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The dynamic response of an end bearing pile embedded in transversely isotropic

saturated soil and subjected to a time-harmonic torsional loading is investigated. Based

on the dynamic wave equations of saturated soil and the stress–strain relationships of

transversely isotropic medium, the dynamic governing equations of the transversely

isotropic saturated soil are derived in cylindrical coordinates and the pile is modeled

using one-dimensional elastic theory. At first, the torsional response of the soil layer is

solved by using the separation of variables technique. Then by utilizing the boundary

and continuity conditions of the pile–soil system, the dynamic response of the pile is

obtained in a closed form in the frequency domain. By virtue of inverse Fourier

transform and convolution theorem, a quasi-analytical solution for the velocity response

of a pile subjected to a semi-sine wave exciting torque is obtained in the time domain.

Finally, a parametric study has been undertaken to investigate the influence of the soil

anisotropy on the torsional vibration characteristics of the pile, and the results obtained

are presented in this paper.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Pile foundations of machines and structures are often subjected to dynamic loading caused by running machinery and
due to impact, wind or wave forces. Generally speaking, dynamic loadings result from a combination of the vertical,
horizontal and torsional loading components. In previous years, the vibration characteristics of pile subjected to dynamic
vertical and horizontal loadings have received much attention from investigators and corresponding pile vibration theories
have been developed to provide valuable guidance for geotechnical and foundation engineering design. For instance, Novak
[1] studied the dynamic response of pile subjected to horizontal, vertical and rocking loadings and applied the
corresponding theory to predict the vibration characteristic of the machine foundation. Aviles and Sanchez-Sesma [2]
analyzed the problem of foundation isolation from vibrations generated in the neighborhood using piles as barriers. Yesilce
and Catal [3] investigated the free vibration of the pile in soil having different modulus of subgrade reaction and provided
some useful guidelines for engineering design. Wang [4] applied the pile longitudinal vibration theory to the dynamic non-
destructive testing of piles by using Laplace transform techniques.

It is worth noting that torsional loading commonly occurs in typical pile foundations including those of machinery,
bridges, pylons, towers and lighting posts due to eccentricity in applied lateral loads. Dynamic torsional loading in pile
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foundations is therefore a technically relevant problem of some practical interest. The dynamic behavior of piles embedded
in isotropic media and subjected to transient torsional loading has been investigated by a variety of methods categorized as
simplified continuum, continuum, finite element and boundary element methods. Baranov [5] presented a simplified
continuum method and investigated the vertical vibration of embedded foundations. In the simplified continuum method,
the soil is assumed to be composed of a set of independent infinitesimally thin horizontal layers that extend to infinity
radially, and the gradients of displacement and stress in the vertical direction are neglected. In subsequent studies, Novak
and Howell extended the simplified continuum method to torsional mode and analyzed the torsional vibration of piles
embedded in a uniform [6] and layered viscoelastic soil media [7]. In their studies, they also investigated the vibration
characteristics of the machine foundation. Militano and Rajapakse [8] studied the time domain vibration characteristics of
an elastic pile subjected to transient torsional and axial loading in multilayered elastic soil by utilizing the Laplace
transform and inverse Laplace transform techniques. It is noted that a deficiency of the simplified continuum method is
that it assumes a highly idealized mechanism of pile–soil interaction. The second method of solving the pile–soil torsional
interaction problem, the continuum method, includes a more realistic pile–soil coupling. Here the pile–soil system is often
decomposed into an extensive elastic half-space and a fictitious pile. The Hankel transform, integral equation formulation,
Green’s functions and variational schemes are then introduced to obtain the solutions of the pile response. In the
subsequent studies, Rajapakse et al. [9] solved the axisymmetric torsional vibrations of an elastic pile and hemispherical
foundation embedded in a homogeneous elastic half-space by means of a variational solution scheme. Using time-
harmonic Green’s functions, Rajapakse and Shah [10] investigated the axial, lateral, rocking, coupled and torsional
impedances of an elastic pile embedded in an elastic half-space. Cai et al. [11] analyzed the dynamic torsional response of
an elastic pile embedded in saturated elastic half-space by utilizing Hankel transform and Fredholm integration equation
schemes. However, in most cases, the solutions derived from the continuum method are only suitable for a floating pile and
the corresponding numerical calculation always requires intensive computational effort. In light of this, Wang et al. [12]
developed a comprehensive analytical solution to investigate the torsional vibration of an end bearing pile embedded in a
homogeneous saturated soil and subjected to a time-harmonic torsional loading by using the method of separation of
variables. The third and fourth methods are the finite element method (FEM) and the boundary element method (BEM). For
instance, Tham et al. [13] studied the torsional vibration of single pile embedded in a layered half-space with a coupled
FEM–BEM approach. Although FEM and BEM are extensively applicable to most complicated cases, they also require
considerable computational effort and lack stability in the dynamic analysis. As a consequence, relatively little has been
reported about these methods for studying piles subjected to dynamic loads.

Most of the previous studies on piles had regarded soil as an isotropic medium. However, in practice soil deposits,
generally speaking, possess a certain degree of anisotropy due to their deposition history resulting in properties that are
different in the horizontal and vertical spatial directions. The vertical and horizontal differences can be accounted for using
a transversely isotropic soil model [14] which a simple isotropic model cannot. Tsai [15] investigated torsional vibration of
a circular disk on a transversely isotropic half-space by using Hankel transform. It is evident from Tsai’s study that the
anisotropy material constants had obvious influence on the resonant amplitude and frequencies of vibration. Liu and Novak
[16] studied the dynamic response of single pile embedded in transversely isotropic layered media by using FEM combined
with dynamic stiffness matrices of the soil derived from Green’s functions for ring loads. Notwithstanding the work above,
it appears that no analytical solution corresponding to the torsional vibration characteristics of an end bearing pile
embedded in transversely isotropic saturated soil has been reported in open literature until now. This paper generalizes the
previous work of the authors [12] by developing analytic and quasi-analytic solutions of an embedded end bearing pile in
transversely isotropic soil subjected to dynamic torsional loading. The previous work [12] sought solutions in an isotropic
soil only, and is a special case of the solutions given herein. The analytic and quasi-analytic solutions are not only useful
such as for providing a theoretical basis for non-destructive pile testing and for assessing the pile–soil responses under
incremental dynamic torsional loading, they can also serve as benchmarks for validating the accuracy and correctness of
more powerful numerical solutions. The work in this paper embodies one step in our attempt to progressively develop
more complex methods and models in future work, and a conscious effort to understand the causality link of a key
parameter, the anisotropy of soil through analytic solutions. Thus, using the solution developed herein, a parametric study
has been undertaken to assess the influence of soil anisotropy on the vibration behavior of the pile and a discussion of the
results is included in this paper.
2. Basic equations and solutions

2.1. Basic equations

The problem investigated in this paper is that of the torsional vibration of an end bearing pile embedded in a
transversely saturated soil medium under small deformations and strains conditions. The present paper does not deal with
a pile at failure as this is clearly beyond the scope of this study, although Zhang and Kong [17] have suggested that a pile
can be loaded to failure more easily by torsional loading than by compressive loading. Solutions developed below are,
however, applicable for non-destructive torsional testing of a pile and for studying pile responses under incremental
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Fig. 1. Geometry of the pile and embedded poroelastic medium.
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torsional loading above an initial dynamic equilibrium state. Given this, the geometric model is idealized as shown in Fig. 1
and the following assumptions are made during the analysis:
(1)
 The exciting torque is harmonic. The pile–soil system is subjected to small deformations and strains during the
vibration. Only the circumferential displacements are considered.
(2)
 The pile is vertical, elastic, end bearing, circular in cross section and has a perfect contact with the surrounding soil
during vibration.
(3)
 The soil is a linearly elastic and transversely isotropic saturated layer. The layer overlies a rigid bedrock (i.e., the rigid
bedrock extends continuously in the radial direction).
(4)
 The free surface of the soil has no normal and shear stresses and there is no displacement occurring at the bottom of
the layer. The soil is infinite in the radial direction.
As shown in Fig. 1, the dynamic equilibrium equation for the saturated soil undergoing torsional axisymmetric
deformations about the z-axis of a cylindrical polar coordinate system can be expressed as follows [18]:

qsryðr; z; tÞ

qr
þ
qsyzðr; z; tÞ

qz
þ

2sryðr; z; tÞ

r
¼ rq

2uyðr; z; tÞ

qt2
þ rf

q2wyðr; z; tÞ

qt2
(1)

where sryðr; z; tÞ and syzðr; z; tÞ denote the incremental shear stresses of the soil, uyðr; z; tÞ and wyðr; z; tÞ are, respectively, the
circumferential displacement of the solid phase and that of the fluid phase relative to the solid phase but measured in
terms of the volume per unit area of the bulk material; n is the porosity; rs and rf are the mass densities of soil particle and
fluid, respectively; and r ¼ ð1� nÞrs þ nrf , the mass density of soil.

The stress–strain relationship in cylindrical coordinates for a transversely isotropic medium can be written in the
following form [14]:

syz ¼ c44gyz

sry ¼ ðc11 � c22Þgry=2 (2)

where c11, c22 and c44 are the material constants. In the soil mechanics, c44 ¼ Gsv and ðc11 � c22Þ=2 ¼ GsH, where Gsv and
GsH are the vertical and horizontal shear modulus of the soil, respectively.

Due to the symmetry of the problem, the motion is independent of angle y. Then, the strain–displacement relations
written in cylindrical coordinates can be simplified as [15]

gyz ¼
quy
qz
þ

1

r

quz

qy
¼
quy
qz

gry ¼
1

r

qur

qy
þ
quy
qr
�

uy
r
¼
quy
qr
�

uy
r

(3)
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Substituting Eqs. (2) and (3) into Eq. (1), the equilibrium equation of transversely isotropic saturated soil can be expressed as

GsH
q2

qr2
þ

1

r

q
qr
�

1

r2

 !
uyðr; z; tÞ þ Gsv

q2uyðr; z; tÞ

qz2
¼ rq

2uyðr; z; tÞ

qt2
þ rf

q2wyðr; z; tÞ

qt2
(4)

Considering the symmetry of the problem, the equilibrium equation of the pore fluid can be written as

rf g

kh

qwyðr; z; tÞ

qt
þ rf

q2uyðr; z; tÞ

qt2
þ
rf

n

q2wyðr; z; tÞ

qt2
¼ �

1

r

qPw

qy
¼ 0 (5)

where kh denotes the horizontal dynamic permeability coefficient containing the viscosity of the liquid; g is the gravitational
acceleration; and Pw is excess pore water pressure.

For the harmonic motion, uyðr; z; tÞ ¼ uyðr; zÞe
iot and wyðr; z; tÞ ¼ wyðr; zÞe

iot , where i ¼
ffiffiffiffiffiffiffi
�1
p

, o is circular frequency of
excitation and t is usual time variable. Then, Eqs. (4) and (5) can be expressed as

GsH
q2

qr2
þ

1

r

q
@r
�

1

r2

 !
uyðr; zÞ þ Gsv

q2uyðr; zÞ

qz2
¼ �ro2uyðr; zÞ � rfo

2wyðr; zÞ (6)

irf g

kd
wyðr; zÞ � rfouyðr; zÞ �

rfowyðr; zÞ

n
¼ 0 (7)

Substituting Eq. (7) into Eq. (6), the governing equation of saturated soil can be written as

d
q2

qr2
þ

1

r

q
qr
�

1

r2

 !
uyðr; zÞ þ

q2uyðr; zÞ

qz2
¼ �

o2

Gsv
rþ

nrfo
ib=rf �o

 !
uyðr; zÞ (8)

where b ¼ nrf g=kh; d ¼ GsH=Gsv is the material parameter of transversely isotropic soil and denotes the ratio of the soil
horizontal shear modulus to the soil vertical shear modulus, which describes the degree of anisotropy of the soil.

For an elastic pile subjected to harmonic torsional loading (see Fig. 1), the twist angle, fðz; tÞ ¼ fðzÞeiot , is governed by
the following one-dimensional equation of motion [8]:

Gp
q2
½fðzÞeiot �

qz2
þ 4

f ðzÞeiot

r2
0

¼ rp
q2
½fðzÞeiot �

qt2
(9)

where Gp, rp, r0 and fðzÞ are the shear modulus, mass density, radius and the twist angle amplitude at depth z of the pile,
respectively; f ðzÞ denotes amplitude of the contact traction along pile–soil interface.

The boundary conditions of the soil layer can be written as

syzðr; zÞjz¼0 ¼ 0 (10)

uyðr; zÞjz¼H ¼ 0 (11)

The boundary conditions of the pile can be expressed as

dfðzÞ
dz

����
z¼0
¼ �

T0

GpIp
(12)

where Ip ¼ pr4
0=2 denotes the polar moment inertia of the pile and T0 is the amplitude of the harmonic excitation torque

acting at the pile top.

fðzÞjz¼H ¼ 0 (13)

The continuity conditions of interface of the pile and soil can be written as

uyðr; zÞjr¼r0
¼ fðzÞr0 (14)

f ðzÞ ¼ sryðr; zÞjr¼r0
¼ GsH

quyðr; zÞ

qr
�

uyðr; zÞ

r

� �����
r¼r0

(15)

2.2. Dynamic response of a transversely isotropic saturated soil

To solve Eq. (8), the following single-variable function uyðr; zÞ is introduced:

uyðr; zÞ ¼ RðrÞZðzÞ (16)
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The substitution for uyðr; zÞ from Eq. (16) into Eq. (8) yields

d
d2RðrÞ

dr2
þ

1

r

dRðrÞ

dr
�

1

r2
RðrÞ

" #
ZðzÞ þ RðrÞ

d2ZðzÞ

dz2
¼ �

o2

Gsv
rþ

nrfo
ib=rf �o

 !
RðrÞZðzÞ (17)

Then, Eq. (17) can be split into two differential equations:

d2ZðzÞ

dz2
þ h2ZðzÞ ¼ 0 (18)

r2 d2RðrÞ

dr2
þ r

dRðrÞ

dr
� ð1þ q2r2ÞRðrÞ ¼ 0 (19)

where constants h and q satisfy the following relationship:

q2 ¼
h2

d
�

o2

Gsvd
rþ

nrfo
ib=rf �o

 !
(20)

The general solutions of Eqs. (19) and (20) can be expressed as

ZðzÞ ¼ C sinðhzÞ þ D cosðhzÞ (21)

RðrÞ ¼ AK1ðqrÞ þ BI1ðqrÞ (22)

where I1ðqrÞ and K1ðqrÞ are the modified Bessel functions of the first and second kind of the first order, respectively; A, B, C

and D are constants which can be obtained from the boundary conditions.
It is noted from Eq. (22) that B should vanish to zero to guarantee bounded displacements and stresses as r!1.

Substitution of boundary conditions that are given in Eqs. (10) and (11) into Eq. (21) results in

C ¼ 0 (23)

hm ¼
ð2m� 1Þp

2H
; m ¼ 1;2;3; . . . (24)

Then the general solution of Eq. (8) can be written in a series expansion as

uyðr; zÞ ¼
X1
m¼1

DmK1ðqmrÞ cosðhmzÞ (25)

where

q2
m ¼

h2
m

d
�

o2

Gsvd
rþ

nrfo
ib=rf �o

 !
(26)

and Dm ðm ¼ 1;2;3; . . .Þ are a series of constants.
The circumferential shear stress amplitude of the interface of the pile and soil can be expressed as

sryðr; zÞjr¼r0
¼ �GsH

X1
m¼1

DmqmK2ðqmr0Þ cosðhmzÞ (27)

where K2ðqmrÞ denotes the modified Bessel functions of the second kind of the second order.
It is mathematically convenient at this stage to introduce the dimensionless quantities:

r ¼
r

H
; z ¼

z

H
; r0 ¼

r0

H
; a0 ¼

ffiffiffiffiffiffiffiffi
r

Gsv

r
r0o; hm ¼ Hhm ¼

p
2
ð2m� 1Þ,

q̄m ¼ Hqm; rf ¼
rf

r
; b ¼

br0ffiffiffiffiffiffiffiffiffiffiffi
rGsv

p
Using the dimensionless variables, given above, Eq. (26) can be rewritten as

q̄2
m ¼

h
2
m

d
�

a2
0

dr̄2
0

1þ
nr̄f a0

ib=rf � a0

 !
(28)
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2.3. Impedance of a pile

By utilizing the stress continuity condition that is given in Eq. (15), substituting Eq. (27) into Eq. (9) yields

d2fðzÞ
dz2

þ
rpo2fðzÞ

Gp
¼

4GsH

Gpr2
0

X1
m¼1

DmqmK2ðqmr0Þ cosðhmzÞ (29)

It is not difficult to show that the solution of Eq. (29) can be expressed as

fðzÞ ¼ a1 cos

ffiffiffiffiffiffi
rp

Gp

s
oz

 !
þ a2 sin

ffiffiffiffiffiffi
rp

Gp

s
oz

 !
þ
X1
m¼1

cm cosðhmzÞ (30)

where a1 and a2 are the coefficients which remain to be determined later from the boundary conditions; and

cm ¼ �
4GsHqmK2ðqmr0ÞDm

Gpr2
0 h2

m �
rpo2

Gp

 ! (31)

During the vibration, the pile and the soil interact, so the vibration characteristics of the pile should be expressed in two
parts. The first part is free vibration characteristics of the pile, as shown in the first and second terms in the right-hand side
of Eq. (30). Because of the reaction from the soil, the second part represents the forced vibration characteristics of the pile,
as is shown in the third term in the right-hand side of Eq. (30).

By using the displacement continuity condition that is given in Eq. (14), substituting Eqs. (30) and (25) into Eq. (14)
results in

r0 a1 cos

ffiffiffiffiffiffi
rp

Gp

s
oz

 !
þ a2 sin

ffiffiffiffiffiffi
rp

Gp

s
oz

 !
þ
X1
m¼1

cm cosðhmzÞ

( )
¼
X1
m¼1

DmK1ðqmr0Þ cosðhmzÞ (32)

By invoking the orthogonality of eigenfunctions cosðhmzÞ ðm ¼ 1;2;3; . . .Þ, multiplying cosðhmzÞ on both sides of Eq. (32),
and then integrating over the interval z ¼ ½0;H�, the undetermined coefficient Dm is found to be

Dm ¼
1

LmEm

Z H

0
P cosðhmzÞdz (33)

where

Lm ¼

Z H

0
cos2ðhmzÞdz ¼

H

2
; P ¼ a1 cos

ffiffiffiffiffiffi
rp

Gp

s
oz

 !
þ a2 sin

ffiffiffiffiffiffi
rp

Gp

s
oz

 !

Em ¼
1

r0
K1ðqmr0Þ þ

4GsHqmK2ðqmr0Þ

Gpr0 h2
m �

rp

Gp
o2

� �
2
664

3
775

It is again mathematically convenient at this stage to introduce the following dimensionless quantities:

rp ¼ rp=r; m ¼
Gpffiffiffi
d
p

Gsv
;

ffiffiffiffiffiffi
rp

Gp

s
oz ¼

1

r0

ffiffiffiffiffiffiffiffiffiffi
rp

m
ffiffiffi
d
p

s
a0z ¼ lz; Em ¼ r0Em ¼ K1ðqmr0Þ þ

4qm

ffiffiffi
d
p

K2ðqmr0Þ

mr0ðh
2
m � l

2
Þ

The amplitude of the twist angle of the pile is then given by

fðz̄Þ ¼ a1 cosðl̄z̄Þ þ
X1
m¼1

xm cosðh̄mz̄Þ

( )
þ a2 sinðl̄z̄Þ �

X1
m¼1

zm cosðh̄mz̄Þ

( )
(34)

where

xm ¼ nm
1

l̄� h̄m
sinðl̄� h̄mÞ þ

1

l̄þ h̄m
sinðl̄þ h̄mÞ

� 	

zm ¼ nm
1

l̄þ h̄m
fcosðl̄þ h̄mÞ � 1g þ

1

l̄� h̄m
fcosðl̄� h̄mÞ � 1g

� 	

nm ¼ �
4q̄m

ffiffiffi
d
p

K2ðq̄mr̄0Þ

r̄0m̄ðh̄
2
m � l̄2

ÞĒm

(35)
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Based on the boundary conditions of the pile, then substituting Eqs. (12) and (13) into Eq. (34), the variables a1 and a2 are
obtained:

a1 ¼
T0H

GpIpl̄
tan l̄ (36)

a2 ¼ �
T0H

GpIpl̄
(37)

so that the dimensionless torsional impedance at the top end of the pile is given by

kT ¼
3T0

16Gsvr3
0f z̄ ¼ 0ð Þ

¼
3pr0lm

32 1þ
P1

m¼1
xm

 !
tan l̄þ

P1
m¼1

zm

" # (38)

where the real and imaginary parts of kT denote the real stiffness and dynamic damping, respectively.
The frequency response function of twist angle of the pile top can be written as

HyðoÞ ¼
fðzÞ
T0

����
z̄¼0
¼

r0

GpIp
H0yðoÞ (39)

where the non-dimensional frequency response function of twist angle of the pile top is

H0yðoÞ ¼
tanl 1þ

P1
m¼1

xm

 !
þ
P1

m¼1
zm

" #

lr0

(40)

The admittance function of angular velocity of the pile top can be further expressed as

HvðoÞ ¼ ioHyðoÞ ¼
i

vpsIprp
tan l 1þ

X1
m¼1

xm

 !
þ
X1
m¼1

zm

" #
(41)

By applying the inverse Fourier transform into Eq. (41), the response function of unit pulse torque in time domain can be
written as

hðtÞ ¼ IFT½HvðoÞ� ¼
1

2p

Z þ1
�1

i

vpsIprpTc
tanl 1þ

X1
m¼1

xm

 !
þ
X1
m¼1

zm

" #
ei$td$ (42)

where $ ¼ oTc and Tc ¼ H=vps denote the non-dimensional frequency and propagation time of elastic shear wave
propagating from the pile top to pile tip, respectively; t ¼ t=Tc is the non-dimensional time variable, respectively.
Table 1
Comparison of the torsional impedance of the pile top for an elastic isotropic soil.

a0 3T0=½16Gsvr3
0fðz̄ ¼ 0Þ�

Present study Novak and Howell [6]

0 (22.05, 0) (21.85, 0)

0.05 (22.03, 0) (21.82, 0.01)

0.1 (21.98, 0) (21.76, 0.05)

0.15 (21.88, 0) (21.68, 0.11)

0.2 (21.74, 0.07) (21.59, 0.19)

0.4 (21.25, 0.55) (21.17, 0.66)

0.6 (20.76, 1.19) (20.72, 1.27)

0.8 (20.28, 1.90) (20.25, 1.97)

1.0 (19.77, 2.66) (19.75, 2.72)

1.2 (19.22, 3.45) (19.21, 3.50)

1.4 (18.62, 4.27) (18.62, 4.31)

1.6 (17.96, 5.12) (17.96, 5.16)

1.8 (17.23, 6.01) (17.23, 6.04)

2.0 (16.42, 6.94) (16.42, 6.97)

ðd ¼ 1:0; rf ¼ 0; n ¼ 0; H=r0 ¼ 10; m ¼ 500; rp ¼ 1:3Þ.
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Fig. 3. Variation of torsional impedance of pile top with soil anisotropy ðH=r0 ¼ 40Þ: (a) Gp=C44 ¼ 100 and (b) Gp=C44 ¼ 1000.

0.0
0

4

8

12

16

20

R
e 

(k
T
)

a0

0.0

0

1

2

3

4

5

6

Im
 (

k T
)

R
e 

(k
T
)

Im
 (

k T
)

a0 a0

0.0
20

30

40

50

60

a0

0

2

4

6

8

10

0.4 0.8 1.2 1.6 2.0 0.4 0.8 1.2 1.6 2.0

0.4 0.8 1.2 1.6 2.0 0.0 0.4 0.8 1.2 1.6 2.0

� = 0.5
� = 1.0
� = 2.0

� = 0.5
� = 1.0
� = 2.0

� = 0.5
� = 1.0
� = 2.0

� = 0.5
� = 1.0
� = 2.0

Fig. 2. Variation of torsional impedance of pile top with soil anisotropy ðH=r0 ¼ 10Þ: (a) Gp=C44 ¼ 100 and (b) Gp=C44 ¼ 1000.

K. Wang et al. / Journal of Sound and Vibration 327 (2009) 440–453 447



ARTICLE IN PRESS

K. Wang et al. / Journal of Sound and Vibration 327 (2009) 440–453448
If the Fourier transform of the arbitrary exciting torque TðtÞ acting at the pile top is denoted by TðoÞ, then the velocity
response of the pile top in the time domain is given via the inverse Fourier transform and convolution theorem as
VðtÞ ¼ TðtÞ � hðtÞ ¼ IFT½TðoÞHvðoÞ�. In particular, when the exciting torque is a half-sine pulse,

TðtÞ ¼
Tmax sinðpt=t0Þ; tot0

0; t � t0

(
(43)

where t0 and Tmax denote the duration of the impulse and the maximum amplitude of the exciting torque, respectively.
Then the velocity response of the pile top in the time domain can be written as

VðtÞ ¼ TmaxIFT
1

vpsIprp
H0vðoÞ

pt0

p2 � t2
0o

2
ð1þ e�iot0 Þ

" #
¼

Tmax

vpsIprp
V 0ðtÞ (44)

To facilitate analysis, it is useful to introduce the dimensionless velocity response:

V 0ðtÞ ¼
1

2p

Z þ1
�1

H0vðoÞ
pT

p2 � T
2
$2
ð1þ e�iyT Þei$t d$ (45)

where T ¼ t0=Tc denotes the non-dimensional pulse width.
In the above, an analytical solution for the torsional impedance of the pile top in the frequency domain and a quasi-

analytical solution for the velocity response of the pile top in the time domain have been derived. Through a comparison of
solutions, it is evident that the solution developed in Ref. [12] is a special case of the present solution when fixing
d ¼ 1:0ðGsH ¼ Gsv ¼ GsÞ.
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3. Parametric study and discussion

In this section, the influence of soil anisotropy on the vibration characteristics of an end bearing pile is investigated and
some numerical results from different solutions are compared and discussed.

To verify the solution developed in this paper, the soil is assumed to be an elastic homogeneous isotropic soil, and the
corresponding complex impedance of the pile top is compared with that of Novak and Howell [6]. The comparison of these
two solutions is presented in Table 1. The real part of the complex torsional impedance represents the real stiffness, while
the imaginary part of the complex torsional impedance represents the dynamic damping which reflects the dissipation of
the energy. It can be seen that the real stiffness and dynamic damping of this paper agrees well with Novak and Howell’s
solution generally. It can also be seen from Table 1 that a cut-off frequency for the dynamic damping part is obtained in the
present solution. Below the cut-off frequency, the dynamic damping is zero and does not vary with frequency, which
indicates that no damping is generated by the soil layer. Above the cut-off frequency, the dynamic damping increases
quickly with the increase of exciting frequency. It is worth pointing out that Novak and Howell’s solution did not produce
the cut-off frequency. This can be attributed to the fact that the gradient of the shear stress syz in the vertical direction was
neglected in their solution. Furthermore, the real stiffness given by the present solution is higher, and the dynamic
damping calculated from the present solution is lower than those calculated by Novak and Howell below the cut-off
frequency. Above the cut-off frequency, these two solutions agree very well.

In earlier studies [11,12], the influence of pile slenderness ratio, pile–soil modulus and poroelastic material properties on
the dynamic behavior of the pile has been investigated. Given this, the remainder of this section will focus on the influence
of soil anisotropy on the torsional impedance of the pile top, the distribution of non-dimensional twist angles and torque of
the pile body along the depth direction and the velocity response of the pile top. In the calculation, the transversely
isotropic poroelastic material properties are Gsv ¼ 1:94� 107 Pa, n ¼ 0:4, kh ¼ 10�7 m=s , rf ¼ 1000 kg=m3 ,
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rs ¼ 2650 kg=m3 , d ¼ 0:522, and pile’s parameters are r0 ¼ 1:0 m, H=r0 ¼ 10240, rp ¼ 2500 kg=m3 , Gp=Gsv ¼ 10021000,
t0 ¼ 2 ms.

The influence of soil anisotropy on the torsional impedance with the increasing dimensionless exciting frequency a0 is
shown in Figs. 2 and 3. It can be seen that soil anisotropy has a marked influence on the torsional impedance when the
vertical shear modulus Gsv is considered as the reference modulus. For example, for flexible piles ðGp=Gsv ¼ 100Þ, the real
stiffness markedly increases with increasing d in the whole frequency range, indicating that the pile torsional impedance
depends significantly on the soil horizontal shear modulus. As the pile becomes stiffer ðGp=Gsv ¼ 1000Þ, the increase of real
stiffness becomes more pronounced. It can also be observed that the dynamic damping seems to be insensitive to soil
anisotropy. For instance, for flexible and short piles ðGp=Gsv ¼ 100; H=r0 ¼ 10Þ, higher dynamic damping is associated with
lower values of d in the high frequency range. However, for stiffer piles ðGp=Gsv ¼ 1000; H=r0 ¼ 10Þ, higher dynamic
damping is associated with higher values of d in the high frequency range, and for stiffer and longer piles ðGp=Gsv ¼

1000; H=r0 ¼ 40Þ higher dynamic damping is associated with lower values of d in the high frequency range.
Figs. 4 and 5 show the influence of soil anisotropy on the non-dimensional twist angle for a0 ¼ 0.5, 1.5, respectively. The

non-dimensional twist angle of pile is defined as fðz̄Þ=T0, where T0 ¼ T0r0=ðGpIpÞ. It can be seen that soil anisotropy has a
marked influence on the twist angle of the pile in the low frequency range. The absolute value of the real and imaginary
parts of twist angle of the pile top decreases with the increase of d. It can also be observed that the absolute value of the
real and imaginary parts of twist angle of the pile gradually decreases to zero with depth (z-direction). The range of the
value of the twist angle of the pile along the pile length in the z-direction increases significantly with the decrease of d.

Figs. 6 and 7 show the influence of soil anisotropy on the non-dimensional torque of the pile for a0 ¼ 0.5, 1.5,
respectively. The non-dimensional torque of pile is defined as Tðz̄Þ=T0. It can be seen that soil anisotropy has a marked
effect on the distribution of the torque of the pile along the pile length. The absolute value of the real and imaginary parts
of the torque of pile decreases significantly with the increase of d for a given z/H with the increase becoming more
pronounced as z/H increases. This indicates that the soil around the upper part of the pile will bear a higher percentage of
loading for a larger value of d, as a consequence, a lower percentage of loading is transferred to the lower part of the pile.
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Fig. 8 shows the influence of soil anisotropy on the velocity response of the pile top in the time domain. The velocity
response curve can be regarded as the reflected curve which is useful for analyzing the integrity and verifying the length of
the pile. It can be seen that the reflected signal of the pile tip firstly arrives at the pile top when t ¼ 2. For an embedded end
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bearing pile, the phase of the first reflected signal of the pile tip is opposite to that of the incident impulse, and the phase of
the second reflected signal of the pile tip is the same as that of incident impulse. This can be explained as follows. The time
of incident impulse propagating from the pile top to pile tip is equal to Tc ¼ H=vps and when the impulse reaches the
interface of pile tip and bedrock, the opposite phase of reflected signal is generated due to the fixed boundary. The
corresponding propagation time from the pile tip to pile top is also equal to Tc ¼ H=vps so accordingly, the impulse signal
reaches the pile top at t ¼ 2Tc (that is t ¼ t=Tc ¼ 2). Due to the great energy dissipation during the propagation of impulse
signal, the intensity of the second reflected signal is significantly lower than that of the first reflected signal. Therefore, the
length of an end bearing pile can be determined by multiplying the arrival time of the first reflected signal of the pile tip
and shear wave velocity in the pile. It is also seen that soil anisotropy has a marked influence on the velocity response. The
intensity of reflected signal of the pile tip decreases significantly with the increase of d. This indicates that an increase of
the soil horizontal shear modulus is not advantageous for identifying the arrival time of reflected signal of the pile tip and
verifying the length of the pile.

4. Conclusions

By considering an end bearing pile embedded in transversely isotropic saturated soil as a dynamic pile–soil interaction
problem, an analytical solution for the torsional impedance of the pile in the frequency domain and quasi-analytical
solution for the velocity response in the time domain have been derived. It is seen that the solutions developed in this
paper for the dynamic response of an end bearing pile in transversely isotropic soil are a generalization of our earlier work
in Ref. [12]. An extensive parameter study has been conducted to investigate the influence of soil anisotropy on the
torsional vibration characteristics of the single pile and the following conclusions have been obtained:
(1)
 Soil anisotropy has a marked influence on the torsional impedance in the low frequency range. The real stiffness
increases markedly with increasing d. As the pile becomes stiffer, the increase of real stiffness becomes more
pronounced. However, the dynamic damping seems to be insensitive to soil anisotropy.
(2)
 Soil anisotropy has a marked influence on the twist angle of the pile in the low frequency range. The absolute value of
the real and imaginary parts of twist angle of the pile top decreases significantly with the increase of d. The range of the
value of the twist angle of the pile along the pile length increases significantly with the decrease of d.
(3)
 Soil anisotropy has a marked effect on the distribution of the torque of the pile along the pile length in the low
frequency range. The absolute value of the real and imaginary parts of the torque of pile decreases significantly with the
increase of d for a given z/H with the increase becoming more pronounced as z/H increases. The soil around the upper
part of the pile will bear greater percentage of loading for a larger value of d, with a transfer of corresponding lower
percentage of loading to the lower part of the pile.
(4)
 For an embedded end bearing pile, the phase of the first reflected signal of the pile tip is opposite to that of the incident
impulse and the phase of the second reflected signal of the pile tip is the same as that of incident impulse. The intensity
of the second reflected signal is significantly lower than that of the first reflected signal. Soil anisotropy also has a
marked effect on the velocity response of the pile top in the time domain. The intensity of reflected signal of the pile tip
decreases with the increase of d.
(5)
 Finally, the length of an end bearing pile can be determined in a pile test by multiplying the arrival time of the first
reflected signal of the pile tip and shear wave velocity in the pile.
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