z L

0
wt �w ds

þ
1

2
wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �T

MH wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
(35)
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where l and g are positive constants to be specified later. Since for all t � t0, we have

Z L

0
swt �ws ds�

1

2

Z L

0
wt �w ds

�����
����� � Lþ 1

2

Z L

0
wt �wt dsþ

Lþ L2

2

Z L

0
ws �ws ds (36)

where we have used completion of squares and Lemma 2, see Appendix B, to obtain
R L

0 w �w ds � 4L2 R L
0 ws �ws ds since

wð0; tÞ ¼ 0. Therefore, the function W1 satisfies

W1 �
mo � gðLþ 1Þ

2

Z L

0
wt �wt dsþ

B

2

Z L

0
wss �wss dsþ

l� gðLþ L2Þ

2

Z L

0
ws �ws ds

þ
1

2
wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �T

MH wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

W1 �
mo þ gðLþ 1Þ

2

Z L

0
wt �wt dsþ

B

2

Z L

0
wss �wss dsþ

lþ gðLþ L2Þ

2

Z L

0
ws: �ws ds

þ
1

2
wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �T

MH wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
(37)

Hence if we choose l and g such that

mo � gðLþ 1Þ ¼ c1; l� gðLþ L2Þ ¼ c2 (38)

where c1 and c2 are strictly positive constants, then the function W1 defined in (35) is a proper function of
R L

0 wt �wt ds,R L
0 wss �wss ds,

R L
0 ws �ws ds, and ½wtðL; tÞ þ ðgL=moÞwsðL; tÞ � ðg=2moÞwðL; tÞ�. We do not detail the conditions (38) at the

moment, but deal with them after the boundary control IH is designed since the constants l and g need to satisfy some

other conditions later. It is noted that we do not include the riser displacement w, like
R L

0 w �w ds, in the function W1

because this term causes difficulties in designing the control a1 later. As such, after proof of convergence of
R L

0 wt �wt ds,R L
0 wss �wss ds, and

R L
0 ws �ws ds, we will use Lemmas 2 and 3 in Appendix B to prove convergence of

R L
0 w �w ds and the

riserdisplacement w. Differentiating both sides of (35) with respect to t, along the solutions of the first four equations of the
riser dynamics (24) results in

_W1 ¼ F �wt þ Bwsswst þ lws �wt þ
gF �wss

mo
þ
gwt �wts

2
�
gF �w

2mo

� �����L
0
� l

Z L

0
wss �wt ds

�
gB

mo

Z L

0
F �wsss ds�

g
2mo

Z L

0
F �ws ds� g

Z L

0
wt �wt dsþ

Z L

0
q �wt dsþ

g
mo

Z L

0
q �wss ds

�
g

2mo

Z L

0
q �w dsþ wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� �BHx2 � FðL; tÞ þ AHx3

�

� Dðt; x2Þ þ
gL

mo
MHwstðL; tÞ �

g
2mo

MHwtðL; tÞ

�
(39)

where we have used (33). Now using (29), (30) and (28), and the boundary condition, see the last equation of (24), we can
write (39) as

_W1 � wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� �BHx2 þ ðx3e þ a1Þ � Dðt; x2Þ

�

þ
gL

mo
MHwstðL; tÞ �

g
2mo

MHwtðL; tÞ

�
þ lwsðL; tÞ �wtðL; tÞ þ

gLwtðL; tÞ �wtðL; tÞ

2

� l
Z L

0
wss �wt ds�

gB

4mo

Z L

0
wss �wss ds�

gFðL; tÞ � rsðL; tÞ

4mo

Z L

0
ws �ws ds� g

Z L

0
wt �wt dsþO1 (40)

where we have used (27), and

O1 ¼

Z L

0
q �wt þ

g
mo

q �wss�
g

2mo
q �w�

g
4mo

ws �ws

Z L

s
qðs; t;wt ; rsðs; tÞÞ � rsðs; tÞds

 !
ds (41)

From (40), we design the virtual control a1 as follows:

a1 ¼ � K1 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� BH þ

g
2mo

MH

� �
gL

mo
wsðL; tÞ

�

�
g

2mo
wðL; tÞ

�
�
gL

mo
MHwstðL; tÞ þ D̂þ T0rsðL; tÞ (42)
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where K1 is a positive definite diagonal matrix and T0 is a positive scalar constant. The matrix K1 and constant T0 will be

specified later. Inclusion of the term T0rsðL; tÞ in the virtual control a1 is to provide sufficient tension in the riser. The term D̂
is an estimate of D, and is given by

D̂ ¼ �ðxþ Kx2Þ

_x ¼ �KM�1
H x� KðFþM�1

H Kx2Þ (43)

where K is a diagonal positive definite matrix, and we have defined

F ¼ M�1
H ð�BHx2 � FðL; tÞ þ AHx3Þ (44)

Define the disturbance observer error as

De ¼ D� D̂ (45)

Differentiating both sides of (45) along the solutions of (43) and the fourth equation of (24) gives

_De ¼ �KM�1
H De þ

_D (46)

This equation will be used in the stability analysis of the closed loop system after the control design is completed. It is
noted that the disturbance observer (43) is based on Lemma 1 in [20] applied to the third equation of (24) with rðxÞ ¼ Kx.
The reader is also referred to [29] for an interesting application of the disturbance observer proposed in [20]. Since (40)
contains the term FðL; tÞ � rsðL; tÞ, we need to find an expression for this term by substituting a1 in (42) into the fourth
equation of (24) to obtain

FðL; tÞ ¼ �MHwttðL; tÞ � BHwtðL; tÞ � K1 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� BH þ
g

2mo
MH

� �
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
�
gL

mo
MHwstðL; tÞ � De þ T0rsðL; tÞ þ x3e (47)

Producting vector both sides of (47) with rsðL; tÞ gives

FðL; tÞ � rsðL; tÞ ¼ � rT
s ðL; tÞ K1 þ BH þ

g
2mo

MH

� �
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
�De � rsðL; tÞ

þ T0 þ x3e � rsðL; tÞ (48)

where we have used wttðL; tÞ � rsðL; tÞ ¼ 0 and wtðL; tÞ � rsðL; tÞ and wstðL; tÞ � rsðL; tÞ ¼ 0. Now substituting (42) and (48) into
(40) and using completion of squares give

_W1 � � c3 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� c4wtðL; tÞ �wtðL; tÞ � c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wðL; tÞ � c7

Z L

0
wt �wt ds

� c8

Z L

0
ws �ws ds� c9

Z L

0
wss �wss dsþ wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
ðx3e � DeÞ

þ
gDe � rsðL; tÞ

4mo
�
gx3e � rsðL; tÞ

4mo

� �Z L

0
ws �ws dsþO1 (49)

where

c3 ¼ lminðAÞ � �0 with A ¼ K1 þ BH þ
g

2mo
MH

c4 ¼ �0 �
gL

2
�

2�0�1gL

mo
�
�0�2g

mo
� l�3

c5 ¼
�0g2L2

m2
o

; c6 ¼
�0g2

4m2
o

; c7 ¼ g� l�5

c8 ¼
gT0

2mo
�
g2lmaxðAÞL

4m2
o

�

ffiffiffi
2
p

g2lmaxðAÞL

8m2
o

�
l

4�3
�
g2�0L

2m2
o

�
g�0

4�2mo
þ
g2�0L

2m2
o

 !
ð4L2 þ 1Þ

c9 ¼
gB

4mo
�

l
4�3
�

l
4�5
�
g2�0L

2m2
o

�
gT0

4�4mo
(50a)



ARTICLE IN PRESS

K.D. Do, J. Pan / Journal of Sound and Vibration 327 (2009) 299–321 309
with �i; i ¼ 0; . . . ;5 being positive constants, and lminðAÞ and lmaxðAÞ the minimum and maximum eigenvalue of the

matrix A, respectively. The positive constants �i; i ¼ 0; . . . ;5 and g are picked such that ci; i ¼ 1; . . . ;9, where c1 and c2

are given in (38) are strictly positive. Now substituting the virtual control a1 given in (42) into the fourth equation of (24)
give the first sub-closed loop system:

_x2 ¼ M�1
H �BHx2 � K1 wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� BH þ

g
2mo

MH

� ��

�
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
�

gL

mo
MHwstðL; tÞ þ T0rsðL; tÞ �De þ x3e

�
(50b)

To prepare for the next step, let us calculate _x3e. Differentiating both sides of (34) along the solutions of (42) and the fourth

equation of (24) with a note that the virtual control a1 is a smooth function of wðL; tÞ;wtðL; tÞ;wsðL; tÞ;wstðL; tÞ; rsðL; tÞ and D̂
results in

_x3e ¼ AHV̄
�1
H ð�AHx2 � CHT x3 þCx4Þ �

qa1

qwðL; tÞ
wtðL; tÞ �

qa1

qwsðL; tÞ
wstðL;tÞ

�
qa1

qwstðL; tÞ
wsttðL; tÞ �

qa1

qrsðL; tÞ
rstðL; tÞ �

qa1

qD̂
ðKM�1

H xþ KðFþ KM�1
H x2ÞÞ

�
qa1

qx2
�
qa1

qD̂
K

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � Dðt; x2ÞÞ (51)

3.2. Step 2

Our goal at this step is to regulate x3e to a small neighborhood of the origin by considering the fourth equation
of the entire system (24) where for simplicity of the design process, we consider Cx4 as a control instead of x4. As such,
we define

x4e ¼ Cx4 � a2 (52)

where a2 is a virtual control of Cx4. To design the virtual control a2, we consider the following Lyapunov function
candidate:

W2 ¼W1 þ
1
2xT

3ex3e (53)

whose derivative along the solutions of (49) and (51) is

_W2 � � c3 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� c4wtðL; tÞ �wtðL; tÞ � c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wðL; tÞ � c7

Z L

0
wt �wt ds

� c8

Z L

0
ws �ws ds� c9

Z L

0
wss �wss dsþ wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
ðx3e �DeÞ

þ xT
3e AHV̄

�1
H ð�AHx2 � CHT x3 þ a2 þ x4eÞ �

qa1

qwðL; tÞ
wtðL; tÞ �

qa1

qwsðL; tÞ
wstðL;tÞ

�

�
qa1

qwstðL; tÞ
wsttðL; tÞ �

qa1

qrsðL; tÞ
rstðL; tÞ �

qa1

qD̂
ðKM�1

H xþ KðFþ KM�1
H x2ÞÞ

�
qa1

qx2
�
qa1

qD̂
K

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � D̂�DeÞ

�

þ
gDe:rsðL; tÞ

4mo
�
gx3e:rsðL; tÞ

4mo

� �Z L

0
ws:ws dsþO1 (54)

which suggests that we choose the virtual control a2 as follows:

a2 ¼ ðAHV̄
�1
H Þ
�1 � wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
þ AHV̄

�1
H ðAHx2 þ CHT x3Þ

�

þ
qa1

qwðL; tÞ
wtðL; tÞ þ

qa1

qwsðL; tÞ
wstðL;tÞ þ

qa1

qwstðL; tÞ
wsttðL; tÞ þ

qa1

qrsðL; tÞ
rstðL; tÞ

þ
qa1

qD̂
ðKM�1

H xþ KðFþ KM�1
H x2ÞÞ þ

qa1

qx2
�
qa1

qD̂
K

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � D̂Þ � K2x3e

�
(55)

where K2 is a diagonal positive definite matrix. It should be noted that unlike standard backstepping technique, we do not
use the virtual control a2 to cancel the term �ðgx3e � rsðL; tÞ=4moÞ

R L
0 ws �ws ds in (54) since it requires measurement of

wsðs; tÞ along the riser. As such, this term will be dominated by the terms �c8
R L

0 wsws ds and �xT
3eK2x3e, see (56). Noticing

that the virtual control a2 is a smooth function of wðL; tÞ, wtðL; tÞ, wsðL; tÞ, wstðL; tÞ, rsðL; tÞ, wsttðL; tÞ, x2, x3, x, D̂ and FðL; tÞ.
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Substituting (55) into (54) results in

_W2 � � c3 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� c4wtðL; tÞ �wtðL; tÞ � c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wðL; tÞ � c7

Z L

0
wt �wt ds

� c8

Z L

0
ws �ws ds� c9

Z L

0
wss �wss ds� xT

3eK2x3e þ xT
3eAHV̄

�1
H x4e

� wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
De þ xT

3e
qa1

qx2
�
qa1

qD̂
K

� �
M�1

H De

þ
gDe � rsðL; tÞ

4mo
�
gx3e � rsðL; tÞ

4mo

� �Z L

0
ws �ws dsþO1 (56)

On the other hand, substituting the virtual control a2 into (51) gives the second sub-closed loop system

_x3e ¼ �wtðL; tÞ �
gL

mo
wsðL; tÞ þ

g
2mo

wðL; tÞ � K2x3e þ AHV̄
�1
H x4e �

qa1

qx2
�
qa1

qD̂
K

� �
M�1

H De (57)

To prepare for the next step, let us calculate _x4e. Differentiating both sides of (52) along the solutions of the fifth equation of
(24) and (55) gives

_x4e ¼
qC
qx3

V̄
�1
H ð�AHx2 � CHT x3 þCx4Þ þ

qC
qx4
þC

� �
T�1

Hv ð�x4 þ KHvIHÞ �
qa2

qwðL; tÞ
wtðL; tÞ

�
qa2

qwsðL; tÞ
wstðL; tÞ �

qa2

qwsttðL; tÞ
wstttðL; tÞ �

qa2

qrsðL; tÞ
rstðL; tÞ �

qa2

qx3
V̄
�1
H ð�AHx2 � CHT x3

þCx4Þ �
qa2

qx
_x�

qa2

qFðL; tÞ
_FðL; tÞ þ

qa2

qD̂
xþ

qa2

qD̂
K �

qa2

qx2

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � Dðt; x2ÞÞ (58)
3.3. Step 3

This is the final step. The actual control input IH will be designed to regulate x4e to a small neighborhood of the origin. To
design the actual control input IH , we consider the following Lyapunov function candidate:

W3 ¼W2 þ
1
2xT

4ex4e (59)

whose derivative along the solutions of (58) and (56) is

_W3 � � c3 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� c4wtðL; tÞ �wtðL; tÞ � c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wðL; tÞ � c7

Z L

0
wt �wt ds

� c8

Z L

0
ws �ws ds� c9

Z L

0
wss �wss ds� xT

3eK2x3e þ xT
4e AHV̄

�1
H x3e þ

qC
qx3

V̄
�1
H ð�AHx2

�

� CHT x3 þCx4Þ þ
qC
qx4
þC

� �
T�1

Hv ð�x4 þ KHvIHÞ �
qa2

qwðL; tÞ
wtðL; tÞ �

qa2

qwsðL; tÞ
wstðL; tÞ

�
qa2

qwsttðL; tÞ
wstttðL; tÞ �

qa2

qrsðL; tÞ
rstðL; tÞ �

qa2

qx3
V̄
�1
H ð�AHx2 � CHT x3 þCx4Þ �

qa2

qx
_x

�
qa2

qFðL; tÞ
_FðL; tÞ þ

qa2

qD̂
xþ

qa2

qD̂
K �

qa2

qx2

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � D̂Þ
�

� xT
4e

qa2

qD̂
K �

qa2

qx2

� �
M�1

H De � wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
De

þ xT
3e

qa1

qx2
�
qa1

qD̂
K

� �
M�1

H De þ
gDe:rsðL; tÞ

4mo
�
gx3e:rsðL; tÞ

4mo

� �Z L

0
ws:ws dsþO1 (60)

which suggests that we choose the actual control IH as

IH ¼ x4 þ
qC
qx4
þC

� �
T�1

Hv KHv

� ��1

�AHV̄
�1
H x3e �

qC
qx3

V̄
�1
H ð�AHx2 � CHT x3 þCx4Þ

�

� K3x4e þ
qa2

qwðL; tÞ
wtðL; tÞ þ

qa2

qwsðL; tÞ
wstðL; tÞ þ

qa2

qwsttðL; tÞ
wstttðL; tÞ
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þ
qa2

qrsðL; tÞ
rstðL; tÞ þ

qa2

qx3
V̄
�1
H ð�AHx2 � CHT x3 þCx4Þ þ

qa2

qx
_xþ

qa2

qFðL; tÞ
_FðL; tÞ

þ
qa2

qD̂
x�

qa2

qD̂
K �

qa2

qx2

� �
M�1

H ð�BHx2 � FðL; tÞ þ AHx3 � D̂Þ
�

(61)

where K3 is a diagonal positive definite matrix. Substituting (61) into (58) gives the third sub-closed loop system:

_x4e ¼ �AHV̄
�1
H x3e � K3x4e �

qa2

qD̂
K �

qa2

qx2

� �
M�1

H De (62)

Now substituting (61) into (60) gives

_W3 � � c3 wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �

� c4wtðL; tÞ �wtðL; tÞ � c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wðL; tÞ � c7

Z L

0
wt �wt ds

� c8

Z L

0
ws �ws ds� c9

Z L

0
wss �wss ds� xT

3eK2x3e � xT
4eK3x4e

� xT
4e

qa2

qD̂
K �

qa2

qx2

� �
M�1

H De � wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
De

þ xT
3e

qa1

qx2
�
qa1

qD̂
K

� �
M�1

H De þ
gDe:rsðL; tÞ

4mo
�
gx3e:rsðL; tÞ

4mo

� �Z L

0
ws �ws dsþO1 (63)

For convenience of stability analysis, which will be carried out in Appendix C, we rewrite the closed loop system consisting
of (46), (50b), (57), (62) and the first three equations and the last equation of (24) as follows:

mowtt ¼ Fs þ q; s 2 ð0; LÞ

rs � ðBwsss þ FÞ ¼ 0; s 2 ð0; LÞ

_x1 ¼ x2

_x2 ¼ M�1
H �BHx2 � K1 wtðL; tÞ þ

gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
� BH þ

g
2mo

MH

� ��

�
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �
�

gL

mo
MHwstðL; tÞ þ T0rsðL; tÞ �De þ x3e

�

_x3e ¼ �wtðL; tÞ �
gL

mo
wsðL; tÞ þ

g
2mo

wðL; tÞ � K2x3e þ AHV̄
�1
H x4e �

qa1

qx2
�
qa1

qD̂
K

� �
M�1

H De

_x4e ¼ �AHV̄
�1
H x3e � K3x4e �

qa2

qD̂
K �

qa2

qx2

� �
M�1

H De

_De ¼ �
k

mH
De þ

_D

wð0; tÞ ¼ 0; wssð0; tÞ ¼ 0; wssðL; tÞ ¼ 0 (64)

Theorem 1. Under Assumption 1, the control input IH given in (61) solves the control objective provided that the design

constants g and K1 are chosen such that the conditions given in (38) and (50a) hold. In particular, the solutions of the closed loop

system (64) exist and are unique. Moreover, when the external disturbance vector q is zero and and the disturbance Dðt;wtðL; tÞÞ

is constant, all the terms kwðs; tÞk,
R L

0 wsðs; tÞ �wsðs; tÞds,
R L

0 wtðs; tÞ �wtðs; tÞds and
R L

0 wssðs; tÞ �wssðs; tÞds exponentially converge

to zero for all s 2 ½0; L� and t � t0, and when the external disturbance vector q is different from zero but bounded and the

disturbance Dðt;wtðL; tÞÞ is time-varying with bounded derivative with respect to time, all the terms kwðs; tÞk,R L
0 wsðs; tÞ �wsðs; tÞds,

R L
0 wtðs; tÞ �wtðs; tÞds and

R L
0 wssðs; tÞ �wssðs; tÞds exponentially converge to some small positive constants

for all s 2 ½0; L� andt � t0.

Proof. See Appendix C.

4. Simulations

In this section, we carry out some numerical simulations to illustrate the effectiveness of the proposed boundary
controller. We take identical three hydraulic systems with the parameters based on [32] as follows: miH ¼ 1000 kg,
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Fig. 2. Simulation results without control: displacements wx , wy , wz . (a) wx; (b) wy; (c) wz .

Fig. 3. Simulation results with control: displacements wx , wy , wz . (a) wx; (b) wy; (c) wz .
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AiH ¼ 0:65 m2, biH ¼ 40 N=ðm=sÞ, 4biHe=ViH ¼ 4:53� 108 N=m5, CiHD ¼ 2:21� 10�14 m5=N s, CiHDWiH=
ffiffiffiffiffiri
p
¼

3:42� 10�5 m3
ffiffiffiffi
N
p

s, PiHS ¼ 10 342 500 Pa, kiHv ¼ 0:0324, and tiHv ¼ 0:00636, for i ¼ 1;2;3. The riser parameters are
taken from [2] as follows: length L ¼ 1000 m, diameter D ¼ 0:61 m, density rr ¼ 1250 kg=m3, Young’s modulus
E ¼ 2� 1010 kg=m. The parameters of the distributed damping and external forces are taken as follows: CLD ¼ 0:7,
CLD ¼ 0:35, DH ¼ 0:87 m, rw ¼ 1025 kg=m3, and we ¼ 1:132 KN=m. We assume that the disturbance Dðt;wtðL; tÞÞ ¼

0:5 diagðm1H sinð0:5t þ 2p randð ÞÞ, m2H cosð0:5t þ 2p randð ÞÞ, m3H sinð0:2t þ 2p randð ÞÞÞwith rand( ) is a number between 0
and 1. The initial conditions are taken as wðs; t0Þ ¼ ½0;0;0�

T, wtðs; t0Þ ¼ ½0;0;0�
T, xðt0Þ ¼ ½0;0;0�

T, x3ðt0Þ ¼ ½0;0;0�
T; x4ðt0Þ ¼

½0;0;0�T. The observer and control gains are chosen as follows: K ¼ diagð2;2;2Þ, K1 ¼ diagð4;4;4Þ, K2 ¼ diagð6;6;6Þ,
K3 ¼ diagð10;10;10Þ, and T0 ¼ 3:5� 106. It is directly checked that the chosen observer and control gains satisfy the
required conditions given in (38) and (50). The ocean current velocity vector is assumed to be generated from wind at the
ocean surface and dropped to zero at the sea bed [33]: V ¼ ½ð1=LÞs; ð0:5=LÞs;0�T. We run simulations without the proposed
boundary controller, i.e. K1 ¼ diagð0;0;0Þ, K2 ¼ diagð0;0;0Þ, and K3 ¼ diagð0;0;0Þ, and with the proposed boundary
controller, i.e. K1 ¼ diagð4;4;4Þ, K2 ¼ diagð6;6;6Þ, and K3 ¼ diagð10;10;10Þ. The length of simulation time for both cases is
500 s. Displacements w ¼ ½wx;wy;wz�T for the uncontrolled and controlled cases are displayed in Figs. 2 and 3, respectively.
In Fig. 4, the error signals of the system along the x-axis are plotted. It is seen from these figures that the proposed
boundary controller can reduce deflections of the riser in all directions ðx; y; zÞ significantly, i.e. the displacement
magnitudes are significantly reduced. For example, in the x direction, the displacement magnitudereduces from 27 to 1.2 m
at the top end of the riser. This illustrates the effectiveness of the proposed boundary controller in the sense that it is able to
drive the riser to the small neighborhood of its equilibrium position.

5. Conclusions

The equations of motion of a marine riser-hydraulic system were presented. These equations were then used for the
design of the boundary controller at the top end of the riser based on Lyapunov’s direct method. The proposed controller
robustly stabilized the riser at its equilibrium vertical position. Proof of existence and uniqueness of the solutions of the
closed loop system was given. The keys of the paper are the proposed Lyapunov function candidate (35) and various
properties of the riser dynamics given in Lemma 1. The rest of the paper requires a careful manipulation of integration by
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Fig. 4. Simulation result with the proposed controller: (a) transverse displacement at the top end ZðL; tÞ; (b) virtual error x3eðtÞ; (c) virtual error x4eðtÞ;

(d) control input iHðtÞ.
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parts and a proper use of Poincare’s inequalities in bounding the derivatives of the Lyapunov function candidates W2 and
W3. Future work focuses on relaxing items made in Assumption 1, and carrying out experiments to test the effectiveness of
the proposed boundary controller. Particularly, an immediate task is to consider an arbitrarily initial position of the riser
and to take the effect of the torsional moments into account in the boundary control design.
Appendix A. Proof of Lemma 1

We first prove (26). Since r ¼ ro þw and the inextensible condition gives ro
s :r

o
s ¼ 1, we have

rs � rs ¼ ðro
s þwsÞ � ðro

s þwsÞ ¼ ws �ws þ 2ro
s �ws þ r0

s � r
o
s

rs � rs ¼ 1

ro
s � r

o
s ¼ 1

ws � rs ¼ ws � ðro
s þwsÞ ¼ ws �ws þ ro

s �ws

9>>>>=
>>>>;
) ws � rs ¼

1

2
ws �ws (65)

The inequality (27) can be proved by noting that w �w � r � r þ ro � ro since the angle between r and ro is never greater than
p=2 due to the straight initial condition. Eq. (28) is easily proved by crossing vector both sides of the second equation of
(24) with wss, and noticing the last equation of (24). Similarly, Eq. (29) can be proved by crossing vector both sides of the
second equation of (24) with ws, and noticing the last equation of (24). Eq. (30) can be proved by adding both sides of (28)
with Fs � rs then integrating both sides of the resulting equation from s to L, and noting the inextensible condition implies
that wtt � rs ¼ 0; 8t 2 Rþ; s 2 ½0; L�. Eq. (31) can be proved by crossing vector both sides of the second equation of (24) with
wtt plus a note that wtt � rs ¼ 0; 8ðs; tÞ 2 ðð0; LÞ;RþÞ due to the inextensible condition. To prove (32), we consider

ðrsðs; tÞ �wðs; tÞÞs ¼ rssðs; tÞ �wðs; tÞ þ rsðs; tÞ �wsðs; tÞ ¼ wssðs; tÞ �wðs; tÞ þ 1
2wsðs; tÞ �wsðs; tÞ (66)

Integrating both sides of (66) from 0 to L, and noting the last equation of (24) give (32). Eq. (33) can be proved by crossing
vector both sides of the second equation of (24) with wstðs; tÞ, then producting both sides of the resulting equation with rs

and noticing that rst � rs ¼ wst � rs ¼ 0 due to the straight initial condition and rs � rs ¼ 1.
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Appendix B. Simplified Poincare inequalities
Lemma 2. For any y ¼ ½y1; . . . ; yi; . . . ; yn�
T with yi 2 C1

½0; L�, i ¼ 1; . . . ;n, the following inequalities hold:

Z L

0
yðsÞ � yðsÞds � 2Lyð0Þ � yð0Þ þ 4L2

Z L

0
ysðsÞ � ysðsÞds (67)

Z L

0
yðsÞ � yðsÞds � 2LyðLÞ � yðLÞ þ 4L2

Z L

0
ysðsÞ � ysðsÞds (68)

Proof. We prove (68). The proof of (67) is similar by using a change of coordinate x ¼ L� s. Using integration by parts,
we have

Z L

0
yðsÞ:yðsÞds ¼ yðsÞ � yðsÞsjL0 � 2

Z L

0
syðsÞ � ysðsÞds

� LyðLÞ � yðLÞ þ
1

2

Z L

0
yðsÞ � yðsÞdsþ 2

Z L

0
s2ysðsÞ � ysðsÞds

� LyðLÞ � yðLÞ þ
1

2

Z L

0
yðsÞ � yðsÞdsþ 2L2

Z L

0
ysðsÞ � ysðsÞds (69)

which gives (68). &

Lemma 3. For any y ¼ ½y1; . . . ; yi; . . . ; yn�
T with yi 2 C1

½0; L�, i ¼ 1; . . . ;n, the following inequalities hold:

max
s2½0;L�

ðyðsÞ � yðsÞÞ � yð0Þ � yð0Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
yðsÞ � yðsÞds

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
ysðsÞ � ysðsÞds

s
(70)

max
s2½0;L�

ðyðsÞ � yðsÞÞ � yðLÞ � yðLÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
yðsÞ � yðsÞds

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
ysðsÞ:ysðsÞds

s
(71)

Proof. We prove (70). The proof of (71) is similar by using a change of coordinate x ¼ L� s. From fundamental of calculus,
we have

yðsÞ � yðsÞ ¼ yð0Þ � yð0Þ þ 2

Z s

0
yðzÞ � yzðzÞdz

� yð0Þ � yð0Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ s

0
yðzÞ � yðzÞdz

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ s

0
yzðzÞ � yzðzÞdz

s
(72)

where we have used the Cauchy–Schwartz inequality. &

Appendix C. Proof of Theorem 1

C.1. Proof of existence and uniqueness

Let H2ð0; LÞ be the usual Hilbert space [34]. Our analysis is based on the Sobolev spaces:

VS ¼ w 2 H2ð0; LÞjwð0; tÞ ¼ 0 (73)

equipped with the norm kukVS
¼ kussk2, and

WS ¼ w 2 VS \ H4ð0; LÞjwssð0; tÞ ¼ 0; wssðL; tÞ ¼ 0 (74)

equipped with the norm kukWS
¼ kwssk2 þ kwssssk2 where k � kp denotes the Lp norms. From the Poincare’ inequality, it

follows that k � kVS
and k � kWS

are equivalent to the standard norms of H2ð0; LÞ and H4ð0; LÞ, respectively. Next, we consider
f 2 VS. Now inner producting both sides of the first equation of (24) by f then integrating from 0 to L by parts result in

mo

Z L

0
wtt � fdsþ

Z L

0
F �fs ds�

Z L

0
q � fds� FðL; tÞ �fðL; tÞ ¼ 0 (75)

where FðL; tÞ is given in (47). We will use the Galerkin approximation to show that for all f 2 VS there exists w 2WS

such that (75) holds. Let fj be a vector whose each component is a complete orthogonal system of WS for
which fwðs; t0Þ;wtðs; t0Þg 2 Spanff1;f2

g. For each n 2 N, let WSn ¼ Spanff1;f2; . . . ;fn
g. We search for a function
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wnðs; tÞ ¼
Pn

j¼1 kj
ðtÞfj such that for any f 2WSn, it satisfies the approximate closed loop system

mo

Z L

0
wn

tt �fdsþ

Z L

0
Fn � fs ds�

Z L

0
qn � fds� FnðL; tÞ �fðL; tÞ ¼ 0; s 2 ð0; LÞ

rn
s � ðBwn

sss þ FnÞ ¼ 0; s 2 ð0; LÞ

_xn
1 ¼ xn

2

_xn
2 ¼ M�1

H �BHxn
2 � K1 wn

t ðL; tÞ þ
gL

mo
wn

s ðL; tÞ �
g

2mo
wnðL; tÞ

� �
� BH þ

g
2mo

MH

� ��

�
gL

mo
wn

s ðL; tÞ �
g

2mo
wnðL; tÞ

� �
�
gL

mo
MHwn

stðL; tÞ þ T0rn
s ðL; tÞ �Dn

e þ xn
3e

�

_xn
3e ¼ �wn

t ðL; tÞ �
gL

mo
wn

s ðL; tÞ þ
g

2mo
wnðL; tÞ � K2xn

3e þ AHV̄
�1
H xn

4e �
qan

1

qxn
2

�
qan

1

qD̂
n K

 !
M�1

H Dn
e

_xn
4e ¼ �AHV̄

�1
H xn

3e � K3xn
4e �

qan
2

qD̂
n K �

qan
2

qxn
2

 !
M�1

H Dn
e

_D
n
e ¼ �

k

mH
Dn

e þ
_D

n

wnð0; tÞ ¼ 0; wn
ssð0; tÞ ¼ 0; wn

ssðL; tÞ ¼ 0 (76)

where �n denotes � with its arguments replaced by the approximate arguments. For example an
1 denotes a1 with its

arguments wðL; tÞ, wtðL; tÞ, wsðL; tÞ, wstðL; tÞ, rsðL; tÞ and D̂ replaced by wnðL; tÞ, wn
t ðL; tÞ, wn

s ðL; tÞ, wn
stðL; tÞ, rn

s ðL; tÞ and D̂
n

,
respectively. The approximate closed loop system (76) with with the initial conditions

wnðs; t0Þ ¼ wðs; t0Þ; wn
t ðs; t0Þ ¼ wtðs; t0Þ (77)

which are possible since each element of ðwðs; t0Þ;wtðs; t0ÞÞ belongs to WSn for n � 2, forms in fact a system of ordinary
differential equations in the variable t, which has a local solution in ½0; tnÞ. After the estimates below, the approximate
solution will be extended to the interval ½0; T� for any given T40.

Estimate I : Upper bound of
R L

0 wn
t �w

n
t dsþ

R L
0 wn

ss �w
n
ss ds. In (76), we take f ¼ wn

t and consider the following Lyapunov
function candidate:

L1 ¼
mo

2

Z L

0
wn

t �w
n
t dsþ

B
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0
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n
ssdsþ

l
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0
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s �w
n
s dsþ g
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0
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t �w
n
s ds�

g
2
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0
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t �w
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þ
1

2
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t ðL; tÞ þ
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s ðL; tÞ �
g

2mo
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� �T

MH wn
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g
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� �

þ
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2
xnT

3e xn
3e þ

1

2
xnT

4e xn
4e þ

w
2
DnT

e Dn
e (78)

where l and g are positive constants specified as in Section 3, the positive constant w will be specified later. Indeed, as in
Section 3, the function L1 is a proper function (i.e. positive definite and radially unbounded) as long as the constants l and g
are taken such that they satisfy the conditions specified in (38). We use the same technique in Section 3 to calculate the
time derivative of the function L1 along the solutions of (76) as follows:

_L1 � � c3 wn
t ðL; tÞ þ
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s ðL; tÞ �
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� �
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0
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t ds

� c8

Z L

0
wn
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� �
Dn

e þ xnT
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�
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1
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(79)
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where On
1 is O1 given in (41) with all of its arguments replaced by their approximations, i.e.

On
1 ¼

Z L

0
qn �wn

t þ
gqn �wn

s s

mo
�
gqn �wn

2mo
�
gwn

s �w
n
s

4mo

Z L

s
qnðs; t;wn

t ; rsðs; tÞÞ
n � rn

sðs; tÞds
 !

ds (80)

Now by substituting the expression of q given in (9) into (80), noting that rn
s � r

n
s ¼ 1 for all s 2 ½0; L� and t � t0 � 0 and using

Lemma 1, there exists a positive constant R1 such that

On
1 � R1

Z L

0
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t �w
n
t dsþ

Z L

0
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s �w
n
s ds

 !
þ

1

4R1
Q1 (81)

where the nonnegative constant Q1 depends on the maximum value of kVk with V being the liquid flow, see (9). Moreover,
we need to bound the rest of cross terms in (79) as follows:
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e
_D

n
j � R4kD

n
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where Lemma 1 has been used to prove the second last inequality of (82), and Ri; i ¼ 1; . . . ;4 are positive constants to be
specified later. On the other hand, from (42) and (55), it is seen that an

1 and an
2 are of at most linear in xn

2 and D̂
n

. This
implies that there exist constants M1 and M2 such that

qan
2

qD̂
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qan
2

qxn
2

 !
M�1

H

�����
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1
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H
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2

� M2; 8s 2 ½0; L�; t � t0 � 0 (83)

Now substituting (83), (82) and (80) into (79) results in

_L1 � � ðc3 � R2Þ wn
t ðL; tÞ þ

gL

mo
wn

s ðL; tÞ �
g
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wnðL; tÞ

� �����
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n
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n
s ðL; tÞ � c6wnðL; tÞ:wnðL; tÞ � ðc7 � R1Þ

Z L

0
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n
t ds� ðc8 � R1 � R3Þ

�

Z L

0
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s �w
n
s ds� c9

Z L

0
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n
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3e � ðlminðK3Þ � R2Þ

� xn
4e:x

n
4e � wlminðKM�1
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M1 þM2 þ 1

4R2
�

g2L2
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� R4

 !
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e :D
n
e þ
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4R4
k _D

n
k2 þ

1

4R1
Q1 (84)

where lminð�Þ denotes the minimum eigenvalue of �. We pick Ri; i ¼ 1; . . . ;4 and w such that all the constants

ðc3 � R2Þ; ðc7 � R1Þ; ðc8 � R1 � R3Þ; c9; ðlminðK2Þ � R2 � g2L2=32m2
oR3Þ; lminðK3Þ � R2; ðwlminðKM�1

H Þ � ðM1 þM2 þ 1Þ=4R2 �

g2L2=32m2
oR3 � R4Þ are strictly positive. Now from definition of L1, see (78) and (84), we have

_L1 � �
c̄1

c̄2
L1 þ c̄3 ) L1ðtÞ � L1ðt0Þ þ

c̄2c̄3

c̄1

� �
e�c̄1=c̄2 þ

c̄1c̄3

c̄2
; 8t � t0 � 0 (85)

where

c̄1 ¼min ðc3 � R2Þ; ðc7 � R1Þ; ðc8 � R1 � R3Þ; c9; lminðK2Þ � R2 �
g2L2

32m2
oR3

 !
; ðlminðK3Þ � R2Þ;

 

wlminðKM�1
H Þ �

M1 þM2 þ 1

4R2
�

g2L2

32m2
oR3

� R4

 !!

c̄2 ¼
1
2maxððmo � gðLþ 1ÞÞ; ðl� gðLþ L2ÞÞ;B;1;wÞ
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c̄3 ¼ max
w2

4R4
k _Dn
k2 þ

1

4R1
Q1

 !
(86)

Hence from (85) and (78), we deduce that there exists a nonnegative constant P1 such thatZ L

0
wn

t �w
n
t dsþ

Z L

0
wn

s �w
n
s dsþ

Z L

0
wn

ss �w
n
ss ds � P1; 8t 2 ½0; T�; n 2 N (87)

Estimate II : Upper bound of wttðs; t0Þ in L2-norm. In the first equation of (76), taking f ¼ wn
ttðs; t0Þ and t ¼ t0, and

integrating by parts give

mo

Z L

0
wn

ttðs; t0Þ �w
n
ttðs; t0Þds�

Z L

0
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s ðs; t0Þ �w
n
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Z L

0
qnðs; t0Þ �w

n
ttðs; t0Þds ¼ 0 (88)

for all s 2 ð0; LÞ. Let us calculate the term
R L

0 Fn
s ðs; t0Þ �w

n
ttðs; t0Þds in (88). Using Lemma 1 gives

Fn
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B

2
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n
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þ
Þ (89)

and using (48) gives

FnðL; t0Þ:r
n
s ðL; t0Þ ¼ � rnT

s ðL; t0Þ K1 þ BH þ
g

2mo
MH

� �
gL

mo
wn

s ðL; t0Þ �
g

2mo
wnðL; t0Þ

� �
� Dn

e :r
n
s ðL; t0Þ þ T0 þ xn

3eðt0Þ:r
n
s ðL; t0Þ (90)

Now by substituting (90) into the second equation of (91) then to the first equation of (91) then to (88) and using
completion of squares and the estimate I, see (85), it is readily shown that there exists a nonnegative constant P2 such thatZ L

0
wn

ttðs; t0Þ:w
n
ttðs; t0Þds � P2; 8t 2 ½0; T�; n 2 N (91)

Estimate III : Upper bound of wttðs; tÞ and wsstðs; tÞ in L2-norm. To estimate the upper bound of these terms, we use
difference approach. Let us fix t and x such that xoT � t. Now taking the difference of (76) with t ¼ t þ x and t ¼ t, and then
letting f ¼ wn

t ðs; t þ xÞ �wn
t ðs; tÞ result in

mo

2

Z L

0

d

dt
½ðwn

t ðs; t þ xÞ �wn
t ðs; tÞÞ � ðw
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0
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0
ðqðs; t þ xÞ � qðs; tÞÞ � ðwn

t ðs; t þ xÞ �wn
t ðs; tÞÞds ¼ 0 (92)

To deal with the second integration term in (92), we proceed the second equation of (76) as follows:

rn
s ðs; tÞ � ðBwn

sssðs; tÞ þ Fnðs; tÞÞ ¼ 0) wstðs; tÞ � ðr
n
s ðs; tÞ � ðBwn

sssðs; tÞ þ Fnðs; tÞÞgÞ ¼ 0

) Fnðs; tÞ �wstðs; tÞ ¼ �Bwn
sss �wstðs; tÞ (93)

for all ðs; tÞ 2 ðð0; LÞ;RþÞ since wn
stðs; tÞ � r

n
s ðs; tÞ ¼ 0 for all ðs; tÞ 2 ðð0; LÞ;RþÞ. Moreover, using (47) results in
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s ðL; tÞ þ xn

3e �w
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t ðL; tÞ (94)

Since the initial values wðs; t0Þ and wtðs; t0Þ are sufficiently smooth, wð0; tÞ þ r0 ¼ 0, wssð0; tÞ ¼ 0, wssðL; tÞ ¼ 0 for w 2WS

and all the terms
R L

0 wn
t ðs; tÞ �w

n
t ðs; tÞds,

R L
0 wn

s ðs; tÞ �w
n
s ðs; tÞds, and

R L
0 wn

ssðs; tÞ �w
n
ssðs; tÞds are bounded, see Estimate I, using

the Mean Value Theorem and Lemmas 2 and 3 shows readily that there exists a nonnegative constant M3 such that

dFn
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ðt; xÞ � M3F

n
ðt; xÞ ) Fðt; xÞ � Fðt0; xÞe

M3ðt�t0Þ (95)
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where

Fn
ðt; xÞ ¼

mo

2

Z L

0
ðwn

t ðs; t þ xÞ �wn
t ðs; tÞÞ � ðw

n
t ðs; t þ xÞ �wn

t ðs; tÞÞds

þ
B

2

Z L

0
ðwn

ssðs; t þ xÞ �wn
ssðs; tÞÞ � ðw

n
ssðs; t þ xÞ �wn

ssðs; tÞÞds (96)

Dividing both sides of the last inequality in (95) by x2 then taking the limit x! 0 gives

mo

Z L

0
wn

ttðs; tÞ �w
n
ttðs; tÞdsþ B

Z L

0
wn

sstðs; tÞ �w
n
sstðs; tÞds

� mo

Z L

0
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ttðs; t0Þ �w
n
ttðs; t0Þdsþ B

Z L

0
wn

sstðs; t0Þ �w
n
sstðs; t0Þds

" #
eM3ðt�t0Þ (97)

for all t0 � t � T. Now from the estimates given in (87) and (91), we can deduce from (95) that there exists P340
depending on T such that

mo

Z L

0
wn

ttðs; tÞ �w
n
ttðs; tÞdsþ B

Z L

0
wn

sstðs; tÞ �w
n
sstðs; tÞds � P3 (98)

From the estimates given in (87), (91) and (95), we can use the Lions–Aubin theorem to get the necessary compactness to
pass the nonlinear system (76) to the limit. Then it is a matter of routine to conclude the existence of global solutions in
½0; T�.

Uniqueness. Let u and v be two solutions of the closed loop system (64). Letting z ¼ u� v, we have zðs; t0Þ ¼ 0 and
ztðs; t0Þ ¼ 0 and from (75) we have

mo

Z L

0
ztt �fdsþ

Z L

0
ðFjw¼u � Fjw¼vÞ � fs ds�

Z L

0
ðqjw¼u � jw¼vÞ � fds

� ðFðL; tÞjw¼u � FðL; tÞjw¼vÞ � fðL; tÞ ¼ 0 (99)

where the expression of Fðs; tÞ is given in (47). By taking f ¼ ztðs; tÞ in (99) and using the Mean Value Theorem and passing
of the limit of all the estimates given in in (87), (91) and (95) previously, we readily have

d

dt

Z L

0
zt � zt dsþ

Z L

0
zss � zss ds

 !
� M4

Z L

0
zt � zt dsþ

Z L

0
zss � zss ds

 !
(100)

where M4 is a positive constant. Since zðs; t0Þ ¼ 0 and ztðs; t0Þ ¼ 0, using Gronwall’s Lemma shows that z ¼ 0, i.e. u ¼ v for
all t � t0 � 0 and s 2 ½0; L�.

C.2. Proof of convergence

We consider the following Lyapunov function candidate:

W ¼W3 þ
n
2
DT

eDe (101)

where W3 is given in (59), and n is a positive constant to be chosen later. Differentiating both sides of (101) along the
solutions of (63) and (45) gives
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Now by substituting the expression of q given in (9) into (41), noting that rs � rs ¼ 1 for all s 2 ½0; L� and t � t0 � 0 and using
Lemma 1, there exists a positive constant r1 such that

O1 � r1

Z L
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where the nonnegative constant G1 depends on the maximum value of kVk with V being the liquid flow, see (9). Moreover,
we need to bound the rest crossed terms in (102) as follows:
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where Lemma 1 has been used to prove the second last inequality of (104), and ri; i ¼ 1; . . . ;4 are positive constants to be
specified later. On the other hand, from (42) and (55), it is seen that a1 and a2 are of at most linear in x2 and D̂. This implies
that there exist constants N1 and N2 such that

qa2

qD̂
K �

qa2

qx2

� �
M�1

H

����
����2

� N1;
qa1

qx2
�
qa1

qD̂
K

� �
M�1

H

����
����2

� N2; 8s 2 ½0; L�; t � t0 � 0 (105)

Now substituting (105), (104) and (103) into (102) results in

_W � � ðc3 � R2Þ wtðL; tÞ þ
gL

mo
wsðL; tÞ �

g
2mo

wðL; tÞ

� �����
����2

� c4wtðL; tÞ �wtðL; tÞ

� c5wsðL; tÞ �wsðL; tÞ � c6wðL; tÞ �wnðL; tÞ � ðc7 � r1Þ

Z L

0
wt �wt ds� ðc8 � r1 � r3Þ

�

Z L

0
ws �ws ds� c9

Z L

0
wss �wss ds� lminðK2Þ � r2 �

g2L2

32m2
or3

 !
x3e:x3e � ðlminðK3Þ � R2Þ

� x4e:x4e � nlminðKM�1
H Þ �

N1 þ N2 þ 1

4r2
�

g2L2

32m2
or3

� r4

 !
De:De þ

n2

4r4
k _Dk2 þ

1

4r1
G1 (106)

where lminð�Þ denotes the minimum eigenvalue of �. We pick ri; i ¼ 1; . . . ;4 and n such that all the constants ðc3 � r2Þ,
ðc7 � r1Þ, ðc8 � r1 � r3Þ, c9, ðlminðK2Þ � r2 � g2L2=32m2

or3Þ, lminðK3Þ � r2, ðnlminðKM�1
H Þ � ðN1 þ N2 þ 1Þ=4r2 �

g2L2=32m2
or3 � r4Þ are strictly positive. Now from definition of W , see (101) and (106), we have

_W � �
c̄1

c̄2
W þ c̄3 )WðtÞ � Wðt0Þ þ

c̄2c̄3

c̄1

� �
e�c̄1=c̄2 þ

c̄1c̄3

c̄2
; 8t � t0 � 0 (107)

where

c̄1 ¼min ðc3 � r2Þ; ðc7 � r1Þ; ðc8 � r1 � r3Þ; c9; lminðK2Þ � r2 �
g2L2

32m2
or3

 !
; ðlminðK3Þ � r2Þ;

 

nlminðKM�1
H Þ �

N1 þ N2 þ 1

4r2
�

g2L2

32m2
or3

� r4

 !!

c̄2 ¼
1
2maxððmo � gðLþ 1ÞÞ; ðl� gðLþ L2ÞÞ;B;1; nÞ

c̄3 ¼ max
n2

4r4
k _Dk2 þ

1

4r1
G1

 !
(108)

The bound on W given in (107) combined with the definition of W, see (101), shows thatZ L

0
wtðs; tÞ �wtðs; tÞds �

2

c1
Wðt0Þ þ

c̄2c̄3

c̄1

� �
e�c̄1=c̄2 þ

2c̄1c̄3

c1c̄2

Z L

0
wsðs; tÞ �wsðs; tÞds �

2

c2
Wðt0Þ þ

c̄2c̄3

c̄1

� �
e�c̄1=c̄2 þ

2c̄1c̄3

c2c̄2



ARTICLE IN PRESS

K.D. Do, J. Pan / Journal of Sound and Vibration 327 (2009) 299–321320
Z L

0
wssðs; tÞ �wssðs; tÞds �

2

B
Wðt0Þ þ

c̄2c̄3

c̄1

� �
e�c̄1=c̄2 þ

2c̄1c̄3

Bc̄2
(109)

Since the initial values of wtðs; t0Þ, wsðs; t0Þ, wssðs; t0Þ for all s 2 ½0; L� are bounded and sufficiently smooth, and x3ðt0Þ and
x4ðt0Þ are bounded as well, the right hand sides of all inequalities in (109) are bounded. Hence, the right hand sides of the
first, second and third inequalities in (109) are bounded and exponentially converge to 2c̄1c̄3=c2c̄2, 2c̄1c̄3=c2c̄2 and
2c̄1c̄3=Bc̄2, respectively. This implies that the left hand sides of the first, second and third inequalities in (109) must be
bounded and must exponentially converge to 2c̄1c̄3=c2c̄2, 2c̄1c̄3=c2c̄2and 2c̄1c̄3=Bc̄2, respectively. Next, we use Lemmas 2
and 3 to show that

R L
0 wðs; tÞ �wðs:tÞds and kwðs; tÞk are bounded and exponentially converge to some constant. An

application of Lemma 2 gives

Z L

0
wðs; tÞ �wðs � tÞds � 2wð0; tÞ �wð0; tÞ þ 4L2

Z L

0
wsðs; tÞ �wsðs; tÞds (110)

Since wð0; tÞ ¼ 0 and we have already proved that
R L

0 wsðs; tÞ �wsðs; tÞds is bounded and exponentially converges to
2c̄1c̄3=c2c̄2, (110) implies that

R L
0 wðs; tÞ �wðs; tÞds must be bounded and exponentially converges to 8L2c̄1c̄3=c2c̄2. On the

other hand, an application of Lemma 3 shows that

max
s2½0;L�

ðwðs; tÞ �wðs; tÞÞ � wð0; tÞ �wð0; tÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
wðs; tÞ �wðs; tÞds

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
wsðs; tÞ �wsðs; tÞds

s
(111)

Since wð0; tÞ ¼ 0 and we have already proved that
R L

0 wsðs; tÞ �wsðs; tÞds and
R L

0 wðs; tÞ �wðs; tÞds are bounded and
exponentially converge to 2c̄1c̄3=c2c̄2 and 8L2c̄1c̄3=c2c̄2, respectively, (111) implies that kwðs; tÞk must be bounded and
exponentially converges to 8Lc̄1c̄3=c2c̄2.

For the case where there are no distributed disturbances and the disturbance D is constant, i.e. q ¼ 0 and _D ¼ 0, it is
directly seen from the above proof that

R L
0 wtðs; tÞ �wtðs; tÞds,

R L
0 wssðs; tÞ �wssðs; tÞds and

R L
0 wsðs; tÞ �wsðs; tÞds are bounded

and exponentially converge to zero since q ¼ 0 and _D ¼ 0 imply that c̄3 ¼ 0, see (108). Therefore, using the same arguments
as above, we have

R L
0 wðs; tÞ �wðs; tÞds and kwðs; tÞk are bounded and exponentially converge to zero.
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