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1. Introduction

The Coleman and Lyapunov-Floquet (L-F) transformations can be used to obtain time-invariant system equations for
modal and stability analysis of structures with bladed rotors, e.g. wind turbines and helicopters. This paper explores a
similarity of these transformations and uses the physical basis of the Coleman transformation to resolve the indeterminacy
of the modal frequencies in Floquet analysis due to the non-uniqueness of the L-F transformation.

Coleman [1] introduces a transformation of the coordinates of bladed rotors into multi-blade coordinates describing the
rotor motion in the inertial frame of reference. The periodic coefficients can thereby be eliminated in the system equations
for isotropic rotors, where the blades are identical and symmetrically mounted. Feingold [2] extends the work by Coleman
to show that the periodic coefficients can also be eliminated in the equations of inplane motion for two-bladed rotors if the
rotor support is symmetric. Coleman and Feingold [3] show that for two-bladed rotors with an asymmetric support, the
Coleman transformation yields system equations containing periodic terms that have a frequency of two times the rotor
speed. They use Floquet theory [4] to show that the solution to a linear periodic system can be written as a set of
exponential functions containing the characteristic exponents (each representing a frequency and damping) multiplied by
a corresponding set of periodic functions that contain harmonics with integer multiples of the system frequency. Any
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periodic function can be represented by a Fourier series, which is used in Hill’'s method to derive the characteristic
exponents from Hill’s determinant (see, e.g. [5-7]) as Coleman and Feingold do in their stability analysis of two-bladed
rotors.

The development of digital numerical analysis allows direct application of Floquet theory by computation of the
transition matrix from the time integration of the system equations. The transition matrix gives the monodromy matrix
whose eigenvalues are the Floquet multipliers that determine the characteristic exponents with non-unique frequencies.
Early Floquet analyses are performed on helicopters by Lowis [8] using a rectangular ripple method and Peters and
Hohenemser [9] using a predictor-corrector integration scheme. Attempts to reduce the immense computational effort
required by Floquet analysis on larger systems are done by Friedmann et al. [10] who develop an efficient numerical
scheme to obtain the transition matrix from a single integration, and by Sinha and Pandiyan [11] who approximate the
transition matrix based on an expansion of the system matrix in Chebyshev polynomials. Peters [12] shows with fast
Floquet theory that the transition matrix computed until 1/B of the system period for an isotropic rotor with B blades can be
used to generate the transition matrix for the full period. Bauchau and Nikishkov [13] use elements of the Arnoldi
eigenvalue algorithm to perform implicit Floquet analysis yielding the most important eigensolutions from a limited number
of system matrix integrations. Concepts of system identification from experimental signal analysis are applied by Quaranta
et al. [14] to project the state variables of a large multi-body dynamical system by proper orthogonal decomposition into a
smaller subspace before applying Floquet analysis. Bauchau and Wang [15] use a similar approach, partial Floquet analysis,
to approximate the monodromy matrix from an incomplete transition matrix.

The modal frequencies and damping of the vibration modes of the periodic system can be determined from the Floquet
multipliers. The infinity of solution branches to the complex logarithm yields frequencies given by a principal value plus an
integer multiple of the system frequency. The traditional approach for resolving this frequency indeterminacy is based on
Fourier analysis of the set of periodic functions in the Floquet solution [16,17], which are herein referred to as the periodic
mode shapes. This method is contained in several different Floquet approaches [15,18,19]. Nagabhushanam and Gaonkar
[20] suggest an automatic modal identification method, where the integer factor of the frequency indeterminacy is
determined by using that the ratio of the velocity and position parts of the dominating degree of freedom in the Floquet
eigenvectors is an estimate of the modal frequency. Peters and Hohenemser [9] increase the magnitude of the system
periodicity in small increments starting from zero, where the frequencies are unique, until the desired value, and thus
obtain the modal frequencies by continuation.

In this paper, the traditional method for resolving the frequency indeterminacy is substantiated by showing a similarity
between the modal dynamics of an isotropic rotor obtained by eigenvalue analysis of the Coleman transformed system
equations and the modal dynamics obtained by Floquet analysis. The comparison is based on Lyapunov’s reducibility
theorem [21] stating that the periodic Lyapunov-Floquet (L-F) transformation eliminates the periodic coefficients in the
system equations. The L-F transformation is not unique, because it depends on the non-unique characteristic exponents.
The choice of integer factors on the rotor speed added to the characteristic exponents can be considered as a choice of
reference frame into which the state variables are L-F transformed, and in which the frequencies are then measured. Modal
frequencies are herein defined to be measured in the inertial frame, whereby they can be directly compared to the modal
frequencies obtained from the eigenvalues of the Coleman transformed system equations. The inertial state variables in the
periodic mode shape obtained from the Coleman transformed equations are constant; therefore the modal frequencies are
chosen such that the harmonic components of the inertial state variables in the periodic mode shape become as constant as
possible. In the comparison of the two approaches for an isotropic rotor, the same results are obtained. This frequency
identification approach in Floquet analysis is, however, applicable to a system with anisotropic rotor and support.

The paper is arranged as follows: Section 2 contains the theory of modal analysis using the Coleman transformation and
using Floquet analysis. The similarity of the two approaches is shown and used as a basis for resolving the frequency
indeterminacy. Section 3 contains a numerical example that compares the two approaches for an isotropic rotor and uses
Floquet analysis for an anisotropic rotor. Section 4 contains the conclusions.

2. Modal analysis of structures with bladed rotors

The linear equations of motion for small vibrations of a structure with a bladed rotor operating at constant mean rotor
speed with small overlaid variations can be written as a set of first-order equations:
x=A(t)X, A(l+T)=A®) (1)

where () denotes the time derivative, A is the periodic system matrix, T = 27/€2 is the period corresponding to the mean
rotor speed Q, and X is the state vector for a rotor with B blades:

T
X={X11"""X1N, X21-""X2N, - XB1'XBNp Xs1°"*XsN,} (2)

where an integer as the first index on x denotes the blade number and “s” as the first index denotes inertial state variables of
the rotor support. The total number of state variables for a B-bladed rotor system is N = BNy, + Ns, where Ny, is the number
of rotor state variables in the rotating frame for a single blade and N; is the number of inertial state variables of the rotor
support. It is assumed that all blades have identical sets of state variables. Note that the state variables for an
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aeroservoelastic model of a wind turbine or helicopter may consist of generalized coordinates and velocities of structural
motion, state variables of the unsteady aerodynamic model, and state variables of the controller.

2.1. Coleman transformation approach

The Coleman transformation for a rotor with B blades is [12,16]

X = B(t)zg
[y, Iy, cosyy Iy singy .-~ Iy cosByy Iy sinBy; —ly, 0]
Iy, Iy, cosyy Iy singy - Iy, cosByy Iy, sinBy, Iy, 0
Iy, Iy,cosyz Iy sinys .- Iy cosBys Iy sinBys —ly 0
BO=| : . . A . . (3)
le INb cos l//B le sin l/IB “ee le Cos Bl//B INb sinl?l//B (—INb)B 0
0 0 0 e 0 0 0 Iy,

where 8= (B—1)/2 for B odd and B = (B —2)/2 for B even, /; = Qt + 27(j — 1)/B is the mean azimuth angle to blade
number j=1,2,...,B, and le and Iy, are identity matrices of sizes Ny, and Ns. The vector zg contains the BNy, state
variables in multi-blade coordinates and N inertial state variables as

T
zg ={doy---AoN, @11 1N, D1a---biny o apqc-agn, baiooban bea1cbeaN, Xs1ccXsNgh 4)

and describes the rotor motion in the inertial frame. The second last column block in B and coordinates bg> 1 to bg/o N,
occur only for B even. Details on how multi-blade coordinates describe the motion of a three-bladed wind turbine rotor in
the inertial frame are discussed in [22,23].

Insertion of (3) into (1) shows that the Coleman transformed system equation becomes

Zg = Agzp (5)
where
Ag = B~ (DA(D)B(t) — B~ (B(t) (6)

The transformed system matrix Ag will be time-invariant if the rotor is isotropic, i.e. it has three or more blades with equal
properties and has symmetric inter-blade couplings such that the coupling to the support depends only on the azimuth
angle and not the blade number, as shown in Appendix A. This important feature of the Coleman transformation enables
the use of traditional eigenvalue analysis for the modal decomposition of the dynamics of these particular rotors.

2.1.1. Modal decomposition of transient solution
A transient solution of the time-invariant Coleman transformed system equation (5) for an isotropic rotor with a
constant system matrix Ag is

zp = eMBlzp(0) (7)

where zg(0) = B~1(0)x(0) are the inverse transformed initial conditions (i.e. the disturbance of the structure away from its
operating point). The Coleman transformed system matrix can be written in terms of its Jordan form as Ag = VBAngl
whereby the transient solution (7) becomes

zg =Vp EAvagllB(O) (8)

If the eigenvectors vg , of Ag are all linearly independent, Ag is a diagonal matrix containing the eigenvalues /g of Ag, and
the eigenvectors vg form the columns of Vg (see [24] for the case of repeated eigenvalues with linearly dependent
eigenvectors).

The transient solution (8) can be transformed into the original coordinates by (3) as

x = Ug(t) e*#'qp(0) (9)
where
q5(0) = V5 'B~' (0x(0) (10)
is a constant vector representing the modal content of the initial conditions x(0), and

Ug(t) = B(t)Vp (11)
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is a periodic mode shape matrix. This modal interpretation becomes clearer if the Jordan form Ag is diagonal, whereby (9)
can be decomposed as

N
x="up () e’k gy (0) (12)
k=1

where ug(t) = B(t)vg is a periodic mode shape of mode number k in the original coordinates. It can be shown by
expanding (12) for state variable number i on blade number j that the rotor state variables can contain B different harmonic
components (see [23] for details on a three-bladed rotor) written as

n=1

B
2nn .
Xix = 7Bkt (Ao,ik cos(wg kt + Po i) + > (ABWn,ik cos <(wB,k +nt+—p=(-D+ ¢BWn,ik)

2nn .
+ Apwn,ik COS ((wB,k —nt——=(-D+ ¢FWn,ik> ) + Ap2 ik COS(Wp L + ¢B/2,ik)) g k(0) (13)

where op ) and wg are the modal damping and frequency, respectively, given by the eigenvalue g = g + iwpg with
i = v—1. The amplitudes are determined from the components of the eigenvector v in multi-blade coordinates (4) as
Aok = 190,ikl, Ap/2,ik = |b3/2,ik| (for B even only) and

Agwnik = 31/ (Re(@q ) -+ Im(by, 1) + (Re(by ) — (@ )2
Arwn ik = 3/ (Re(@y ) — 1m(by 1)) + (Re(by o) + Im(ay ) (14)

where a,, ;, and b, ;. are the cosine and sine components of vg , respectively. The constant phases ¢g ik, Ppwn.ik» Prwn.ik:
and ¢B/2,ik in (13) are also given by the eigenvector [23]. The amplitudes with subscript BW denote the backward whirling
components, where for n =1 the reaction force due to this rotor motion rotates against the direction of the rotor.
Conversely, the FW amplitudes represent the forward whirling components, where for n = 1 the reaction force rotates in
the direction of rotor rotation. For n>1 the reaction forces cancel out and these components are called reactionless.

2.2. Lyapunov-Floquet transformation approach

Floquet theory enables the solution of the linear equation system (1) directly without elimination of the periodic
coefficients. Any transient solution at any time t can be formed from N linearly independent solutions of (1) over a single
period t € [0; T] [6]. These solutions @ (t) are collected in the columns of an N x N matrix called the fundamental matrix of
the system:

O) =[@1(1) @2(0) -+ QN @) = ADOP(D) (15)

The solutions may be found by numerical solution of (1) with N linearly independent initial conditions collected as
columns in the matrix ¢(0). Lyapunov’s reducibility theorem [25] states that there exists a transformation of the original
coordinates x that renders the periodic system (1) time-invariant. This Lyapunov-Floquet transformation can be defined as
[26,11,27]

x=Loz, L =ete e 1(0L©O) (16)

where R is a constant non-singular matrix.
To show that the Lyapunov-Floquet transformation (16) eliminates the periodic terms of the system equations, it is
substituted into (1) leading to

z=L""(t)AWDL(t) - Lit)z (17)
which by differentiation of L and use of ¢@(t) = A(t)@(t) can be rewritten as
z=Az (18)
where
AL =L (0)@0)Re ' (0)L(0) (19)

is the time-invariant Lyapunov-Floquet transformed system matrix. Note that it is given by the constant matrix R, and the
choices of initial conditions for the fundamental matrix @(0) and transformation matrix L(0).
If the constant matrix R is defined in terms of the monodromy matrix

C=o 'Ot +T) (20)
as

C=eRT (21)
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then the Lyapunov-Floquet transformation L can be shown to be periodic with period T by combining (16), (20), (21), and
R=VAV

The monodromy matrix can be written in terms of its Jordan form C = PJP~! where J contains the eigenvalues pr of Cin
the diagonal. The eigenvalues are named characteristic or Floquet multipliers. Eq. (21) shows that R is determined as the
matrix logarithm

1 1 .
R =In(C) = zPInQ)P (22)

which exists because C is non-singular [28]; however, R may not be unique. There can be two causes of non-uniqueness of
the matrix logarithm [29]: first, the similarity transformation matrix V of the Jordan decomposition R = VAV~ can have
an infinity of solutions if the Jordan form J of C is non-diagonal. Second, even if J is diagonal, the complex scalar logarithm is
non-unique, which is the case relevant for practical applications.

2.2.1. Modal decomposition of transient solution
A transient solution of the time-invariant Lyapunov-Floquet transformed system Eq. (18) is

z = efLiz(0) (23)

where z(0) = L~1(0)x(0) are the inverse transformed initial conditions. The transformed system matrix (19) can be Jordan
decomposed as

Ap = VIAV]! (24)

where V| = L‘l(O)(p(O)V and the Jordan form of A; is A, because A; is a similarity transform of R (19). The transient
solution (23) then becomes

z =V eMV[1z0) (25)

Note the similarity between this expression and (8). The transient solution (25) can be modally decomposed and written in
the original coordinates using (16) as

x = U(t) eMq(0) (26)
where the initial modal coordinates are
q(0) = VL 'L71(0)x(0) = V-1 @1 (0)x(0) (27)
and the periodic mode shape matrix is
U(t) = LV, = LIOL 1 (0)@O)V (28)

The periodicity of U follows from the periodicity of L.

The matrix R defined by (21) from the monodromy matrix C is still undetermined due to the indeterminacy of the
matrix logarithm in (22). However, when J (the Jordan form of C) is diagonal, then A (the Jordan form of R) will also be
diagonal with the elements

1
1 = 7 In(pr) (29)

which are called the characteristic exponents of the monodromy matrix C, and the similarity transformation matrix P that
brings C to its Jordan form J will also bring R to its Jordan form A, i.e. V = P. Furthermore, the diagonal property of A shows
that the modal decomposition (26) can be written as

N
x =Y u(t) e qu(0) (30)
k=1

where u(t) = L(t)L*1(0)q)(0)v,< is a periodic mode shape of mode number k in the original coordinates and q;(0) is its
modal content in the initial condition.
The characteristic exponents (29) are given by the complex logarithm

. 1 .1 . .
2 = o) +log = zInlp) +i5@rglpE) +ji2m).  ji € Z (31)

where ¢, and w, are the real and imaginary parts of A;, respectively. The integers j, in the imaginary parts are
undetermined for each mode, i.e. the modal frequencies w), are not determined uniquely. A physical explanation to this
indeterminacy is that frequencies depend on the observer’s frame of reference, which is defined by a Lyapunov-Floquet
transformation that is non-unique due to its dependency on R (16). The frequency indeterminacy is now resolved by
defining modal frequencies as those frequencies observed in frequency responses measured in the inertial frame of reference.
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2.2.2. Resolving the indeterminacy of the modal frequencies
Principal Floquet exponents A, = oy + iw, are defined by the modal damping o} and principal frequencies
which are given by

1
O = Tln(lpkl)
1 1 Q; 1 Q 32
wp,k = Targ(pk)s CUp,k € _i ,j ( )

where arg(py) €] — m; m] is implied. The complex logarithm (31) shows that the modal frequency w), is undetermined to
within an integer multiple of the rotor speed:

Q) = (,l)qu +j]<Q (33)

where the indeterminacy for mode number k is denoted by the integer j,. The transient response (30) to a pure excitation of
mode k (obtainable by setting q(0) = 1 and all other initial modal components equal zero) can thereby be written as

Xk(t) = llk(f) e(;hpv"Jrij"Q)t (34)

where the periodic mode shape is given by (16) and (28) as

u,, () = LOL ™1 (0)@(0)vy e Vpkt Tkt
= @ty e Vpk Uit u,, (1) e it (35)

where u,, ;(t) = @(t)vy ekl is the principal periodic mode shape. Both the periodic mode shape u, and the exponential
term in the solution (34) depend on the chosen integers j,. As the exponent has different signs in (34) and (35), the
contributions from jj cancel, and the same transient solution is obtained independent of the values of j,. Hence, a modal
frequency of mode number k can be defined freely within an integer multiple of Q, a choice that also determines the
observer’s frame of reference. The observer of the modal frequencies (33) is placed in the inertial frame of reference, which
makes the modal frequencies similar to those obtained by the Coleman transformation approach, where the periodic mode
shapes are constant for the non-transformed inertial state variables. The objective of the suggested approach is therefore to
make the inertial state variables in the periodic mode shapes constant, or as constant as possible.

The Fourier expansion of the principal periodic mode shape u,, ;(t) contains only harmonics of an integer multiple of Q
because u, ; is T-periodic, and it can be expressed for state variable i as

Upie® = D UpjaIT = 3" UV (36)
Jj=—00 Jj=—00
where %, ;. are the Fourier coefficients.! Using (35) and (36), the periodic mode shape corresponding to the modal
frequency (33) can be written as

U (t) = Z Upjik ell—jQt (37)

Jj=—00
By selecting the undetermined integer j;, for mode k as the index of the largest Fourier coefficient

Jk="{k € 21Uy j1=>Upjix Vi € 2} (38)
the largest harmonic component in the periodic mode shape (37) is removed. Note the index i must correspond to a state
variable in the inertial frame. In the case of an isotropic rotor, % ;. is non-zero only for one ji, and uj, is constant for
inertial state variables. If the rotor has any anisotropy, internally or externally, then % will have several non-zero
components for inertial state variables, but the periodic mode shape u;,(t) is made as constant as possible using (38) to
select ji,.

Johnson [16, p. 374] describes the above method in the following way: “One way to mechanize this choice of frequencies
is to require that the mean value of the eigenvector have the largest magnitude; then the harmonic of largest magnitude in
the eigenvector corresponding to the principal value of the eigenvalue gives the frequency n2n/T”, where “eigenvector”
refers to the periodic mode shape and n is ji. The periodic mode shape has the largest mean value in time, when it is not
oscillating. Johnson'’s statement is, however, in this context only valid when considering the inertial state variables, because

the rotor state variable harmonics can be non-zero at other frequencies than the harmonics of the inertial state variables.

2.2.3. Similarity of Coleman and Lyapunov-Floquet transformations
For an isotropic rotor, the Lyapunov-Floquet transformed solution (23) must be identical to the Coleman transformed
solution (7) when written in the original coordinates. Using the Jordan decomposed forms of the time-invariant system

T The frequency resolution of the Fourier series (36) must be exactly Q implying that the Fast Fourier Transforms of the principal periodic mode
shapes are computed from fundamental solutions obtained in 2" time steps over the period T, where n is an integer.
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matrices, this equality of the solutions becomes

B(0)V e3{(B(0)Vp)~'x(0) = L(t)Vy e*BE L0V )~ 'x(0) (39)

where the Jordan forms A and Ap are identical for the two approaches, because the modal frequencies in the
Lyapunov-Floquet transformed solution are resolved in the inertial frame as in the Coleman transformation solution.

The initial values of the Lyapunov-Floquet transformation (16) L(0) can be chosen arbitrarily. Choosing L(0) = B(0), the
two similarity transformation matrices of the Jordan decomposed forms must be equal, Vg = V|, to satisfy (39) at t =0,
whereby also the transformations become equal, L(t) = B(t), for all t € R.

Hence, the Coleman and Lyapunov-Floquet transformations are identical for an isotropic rotor when the
Lyapunov-Floquet system matrix R is corrected for the initial conditions used in the fundamental solution (19), and
when the Coleman transformation is used as initial condition for the Lyapunov-Floquet transformation. Thus, the Coleman
transformation can be viewed as a special case of the Lyapunov-Floquet transformation which also renders systems with
anisotropic rotors time-invariant.

3. Application to a wind turbine with hinged blades

A structural model of a wind turbine with a minimum degrees of freedom able to represent some of its fundamental
structural dynamics is considered. Fig. 1 illustrates the turbine with three rigid flap-hinged blades and a rigid nacelle that
can tilt and yaw on a rigid tower. The state vector is

X = {91,91,92,92,93,93,9x,9x,9z,92}T (40)

where 0; is the flap-hinge angle of blade j, and 0x and 0; are the tilt and yaw angles of the nacelle, respectively.

The rotor is assumed to be mass balanced and gravity is neglected, whereby the model can be linearized around the
steady-state equilibrium with constant rotor speed and zero deflection angles. In case of gravity, or a mass unbalance, this
linearization is also valid if the deflections in the periodic equilibrium are not too large. The system equations are written in
first-order form (1) with a periodic system matrix (55) in Appendix A. Dissipation is included in the model by viscous
damping forces.

To investigate anisotropy, different values for the blade stiffnesses G1, G,, and G3 can be applied. This type of anisotropy
is chosen to avoid changing the steady-state equilibrium. Table 1 shows the model parameters chosen to represent a
generic multi-MW turbine.

Jy i~ 05
A s
G1,Ga, G G,
1 2, 3@ @7770‘2 Ls (]Z )
o, a

I
1
Py
I
I
1

Fig. 1. A wind turbine with flapwise hinged rigid blades and a rigid nacelle able to tilt and yaw yielding five rotational degrees of freedom: 61, 05, 03, 0x,
and 0.

Table 1
Model parameters for a multi-MW generic wind turbine.

Blade moment of inertia about root Jb 4 % 10° kg m?
Nacelle/tower tilt moment of inertia Jx 8 x 106 kgm?
Nacelle/tower yaw moment of inertia Iz 6 x 10% kgm?
Blade stiffness Gp 8 x 10’ Nm
Nacelle/tower tilt stiffness Gx 7 x 108 Nm
Nacelle/tower yaw stiffness G, 4x 108 Nm
Blade damping Cp 1 x 10° kgm? 5!
Nacelle/tower tilt damping Cx 1 x 106 kgm?2 s~!
Nacelle/tower yaw damping cz 8 x 10° kgm? s~!
Blade mass my 12 x 103 kg

Distance from tower top to hub Ls 4m




PE Skjoldan, M.H. Hansen / Journal of Sound and Vibration 327 (2009) 424-439 431

3.1. Isotropic rotor

The case of an isotropic rotor, G; = G, = G3 =Gy, is studied to show the similarity of the Coleman and
Lyapunov-Floquet transformation approaches.

3.1.1. Coleman transformation approach
Eigenvalue analysis of the time-invariant system matrix (56) in Appendix A yields modal frequencies, damping, and
eigenvectors in multi-blade coordinates. The state variables based on these coordinates are

g = {ag, dp, Ay, a1, by, by, Ox, Ox, 02, 02)7 (41)
(a) (b) (c)
[0} 1 [0} 1 [0 1
8 G- == 3 P el > °
2 e 2 2 2
S / s N s
£ \ £ . IS
< < v/ <
. \,
N B
S R
0 Bi—iopen 5 0 0 & & & Pu—
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Rotor speed [rad/s] Rotor speed [rad/s] Rotor speed [rad/s]
(d) (e)
© Ao 3

[ 1 = = = = [} 1 Aa1 «
© © A
2 ; ; : ; 2 5 Potk
g g_ - - ——A
< |- -] & |—=igizzi T BT X

T Az,k

0 e 0 - ] ~<= Ak
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 - AFW,k
Rotor speed [rad/s] Rotor speed [rad/s]

Fig. 2. Normalized modal amplitudes and whirling amplitudes versus rotor speed Q. (a) First BW mode; (b) first FW mode; (c) symmetric mode; (d)
second yaw mode; and (e) second tilt mode.

(a) (b)
2 1
1.8
16 - — =D — =D — — P — — P— — 08 F-F——<t——-< === =<- —
~IRCS S S B < - D> - =D - = D= — Do | —p— iy
12 2 06 ] nd
0 5 0 —<¢— 2"%yaw
s 1 > —6— Sym.
S 08 | Big:“_'_‘ g 04 { —>— 15w
04 | ] 0.2 1
0.2
0 - - - - - - 0 - - - - - -
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Rotor speed [rad/s] Rotor speed [rad/s]

Fig. 3. (a) Campbell diagram with modal frequencies f} = w; /27 versus rotor speed €. (b) Damping ratios (approx. —g /), for small damping values)
versus rotor speed €.
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where dg, @1, and h; are linear combinations of multi-blade positions and velocities (cf. Eq. (46) in Appendix A). The
azimuth angle ; for blade j is defined as zero for the blade pointing downwards (see Fig. 1), which means that the
coordinate a; in (3) is rotor tilt motion, by is yaw motion, and qg is the symmetric flap of the rotor.
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Fig. 4. Amplitudes (log. scale) and phases of harmonic components Upjik (36) in the principal periodic mode shape for the isotropic rotor at
Q = 1.4rad/s. The bottom scale shows the frequencies in the response measured in the inertial system as (j — j,)Q2 + wj, =jQ + i using (35). (a) First
BW mode; (b) first FW mode; (c) symmetric mode; (d) second yaw mode; and (e) second tilt mode.
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Fig. 2 shows the normalized modal amplitudes as function of rotor speed, where Ag, Ag, k» Ap, k» Axk, and Ay are
absolute values of the eigenvector components and Agyy  and Apy | are obtained from (14) omitting subscripts n =i = 1.
The tilt A, , and yaw Ay, j components represent rotor motion in the inertial frame, mutually exclusive to the whirling
components Agy i and Apy i that represent rotor motion in the rotating frame. The first yaw mode (lowest frequency at
standstill) develops into a mainly backward whirling mode for increasing rotor speed, whereas the first tilt mode develops
into a mainly forward whirling mode. The second yaw and tilt modes with similar amounts of forward and backward
whirling at all rotor speeds remain yaw and tilt modes. The symmetric mode has only the Ap3 component and does not
couple to the nacelle in this model with an isotropic rotor.

Fig. 3(a) shows the modal frequencies as function of rotor speed in a Campbell diagram. The frequency of the symmetric
mode increases with the speed due to centrifugal stiffening, which derives from terms proportional to Q2 in the stiffness
matrix (54c). The frequencies of the two lowest asymmetric modes split as they develop into backward and forward
whirling modes, while the modal frequencies of the two highest asymmetric modes remain constant due to the small
whirling amplitudes in these modes. Fig. 3(b) shows the damping ratios, which vary mainly due to the change in frequency.

3.1.2. Lyapunov-Floquet transformation approach

The periodic system equations (1) with (55) are integrated 10 times for linearly independent initial conditions @(0) =1
to obtain the fundamental solution matrix (15) and monodromy matrix (20). Eigenvalue analysis of the monodromy matrix
yields 10 distinct characteristic multipliers with linearly independent eigenvectors, whereby the system can be modally
decomposed. The characteristic exponents (29) provide the principal frequencies wp in the interval ] - €/2;Q/2] and
damping gy, using (32). The principal periodic mode shapes u,,  are computed from (35) with j; = 0.

Fig. 4(a) shows the amplitudes and phases of the Q-harmonic components in the principal periodic mode shape of the
first BW mode at the rated rotor speed Q = 1.4rad/s. The modal frequency is determined from (38) using the dominating
inertial component 0z as wp, 1 4 22 = 0.45 Hz. The modal frequency of the first FW mode shape is similarly determined as
Wp + 4 ~ 0.86 Hz from Fig. 4(b).

The direction of the rotor whirl can be determined from the phases of the individual blades. If the difference in phase
between all blades is less than /3, the harmonic is termed symmetric (S); otherwise it is termed backward whirling (BW)
or forward whirling (FW) depending on the order of the phases of the individual blades (cf. Eq. (13)). The dominating rotor
state variable harmonics in Figs. 4(a) and (b) thereby identify the first BW and first FW modes, respectively.

The phases in Fig. 4(c) show that the motion of the rotor state variables is symmetric, which means that they oscillate
with the modal frequency. Thus, in the absence of any motion of the inertial state variables, the modal frequency is
determined from the rotor component 0 as w,3 +3Q ~ 0.75Hz.

The mode in Fig. 4(d) is termed the second yaw mode because 6, is the most dominating inertial component, and
because the BW and FW components are similar in magnitude, whereby the mode cannot be characterized as whirling. The
modal frequency is determined from the 6, component as wy, 4 + 79 ~ 1.47 Hz. Similarly, the mode in Fig. 4(e) is termed
the second tilt mode from the dominating 0x component and has modal frequency wps + 7€ ~ 1.59Hz.

The amplitudes of the 2-harmonic components in the principal periodic mode shape are listed in Table 2. They are equal
to the modal amplitudes obtained from the Coleman transformation approach shown in Fig. 2 for Q@ = 1.4rad/s.

3.2. Anisotropic rotor

An anisotropy is applied to the blade stiffnesses as G; = 1.1G, and G, = G3 = 0.95G}, such that the mean stiffness is not
changed. The modal frequencies determined from the Lyapunov-Floquet transformation approach change less than 0.5
percent compared to the isotropic case. Fig. 5(a) shows the amplitudes of the 2-harmonic components in the principal
periodic mode shape of the first BW mode. The mode shape now contains several Q2-harmonics, whereas there are at most
three Q-harmonics in the isotropic case. Similar results are obtained for the other asymmetric modes in Figs. 5(b, d, e).

Fig. 5(c) shows that the symmetric mode is not pure, i.e. there are whirling components in the mode shape. The stiffness
anisotropy causes several Q-harmonics in the symmetric mode shape for state variables in both the inertial and rotating

Table 2
For the isotropic rotor: modal frequencies and normalized amplitudes obtained from a Fourier transform of the periodic mode shape.

Mode First BW Sym. First FW Second tilt Second yaw
fi (Hz) 0.448 0.746 0.864 1.470 1.590

Ay (F) 0.0000 1.0000 0.0000 0.0000 0.0000
Apwi (Fi + Q/2m) 1.0000 0.0000 0.1605 0.6895 0.5228
Apwk (F — Q/2m) 0.0002 0.0000 1.0000 0.6545 0.7748

Axk (fr) 0.1898 0.0000 0.3115 0.1310 1.0000

Azk (i) 0.3449 0.0000 0.4888 1.0000 0.1181

Amplitudes Ag y, Agw k. and Apy i are obtained from 60y and A and A, from 0x and 0, respectively. In parentheses are noted the frequencies of the
harmonic components, /27 = 0.223 Hz.
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Fig. 5. Amplitudes (log. scale) and phases of harmonic components %, ;; (36) in the principal periodic mode shape for the anisotropic rotor at
Q = 1.4rad/s. The bottom scale shows the frequencies in the response measured in the inertial system as (j — j;)Q + wy = jQ + wp  using (35). (a) First
BW mode; (b) first FW mode; (¢) symmetric mode; (d) second yaw mode; and (e) second tilt mode.

frames, unlike the isotropic case involving only one harmonic in the rotor state variables. The symmetric mode has BW
rotor components at even multiples of 2 above the symmetric rotor harmonic (the difference between the symmetric and

the BW harmonics is an even number) and FW rotor components at even multiples of 2 below it.
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Fig. 6. RMS values of the steady-state nacelle tilt response 0x (containing multiple harmonics) due to a harmonic excitation on the same degree of
freedom for the anisotropic rotor and Q = 1.4rad/s = 0.223 Hz.

The asymmetric mode shapes in Figs. 5(a, b, d, e) have BW and FW rotor components next to the dominating inertial
component as in the isotropic case (cf. Eq. (13)). Additionally, the anisotropy creates BW rotor components at odd multiples
of Q above the dominating inertial component and FW rotor components at odd multiples of Q below it. For all modes the
inertial components appear between the whirling rotor components with an interval of 2Q.

To study the effect of the additional harmonic components in the periodic mode shapes of the anisotropic rotor, the
steady-state tilt response 0x due to a harmonic excitation on 0x is computed for a range of frequencies by a brute force
approach using time integrations until a steady-state is reached for each excitation frequency. Steady state is here defined
as the case where the frequency spectra of the response in two successive time intervals of 64 excitation periods are similar,
with a maximum relative difference of 1 percent between the frequency components that have amplitudes larger than 0.1
percent of the maximum amplitude. These steady states may contain multiple harmonics, and the response is therefore
represented by the rms value taken over the 64 excitation periods.

Fig. 6 shows peaks in the response at the modal frequencies denoted by the solid lines, except for the symmetric mode,
due to the asymmetry of the excitation. The first smaller peak at f, — 2Q = 0.41 Hz matches the harmonic at 2Q2 below the
dominating harmonic component of 6y in the mode shape of the first FW mode in Fig. 5(b). Likewise, the peak at
f1+2Q =0.89Hz is 2Q above the frequency of the dominating harmonic of 0y in the first BW mode shape in Fig. 5(a). The
peaks around the symmetric modal frequency at f3 — Q2 =0.53Hz and f3 + Q@ = 0.97 Hz correspond respectively to the
harmonics of 0y at Q2 around the dominating rotor harmonic in Fig. 5(c). The two peaks at fs5 —2Q = 1.14Hz and
f5+2Q = 2.04Hz correspond respectively to the harmonics of 0x at +2Q around the dominating harmonic of 0y in the
second tilt mode shape in Fig. 5(d). The response has a small peak at the second yaw modal frequency because 6x motion is
involved only slightly in this mode, as seen by the amplitude of 6x being much smaller than that of 0, in the dominating
harmonic in Fig. 5(e). This forced response analysis confirms the validity of predicting important aspects of the response by
using the modal frequencies and periodic mode shapes. The obtained insight about Q-harmonics in the periodic mode
shape and their relation to the modal characteristics (symmetric or whirling rotor modes) can be used to understand
frequency spectra and identify modes in measured or simulated time series of design determining loads.

4. Conclusion

In this paper, two methods for modally analyzing structures with bladed rotors are considered: the Coleman
transformation approach and the Lyapunov-Floquet (L-F) transformation approach. The Coleman transformation is a
special case of the L-F transformation for an isotropic rotor. The Coleman approach transforms rotor state variables into the
inertial frame of reference and makes the system equations of structures with an isotropic rotor time-invariant, enabling
eigenvalue analysis. The L-F approach is applicable to any periodic system but introduces an indeterminacy on the system
frequencies and the transformation yielding a time-invariant system. Based on the similarity of the Coleman and the L-F
approaches, the modal frequencies in the L-F approach are chosen such that the periodic mode shapes become as constant
as possible for inertial state variables. In the example with a three-bladed wind turbine with an isotropic rotor the modal
frequencies obtained using both approaches are identical. When introducing a rotor anisotropy to the blade stiffnesses,
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meaningful modal frequencies are still obtained. However, state variables in the periodic mode shape, both in the rotor and
in the inertial frame, now contain multiple harmonics that lead to multiple resonance frequencies for a single mode.
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Appendix A

The equations of motion of a structure with a bladed rotor linearized about a steady state can be written in second-order
form as

M(t)y + C(t)y + K(t)y =0 (42)

where y contains the generalized coordinates of the system, and the matrices M, C, and K are the periodic mass, gyroscopic/
damping, and stiffness matrices, respectively. For an isotropic rotor, these periodic matrices of the second-order equations
can all be written in a generic form as

[ Gp Gpp1 Gpro - Gppa Gpp1 Gps (D) ]
Gpp,1 Gp Gpp1 -+ Gppz  Gppa  Gpsp(D)
Gy Gppa Gy, -+ Gppga  Gppz  Gps3(®)
G(t) = : : : - : : : (43)
Gppr  Gppz  Gppg - Gy Gppy Gpsp1(D)
Gpp1 Gppo  Gpp3z 0 Gpp1 Gy Gpep(d)
Gp1(0) Gepo(t) Ggp3(t) -+ Gopp 1 Gepp Gs

where Gy, and Gs are constant matrices describing the internal forces in the individual blades and the support and
GSb,i(t) = G(S:b Cos l//,‘ + sz sin lpi
Gps i(t) = G, cos Yh; + Gig siny; (44)

where Gi, G, G,, and G, are constant matrices describing the coupling forces between blades of the rotor and its
support. The constant matrices Gy, ; describe the coupling forces between blades j and j + i.

A.1. Coleman transformation of first-order state space equations
The Coleman transformation of state variables (3) implies that the generalized coordinates and velocities are
transformed as
y:lez and y:Bziz (45)

where the Coleman transformation matrix B; is given by (3) with half sized Iy, and Iy, corresponding to the number of
generalized coordinates, and not state variables. The vector Z, represents the Coleman transformed generalized velocities,
which are related to the time derivatives of the Coleman transformed generalized coordinates as

7y = (MyZy + 7 (46)
where @, is the constant matrix relating the Coleman transformation matrix and its derivative [23] as
By(t) = By (), (47)
Using that § = By@,Z, + ByZ, and (46), the Coleman transformation of the second-order equations (42) becomes
Mgz, + Mp@,Z, + CpZ, + Kz, = 0 (48)

where Mg = B; 'MB,, Cg = B; !CB,, and Kp = B; 'KB, are Coleman transformed system matrices.
Egs. (46) and (48) can be rewritten in matrix form as

iz —(I)z I ZZ 49
L[| -Mg'Kg —-Mz'Cg—a, || 2 (49)

where {ZT,zg} contains the multi-blade state variables and original support state variables.
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To use the Coleman transformation given by (3), this multi-blade state vector and the original state vector containing
the general coordinates y and velocities y must be permuted as

x=PX{¥}, z=PX{%2} (50)
y L%)

where the permutation matrix Py orders the state variables in x as given by (2). The Coleman transformed system matrix
(6) thereby becomes

—@, 1 .
Ap =Py M;'Kz —M3'Cp — &y Py (51)

where the matrices Mg, Cg, and Ky are time-invariant for isotropic rotors, as seen by derivation of the Coleman
transformation of the generic matrix (43) after substantial algebraic manipulation using the trigonometric addition
formulas and identities for sums of harmonics of evenly spaced angles [16]:

[Ggo O 0 0 0 0 0 0 0
0 Gg; O 0 0 0 0 0 Gi,
0 0 Gg; O 0 0 0 0 G,
0 0 0 Gz, O 0 0 0 0
0 0 0 0 Gpy 0 0 0 0

Gp = 351632 = : : : : : - : : : : (52)

0 0 0 0 0 G; O 0 0
0 0 0 0 0 0 Gy; 0 0
0 0 0 0 0 0 0 Ggpgo O

| 0 56, 565, o0 0 o o 0 G|

where the first B diagonal entries are defined by
5 .
GB,i = Gb + Z 2 cos(2nin/B)bevn —+ (_1)leb,B/2 (53)

n=1

withi=0,1,...,BforBodd and i =0,1,...,3,B/2 for B even.

A.2. Second-order system matrices of wind turbine with three flap-hinged blades

The mass matrix M, gyroscopic/damping matrix C, and stiffness matrix K for the wind turbine with flap-hinged blades
in Fig. 1 are given by

Jo 0 0 Jpcosyy  —Jpsinyy
0 Jb 0 Jocosyy  —Jpsiny;
M(t) = 0 0 b Jpcosys —Jpsinys (54a)
Jpcosyry  Jpcosyy  Jpcosys  Jx+3)y +Jo 0
—Jpsinygy  —Jpsinyg,  —Jpsinys 0 Je+3+Jo
cg 0 0 =2QJysinyq —2QJ,cosy

0 c 0 =2QJysiny, —2QJ,cosy,
Ct)=|0 0 c3 —-2Qsiny3 —2QJ,cosys (54b)
0 0 0 Cx 3Q),
0 0 O 39), ¢
G1 + Q%) 0 0 0 0
0 Gy + 2%, 0 0 o
K(t) = 0 0 G3+Q%, 0 0 (54c¢)
szb cos yrq QZ]b cos szb cosfy3 Gx O

—szb siny/q —szb siny, —szb sinyy3 0 G;
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where Jg = 3mbL§ and y; = Qt + 27(j — 1)/3. The periodic system matrix of the first-order equations (1) can be derived
from

I

0
T
M OK® —M- (e |Px (55)

At =Px|

Extracting the generic form of these system matrices, the Coleman transformed system matrix of the first-order equations
can be derived from (51) and (52) as

0 1 0 0
Gb 2 b
b2 _°b 0 0
Jb Jb
0 0 0 1
Gy, 3G ) ( 3 1)
0 0 —b_ b2 (.2
Jo 2o+ 2y P\2J0 +2/x o
As — 0 0 Q 0
0 0 0 Q
0 0 0 0
0 0 BGb 3Cb
2Jo + 2Jx 2Jp + 2Jx
0 0 0 0
| o0 0 0 0
0 0 T
0 0 0
-Q 0 0
GX Cx
0 -Q 0 2Q
Jo+Jx  Jo+Jx
0 1 0 0 0 0
Gb 3Gb 2 < 3 1) GZ Cz
b2 _0? (st 0 20 - - (56)
b 2o+2], P\2Jo +2I; ' Jp Jo+Jl: Jo+lI;
0 0 0 1 0 0
Gx Cx
0 0 - — 0
Jo+Jx  Jo+Jx
0 0 0 0 0 1
_ 3Gb _ 3Cb 0 _ GZ _ Cz
2Jo +2J; 2Jp +2J; Jo+lz  Jo+Jz)
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