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a b s t r a c t

Vibrating beam gyroscopes are widely used to measure the angle or the rate of rotation

of many mechanical systems. The vibration and parameters sensitivity analyses of a

specific type of vibrating beam gyroscope namely rocking-mass gyroscopes are

presented in this paper. These types of gyroscopes by far have a better performance

than the conventional single-beam gyroscopes. The system comprises of four slender

beams attached to a rigid substrate, undergoing coupled flexural and torsional

vibrations with a finite mass attached in the middle. Two of the beams carry

piezoelectric patch actuators on top, while the other two possess piezoelectric patch

sensors. Using extended Hamilton’s principle, the resulting eight coupled partial

differential equations of motion with their corresponding boundary conditions are

derived. In spite of the need for a high computational power, the system is analysed in

the frequency domain using an exact method and the closed-form characteristic

equations for two cases of fixed and rotating base support are obtained. Furthermore, a

detailed parameter sensitivity analysis is carried out to determine the effects of different

parameters on the complex natural frequencies of the system. Results presented are

valuable in the design of this type of gyroscope as the exact resonant conditions and the

sensitivity of the system parameters play important roles in the dynamic performance

of gyroscopes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the wide range of the applications of the vibrating mass gyroscopes; they are being used in many navigational
applications, namely, aerospace, marine and automobile industries. Hence, the detailed study of such systems has always
been of great interest to engineers and researchers.

In most of these types of gyroscopes, the bending and torsional vibrations are coupled. The theory of coupled
flexural–torsional vibrations for thin-walled beams was first developed by Timoshenko and Young [1]. The free flexural/
torsional vibration of an Euler–Bernoulli beam with a rigid tip mass was studied by Oguamana [2]. He presented explicit
expressions for the frequency equation, mode shapes and their orthogonality relationship and investigated the effects
of different parameters on the fundamental frequencies of the system. Salarieh and Gorashi [3] continued his work, but
used the Timoshenko beam theory. They studied the effects of the shear deformation and the rotary inertia on the
free vibration response of a Timoshenko beam with a rigid tip mass. Gokdag and Kopmaz [4] extended the work of
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Nomenclature

b width of the beams
bM rocking-mass width
Cij , C0ij elements of matrices
d31 piezoelectric constant of actuators
E elastic modulus of beams
Ep elastic modulus of actuators
EIb flexural rigidity of the beams
EIp flexural rigidity of the actuator
G beams shear modulus
GJb torsional rigidity of the beams
GJp torsional rigidity of the actuator
hM Rocking-mass height
i

ffiffiffiffiffiffiffi
�1
p

Ixb mass moment of inertia of the beams
Ixp mass moment of inertia of the piezoelectric

actuator
l length of rocking-mass
l1 start position of piezoelectric actuator
l2 end position of piezoelectric actuator
Li length of ith beam
M rocking-mass
MP piezoelectric actuator control moment
Qn(x) amplitude of torsion
Pn(x) amplitude of bending
s1 position of point P on beam 1
T total kinetic energy of the system
tb beams thickness

tp piezoelectric layers thickness
T1b translational kinetic energy of the four beams

due to the translational motion
T1M translational kinetic energy of the rocking-

mass due to the translational motion
T2b translational kinetic energy of the four beams

due to the rotational motion
T2M translational kinetic energy of the rocking-

mass due to the rotational motion
V total potential energy of the system
v(t) voltage applied to actuators
wi bending of ith beam
Wnc total non-conservative work done on the

system
yi torsion of ith beam
rb mass per unit length of the beams
rp mass per unit length of the piezoelectric

actuator
ci, yi angle of rotations of ith beam
O1 rotation about Xi-axis
O2 rotation about Yi-axis
O3 rotation about Zi-axis
o vibration frequency
oix angular velocity component of ith beam in

x-direction
oiy angular velocity component of ith beam in

y-direction
oiz angular velocity component of ith beam in

z-direction
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Oguamana [2] by studying the coupled flexural/torsional vibrations of a beam with either the tip or in the span mass
attachments.

In a series of studies, Jalili and his research team [5–7] worked on the vibrating gyroscopic systems experiencing coupled
flexural/torsional vibrations. Their first work was to develop a thorough modeling framework for vibrating gyroscopes subjected to
general support motion by considering both the flexural and torsional vibrations [5]. In a subsequent work, they include a novel
piezoelectric actuation for the vibrating beam gyroscope, which was modeled as an Euler-Bernoulli beam with a tip load subjected
to the base rotation. They investigated the effect of the cross-axis in single beam vibratory gyroscopes [6], and also the influence of
the substrate motion on the performance of the ring microgyroscopes [7].

Although vibrating beam gyroscopes are becoming the most widely used gyroscopes in many applications [6], but they
possess a very important drawback, which produces the cross-coupling error in the measurements [6,8]. The vibrating
beam gyroscope is typically used to measure the rotational rate around one of the axes. In practice, however, there are
always some secondary rotations present in the system. These secondary base rotations can produce significant errors in
the measurement of the gyroscope output (cross-axis error). The gyroscopic output increases significantly even for a small
secondary rotation. This increased output could be interpreted as the gyroscope output due to the primary base rotation
and can hence, develop errors in the measurement [6].

In spite of single beam gyroscopes, the rocking-mass gyroscope does not have those drawbacks, and can accurately
measure the rate of rotation. Due to the complexities involved in the modelling and performance analysis of this kind of gyroscope,
only few studies have been carried out in this area. The fabrication and design of a rocking-mass gyroscope was studied by
Tang and Gutierrez [9], but the operating principle of the device was not fully discussed. Royle and Fox [10] presented an
analysis of the mechanics of an oscillatory rate gyroscope that is actuated and sensed using thin piezoelectric actuators and
sensors. A modeling framework for these systems, which forms the basis of this paper, is an extension to the work reported by
Bhadbhade [11].

The present research undertakes the vibration analysis of a rocking-mass gyroscope, which comprises of a rotating
rigid substrate and an assembly of four cantilever beams with a rigid mass attached to them in the middle, as shown in
Fig. 1. The objective of the research is to develop a detailed mathematical modeling of the system. The governing equations
of motion, using the extended Hamilton’s principle, are derived. Since the closed-form solutions can serve as the
benchmarks for validating the results obtained from either the numerical calculations or experimental results, the closed-
form equations are developed for the frequency characteristic equations of the system for either a fixed supporting base or
a rotating one. These exact equations are very important and useful, since their solutions would not only provide exact
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Fig. 1. Schematic of a rocking-mass gyroscope: (a) regular view; (b) zoomed view.
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information about the system fundamental resonant frequencies and their corresponding mode shapes, but also they serve
as the bases for the time-domain analyses.

In most of the works done so far, the time-domain analysis has been performed using the assumed mode
method (AMM). In fact, instead of determining the exact complex natural frequencies and performing mode super-
position method (MSM), in these works the mode shapes of the system have been assumed to have certain forms (AMM).
In contrast, this paper offers a closed-form frequency equation and consequently exact fundamental frequencies
which can serve as the basis of an accurate time domain analysis (MSM). Moreover, a thorough parametric sensitivity
analysis is carried out to determine the effects of different parameters on the complex natural frequencies of the
system.
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2. Principle of operation

The rocking-mass gyroscope consists of four cantilever beams attached to a rocking-mass in the middle as shown in
Fig. 1. In order to both induce and sense the vibrations in those beams, the piezoelectric actuators are attached to the beams 1
and 3, and the piezoelectric sensors are attached to the beams 2 and 4. The primary bending vibration is induced in the beams 1
and 3, by supplying a sinusoidal voltage to the piezoelectric patches on them. The rocking-mass will rotate due to the bending
of beams 1 and 3, and produces a torsional vibration in the beams 2 and 4 as schematically illustrated in Fig. 2. In the presence
of the base angular rotation about the vertical axis, a secondary rocking motion of the mass is induced due to the Coriolis force.
Bending is induced in beams 2 and 4, as a result of the secondary rocking motion of the mass, as shown in Fig. 3. The amplitude
of this bending vibration is proportional to the angular velocity of the base. This secondary bending vibration, which can be
measured by piezoelectric sensors placed on beams 2 and 4, results into the angular velocity of the base.

Similar to the single beam gyroscope discussed in [11], the rocking-mass gyroscope utilizes the secondary induced
vibrations to determine the rate of rotation. It is typically difficult to measure the secondary torsional vibrations for the
single beam gyroscope, as their amplitude is relatively small. This drawback is overcome by the rocking-mass gyroscope,
where the torsional vibrations produced in the two beams are transferred to the other two beams as the bending
vibrations, which can easily be sensed by placing the sensors on the beams.
3. Mathematical modeling

The eight linear partial differential equations and their corresponding boundary conditions governing the
flexural–torsional motions of the four beams of the gyroscope will be developed in this section, using the extended
Hamilton’s principle and the approach being presented in [6]. All the beams are assumed to follow the Euler–Bernoulli
beam theory and accordingly, the effects of warping and shear deformation have been neglected. The beams are all
considered to be identical and slender with the mass per unit length of rb and the thickness of tb and the Poisson’s effect is
also neglected. The four coordinate systems that are used to describe the kinematics of the rocking-mass gyroscope are
illustrated in Fig. 4.
Fig. 2. Primary rocking motion of the mass [11].

Fig. 3. Secondary rocking motion of the mass [11].
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Fig. 4. Top view of the rocking-mass gyroscope with the coordinate systems.
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The system is considered to have four identical beams of equal lengths denoted as Li(i ¼ 1, 2, 3, 4), while the length of
the rocking-mass is denoted by l. The bending and torsional deformations of the beams are represented by wi(i ¼ 1, 2, 3, 4)
and yi(i ¼ 1, 2, 3, 4), respectively. In the derivation of the two coupled governing equations (one being for the
bending and the other for torsion) for each of the four beams, the rocking-mass is considered to be attached to the first
beam.

In order to apply the extended Hamilton’s principle, the total translational kinetic energy, total rotational
kinetic energy, total potential energy and the non-conservative work done on the system will be determined
sequentially.

3.1. Translational motion

The total translational kinetic energy of the four beams can be determined in the following form [6,11]

T1b ¼
1

2

X4

j¼1

Z L

0
rbðf

2
j þ g2

j þ h2
j Þdxj

" #
(1)

where

f 1 ¼ 0; f 2 ¼ 0; f 3 ¼ 0; f 4 ¼ �w4O2,

g1 ¼ �w1O1 þ s1O3; g2 ¼ s2O3; g3 ¼ w3O1 þ s3O3; g4 ¼ s4O3,

h1 ¼
@w1

@t
; h2 ¼

@w2

@t
� s2O2; h3 ¼

@w3

@t
; h4 ¼

@w4

@t
þ s4O2. (2)

Also, the translational kinetic energy of the rocking-mass can be expressed as [6]

T1M ¼
1

2
Mðf 2

M þ g2
M þ h2

MÞ (3)

where

f M ¼ 0,

gM ¼ O3L1 �O1w1L þO3
l

2
�O1

l

2
c1L,
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gM ¼ O3L1 �O1w1L þO3
l

2
�O1

l

2
c1L,

hM ¼
qw1L

qt
þ

l

2

qc1L

qt
(4)

and

w1L9w1ðx1; tÞ
��
x1¼L1

; c1L9
qw1

qx1

����
x1¼L1

(5)

3.2. Rotational motion

In order to describe the deformations of the beams and the rocking-mass from their original configuration, the Euler
angles are considered. The two successive angles of rotation for each beam are considered and denoted as ci (i ¼ 1, 2, 3, 4)
and yi(i ¼ 1, 2, 3, 4). Fig. 5 shows how these consecutive rotations take place. The system (X, Y, Z) is taken to (x0, Y, z0) by the
first rotation c about Y-axis. Then, the second rotation y, about x0, takes the new system to (x0, y, z), [11]. The angular
velocity components of four beams, assuming small angles of bending and torsion and by ignoring the nonlinear terms, and
the rocking-mass are expressed as

o1x ¼
qy1

qt
þO1 �O3c1

� �
; o1y ¼

qc1

@t
þO1y1c1 þO3y1

� �
; o1z ¼ ðO1c1 þO3Þ

o2x ¼
qy2

qt
�O3c2

� �
; o2y ¼

qc2

@t
þO2 þO3y2

� �
; o2z ¼ ðO2y2 þO3Þ

o3x ¼
qy3

qt
þO1 �O3c3

� �
; o3y ¼

qc3

@t
þO1y3c3 þO3y3

� �
; o3z ¼ ð�O1c3 þO3Þ

o4x ¼
qy4

qt
�O3c4

� �
; o4y ¼

qc4

qt
þO2 þO3y4

� �
; o4z ¼ ðO2y4 þO3Þ (6)

where ci ¼ qwi=qxi; i ¼ 1;2;3;4.
Ignoring the rotary inertia terms for the beams, i.e., Iyboy and Izboz, one can write the rotational kinetic energy of the

four beams as

T2b ¼
X4

j¼1

Z Lj

0

1

2
Ixbo

2
jx

� �
dxj

" #
(7)
Fig. 5. Euler angle rotations [Fig. 5 of Ref. [6]].
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Furthermore, the rotational kinetic energy of the rocking-mass is

T2M ¼
1

2
ðIxMo2

1x þ IyMo2
1y þ IzMo2

1zÞ (8)

where the three terms Ixb, Iyb, Izb and the three terms IxM, IyM, IzM are the respective mass moments of inertia of the beams
and those of the rocking-mass about the three X, Y and Z axes.

3.3. Equations of motion

The extended Hamilton’s principle for a dynamic system is expressed asZ t2

t1

fdT � dV þ dWncgdt ¼ 0 (9)

where T is the total kinetic energy of the system, V is the total potential energy and Wnc is the total non-conservative work
done on the system.

Combining Eqs. (1), (3), (7) and (8), one can find the total kinetic energy of the system as

T ¼
1

2

X4

j¼1

½

Z Lj

0
frðxjÞ½f

2
j þ g2

j þ h2
j � þ IxðxjÞo2

jxgdxj� þ
1

2
Mðf 2

M þ g2
M þ h2

MÞ þ
1

2
ðIxMo2

1x þ IyMo2
1y þ IzMo2

1zÞ (10)

where

rðx1Þ ¼ ðrb þ Sðx1ÞrpÞ; rðx2Þ ¼ rb

rðx3Þ ¼ ðrb þ Sðx2ÞrpÞ; rðx4Þ ¼ ðrb þ Sðx4ÞrpÞ

Ixðx1Þ ¼ ðIxb þ Sðx1ÞIxpÞ; Ixðx2Þ ¼ Ixb

Ixðx3Þ ¼ ðIxb þ Sðx3ÞIxpÞ; Ixðx4Þ ¼ ðIxb þ Sðx4ÞIxpÞ (11)

in which, rp and Ixp are the mass per unit length and the mass moment of inertia of the piezoelectric actuator, respectively.
S(x) is used to define the finite length of the piezoelectric and is given as

SðxÞ ¼ Hðx� l1Þ � Hðx� l2Þ (12)

where l1 and l2 are the respective starting and end positions of the piezoelectric actuator on the beam 1, and H represents
the Heaviside function.

Since there is no vertical motion for the rocking-mass, the total potential energy of the system consists of only the four
beams, which can be stated as

V ¼
1

2

X4

j¼1

Z Lj

0
EIðxjÞ

@2wj

@x2
j

0
@

1
A2

þ GJðxjÞ
@yj

@xj

 !2
8><
>:

9>=
>;dxj

2
64

3
75 (13)

where EIb and EIp are the respective flexural rigidities of the beam and the actuator, and GJb and GJp are the torsional
rigidities of the beam and the actuator, respectively.

Iðx1Þ ¼ ðIxb þ Sðx1ÞIxpÞ; Iðx2Þ ¼ Ixb

Iðx3Þ ¼ ðIxb þ Sðx3ÞIxpÞ; Iðx4Þ ¼ ðIxb þ Sðx4ÞIxpÞ

Jðx1Þ ¼ ðJxb þ Sðx1ÞJxpÞ; Jðx2Þ ¼ Jxb

Jðx3Þ ¼ ðJxb þ Sðx3ÞJxpÞ; Jðx4Þ ¼ ðJxb þ Sðx4ÞJxpÞ (14)

In the Hamilton’s approach, the piezoelectric actuator control moment can be expressed in accordance with the following
virtual work expression [6,12,13].

dWnc ¼

Z L1

0

@2Mp

@x2
1

dw1 dx1 þ

Z L1

0

@2Mp

@x2
3

dw3 dx3 (15)

where

Mp ¼ �
1

2
bEpd31ðtb þ tpÞvðtÞSðxÞ ¼ Mp0vðtÞSðxÞ (16)

for each beams. In Eq. (16), b is the width of the beams 1 and 3, Ep and d31 are the respective elastic modulus and
piezoelectric constant of the actuators placed on the two beams, and v(t) is the voltage applied to the actuators.
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In order to derive the governing equations of motion and the corresponding boundary conditions, one should take the
variations of Eqs. (10) and (13) and substitute the results along with Eq. (15) into the Hamilton’s principle (Eq. (9)). These
will result in

rðx1Þ
q2w1

qt2
�w1O

2
1 þ s1O1O3

 !
� Ixðx1ÞO3

q2y1

qtqx1
þO3

q2w1

qx2
1

 !
þ

q2

qx2
1

EIðx1Þ
q2w1

qx2
1

 ! !
¼
q2MP

qx2
1

(17)

Ixðx1Þ
q2y1

qt2
þO3

q2w1

qtqx1

 !
�

q
qx1

GJðx1Þ
qy1

qx1

� �� �
¼ 0 (18)

rðx2Þ
q2w2

qt2
�w2O

2
2

 !
� Ixðx2ÞO3

q2y2

qtqx2
þO3

q2w2

qx2
2

 !
þ q

q2

@x2
2

EIðx2Þ
q2w2

qx2
2

 ! !
¼ 0 (19)

Ixðx2Þ
q2y2

qt2
þO3

q2w2

qtqx2

 !
�

q
qx2

GJðx2Þ
qy2

qx2

� �� �
¼ 0 (20)

rðx3Þ
q2w3

qt2
�w3O

2
1 þ s3O1O3

 !
� Ixðx3ÞO3

q2y3

qt@x3
þO3

q2w3

qx2
3

 !
þ

q2

qx2
3

EIðx3Þ
q2w3

qx2
3

 ! !
¼
q2MP

qx2
3

(21)

Ixðx3Þ
q2y3

qt2
þO3

q2w3

qtqx3

 !
�

q
qx3

GJðx3Þ
qy3

qx3

� �� �
¼ 0 (22)

rðx4Þ
q2w4

qt2
�w4O

2
2

 !
� Ixðx4ÞO3

q2y4

qtqx4
þO3

q2w4

qx2
4

 !
þ

q2

qx2
4

EIðx4Þ
q2w4

qx2
4

 ! !
¼ 0 (23)

Ixðx4Þ
q2y4

qt2
þO3

q2w4

qtqx4

 !
�

q
qx4

GJðx4Þ
qy4

qx4

� �� �
¼ 0 (24)

and the boundary conditions are given as

wj

���
xj¼0
¼ 0;

@wj

@xj

�����
xj¼0

¼ 0; yj

���
xj¼0
¼ 0; j ¼ 1;2;3;4 (25)

Ixðx1ÞO3
qy1

qt
þO1 �O3

qw1

qx1

� �����
x1¼L1

þMO1 �O3 L1 þ
l

2

� �
þO1 w1 þ

l

2

qw1

qx1

� �� �����
x1¼L1

�M
q2w1

qt2
þ

l

2

q3w1

qt2qx1

 !�����
x1¼L1

þ EIðx1Þ
q3w1

qx3
1

 !�����
x1¼L1

¼ 0 (26)

M �O1
l

2
�

l

2

q2w1

qt2
þ

l

2

q3w1

qt2qx1

 !�����
x1¼L1

0
@

1
A

þ IxMO3
qy1

qt
þO1 �O3

qw1

qx1

� �����
x1¼L1

� IyM
q3w1

qt2qx1

þO1
qðy1c1Þ

qt
þO3

qy1

qt

 !�����
x1¼L1

þ IyMO1y1L
@2w1

@t@x1
þO1y1

qw1

qx1
þO3y1

 !�����
x1¼L1

� IzMO1 O1
qw1

qx1
þO3

� �����
x1¼L1

� EIðx1Þ
q2w1

qx2
1

 !�����
x1¼L1

¼ 0 (27)



ARTICLE IN PRESS

M. Ansari et al. / Journal of Sound and Vibration 327 (2009) 564–583572
� IzM
q2y1

qt2
�O3

q2w1

qtqx1

 !�����
x1¼L1

þ IyM
q2w1

qt@x1
þO1y1

qw1

qx1
þO3y1

 !�����
x1¼L1

O1
qw1

qx1

����
x1¼L1

� IyMO3
q2w1

qtqx1
þO1y1

qw1

qx1
þO3y1

 !�����
x1¼L1

� GJðx1Þ
qw1

qx1

� �����
x1¼L1

¼ 0 (28)

Eqs. (26)–(28) have been written for the first beam; however, the vibrations of the tip of the other beams are related to
these equations. Therefore, the bending and the torsional displacements of beams 2, 3 and 4 can be written in terms of the
first beam, which forms the rest of the boundary conditions.

dw2L ¼ dw1L þ
l

2
dðc1LÞ; dðc2LÞ ¼ dy1L; dy2L ¼ dðc1LÞ, (29)

dw3L ¼ dw1L þ ldðc1LÞ; dðc3LÞ ¼ �dðc1LÞ; dy3L ¼ �dy1L, (30)

dw4L ¼ dw1L þ
l

2
dðc1LÞ; dðc4LÞ ¼ �dy1L; dy4L ¼ �dðc1LÞ. (31)

where

wjL ¼ wjðxj; tÞ
���
xj¼Lj

; j ¼ 1;2;3;4 (32)

yjL ¼ yjðxj; tÞ
���
xj¼Lj

; j ¼ 1;2;3;4 (33)

cjL ¼
@wj

@xj

�����
xj¼Lj

; j ¼ 1;2;3;4 (34)

and d( � ) represents the variation of the corresponding terms.
The governing equations of motion, given by Eqs. (17)–(24), indicate that for every beam, the two equations are coupled

through the base rotation velocity, O3. Furthermore, each of the beams experiences a coupled flexural–torsional vibration
due to the gyroscopic terms such as IxO3ðq

2yi=qtqxiÞ and IxO3ðq
2wi=qtqxiÞ present in the equations of motion.

Consequently, in the absence of the base rotation velocity, the two equations of each beam will be decoupled. The second
type of coupling is expressed through the continuity equations, i.e., Eqs. (29)–(31). The continuity equations represent the
relationship between the flexural and torsional vibrations of beams 2, 3 and 4 in terms of the corresponding vibrations of
beam 1. As discussed before, the bending of beams 1 and 3 induces a rocking motion in the mass. In the presence of the
base rotation, this induced motion produces flexural vibrations in beams 2 and 4 and the torsional vibrations in beams
1 and 3. Since all the beams are connected to each other through the rocking-mass, the flexural and torsional deflections of
each beam are also dependent on each other.

For simplification, O1 is ignored for further analyses. Furthermore, the same cross-sectional areas and materials are
considered for each beam. This means that instead of non-uniform material distribution dented by rxi in the ith beam, the
material is uniformly distributed over it and can be denoted by rxi. Therefore, the governing equations of motion can be
reduced to

rj

q2wj

qt2
� IxjO3

q2yj

qtqxj
þO3

q2wj

qx2
j

0
@

1
Aþ EIj

q4wj

qx4
j

¼
q2MP

qx2
j

; j ¼ 1;3 (35)

Ixj

q2yj

qt2
þO3

q2wj

qtqxj

 !
� GJj

q2yj

qx2
j

¼ 0; j ¼ 1;2;3;4 (36)

rj

q2wj

qt2
�wjO

2
2

 !
� IxjO3

q2yj

qtqxj
þO3

q2wj

qx2
j

0
@

1
Aþ EIj

q4wj

qx4
j

¼ 0; j ¼ 2;4 (37)



ARTICLE IN PRESS

M. Ansari et al. / Journal of Sound and Vibration 327 (2009) 564–583 573
4. Frequency analysis

An exact method is utilized here to develop the frequency equation. The solutions of the equations of motion, assuming
harmonic motion with frequency o, can be represented in the following form

wnðx; tÞ ¼ PnðxÞeiot

ynðx; tÞ ¼ QnðxÞe
iot

(
n ¼ 1;2;3;4 (38)

where Pn(x) and Qn(x) are the amplitudes of the sinusoidally varying bending and torsional displacements, respectively.
Substituting Eq. (38) into Eqs. (35)–(37) yields the following set of equations, which are only functions of the spatial

variables x1 through x4.

rjo
2PjðxjÞ þ iIxjoO3Q 0jðxjÞ þ IxjO

2
3P00j ðxjÞ � EIjP

IV
j ðxjÞ ¼ 0; j ¼ 1;3 (39)

Ixjo
2QjðxjÞ � iIxjoO3P0jðxjÞ þ GJjQ

00
j ðxjÞ ¼ 0; j ¼ 1;2;3;4 (40)

rjðo
2 þO2

2ÞPjðxjÞ þ iIxjoO3Q 0jðxjÞ þ IxjO
2
3P00j ðxjÞ � EIjP

IV
j ðxjÞ ¼ 0; j ¼ 2;4 (41)

The new set of boundary conditions can be expressed as

Pjð0Þ ¼ 0; P0jð0Þ ¼ 0; Qjð0Þ ¼ 0; j ¼ 1;2;3;4 (42)

Mo2P1ðL1Þ þ ð0:5Mlo2 � Ix1O
2
3ÞP
0
1ðL1Þ þ EI1P0001 ðL1Þ þ iIx1oO3Q1ðL1Þ ¼ 0 (43)

2Mlo2P1ðL1Þ þ ðMl2o2 � 4IxMO2
3 þ 4IyMo2ÞP01ðL1Þ � 4EI1P001ðL1Þ þ ½ð4ioO3ÞðIxM � IyMÞ�Q1ðL1Þ ¼ 0 (44)

ðIxMo2 � IyMO2
3ÞQ1ðL1Þ � GJ1Q 01ðL1Þ þ ½ðioO3ÞðIxM � IyMÞ�P

0
1ðL1Þ ¼ 0 (45)

P2ðL2Þ ¼ P1ðL1Þ þ 0:5lP01ðL1Þ; P02ðL2Þ ¼ Q1ðL1Þ; Q2ðL2Þ ¼ P01ðL1Þ (46)

P3ðL3Þ ¼ P1ðL1Þ þ lP01ðL1Þ; P03ðL3Þ ¼ �P01ðL1Þ; Q3ðL3Þ ¼ �Q1ðL1Þ (47)

P4ðL4Þ ¼ P1ðL1Þ þ 0:5lP01ðL1Þ; P04ðL4Þ ¼ �Q1ðL1Þ; Q4ðL4Þ ¼ �P01ðL1Þ (48)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and ð Þ0represents the derivative with respect to the spatial variable x.
The solutions of Eqs. (39)–(41), in the absence of the primary base rotation,O3, can be expressed in the following form.

Detailed solutions are given in Appendix A.

PjðxjÞ ¼
X6j�2

n¼6j�5

Anesnxj ; QjðxjÞ ¼
X6j

n¼6j�1

Anesnxj ; j ¼ 1;2;3;4 (49)

However, when there is a primary base rotation in the system, the solutions of Eqs. (39)–(41) will be stated as (refer to the
detailed solutions presented in Appendix A)

P1ðx1Þ ¼
X24

n¼1

Anesnx1 ; Q1ðx1Þ ¼
X24

n¼1

Ananesnx1 (50)

Substituting either Eq. (49) or (50) into Eqs. (42)–(48) yields the following system of equations. The detailed derivations of
these equations are presented in Appendix B.

C24�24 � A24�1 ¼ 0 (51)

In order for this equation to have a nontrivial solution, the determinant of the matrix C should be equal to zero. This
condition gives the closed-form characteristic (frequency) equation as

detð½C�24�24Þ ¼ 0 (52)

5. Parameter sensitivity analysis

In this section, the sensitivity of the complex natural frequencies of the system to different parameters involved, such as
the base rotation, the value of the mass and the length of the mass are studied. Since there is no explicit damping element
in the system at hand, the complex frequencies result from the characteristics of the system, i.e., the coupled vibration and
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Fig. 6. Variations of the real part of complex natural frequencies with base rotation, O2 ¼ 0.

Table 1
Physical parameters of the system.

Parameter Notation Value

Beams length (m) L1 ; L2 ; L3 ; L4 0.0508

Beams moment of inertia (kg.m2) Ix1 ; Ix2 ; Ix3 ; Ix4 2.0624�10�7

Beams moment of inertia (m4) I1 ; I2 ; I3 ; I4 2.2916�10�8

Beams moment of inertia (m4) J1 ; J2 ; J3 ; J4 2.2915�10�7

Mass per unit length (kg/m) r1 ; r2 ; r3 ; r4 3960

Beams elastic modulus (GPa) E 70

Beams shear modulus (GPa) G 30

Rocking-mass length (m) l 0.0175

Rocking-mass width (m) bM 0.0175

Rocking-mass height (m) hM 0.0175

Base rotation (rad/s) O3 0–50

Secondary rotation (rad/s) O2 0–50

M. Ansari et al. / Journal of Sound and Vibration 327 (2009) 564–583574
Coriolis effects. The real part of the complex natural frequencies gives the frequency of vibration and the imaginary part
refers to the rate of decay.

In order to perform the numerical analysis, a typical system with the arbitrary values of the parameters, given in Table 1,
has been chosen. All the numerical analyses are performed in Maple&. The secant method [14] has been utilized to find the
roots of the characteristic frequency equation.
5.1. Sensitivity to the primary base rotation, O3

In this section, the primary base rotation is varied to determine its effects on the first five complex natural frequencies of
the system. It should be noted that the model predicts all the infinite numbers of the natural frequencies of the system and
its prediction is not just limited to five. Since the closed-form frequency equation is a very lengthy, its solution needs very
high computational power. Therefore, only the first five natural frequencies have been presented here. Moreover, the first
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Fig. 7. Variations of the imaginary part of complex natural frequencies with base rotation, O2 ¼ 0.

Fig. 8. Variations of the real part of complex natural frequencies with the value of the mass for O3 ¼ 20.

M. Ansari et al. / Journal of Sound and Vibration 327 (2009) 564–583 575
few natural frequencies of the system are more important than the higher ones. The variations of the real and imaginary
parts of the natural frequencies with the base rotation are illustrated in Figs 6 and 7, respectively.

The first point to highlight here is that in the absence of the base rotation, all the natural frequencies only have real
values; however, when the beam undergoes base rotation, they will have both real and imaginary parts. As mentioned
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Fig. 9. Variations of the imaginary part of complex natural frequencies with mass for O3 ¼ 20.
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before, in the systems with explicit damping elements, the real part of the complex natural frequency is referred to damped
natural frequency and its complex part gives the rate of decay. In analogy, one can conclude that the base rotation produces
some sort of damping effects in the system.

From the jump phenomenon illustrated in Fig. 7 (after zero), it is clear that even having a very small base rotation can
produce a considerable value of the imaginary part in the complex natural frequencies. Also, it can be concluded that the
increase in the base rotation would increase the real and the imaginary parts of the complex frequencies. In other words,
the higher the base rotation, the stiffer the system will become.

It can be seen from Figs. 6 and 7 that the imaginary part of the frequency increases faster than the real part. The reason
for it is that in every pair of the equations for each beam, the value of EIn is much larger than that of IxnO3 and the IxnO2

3
terms, and moreover, the value of GJn is much larger than Ixn and IxnO3 terms. As a result, the effect of O3 on the real parts
of the frequencies is masked for small rotations.

5.2. Sensitivity to rocking mass

This part reveals how the value of the mass and its dimension can affect the complex natural frequencies of the system.

5.2.1. Sensitivity to mass M

The value of the mass of the rocking-mass M is varied from zero to 10 times its base value, and then the variations of the
real and the imaginary parts of the complex natural frequencies are investigated as depicted in Figs 8 and 9, respectively.

It can be concluded that as the mass of the rocking-mass increases, both the real and the imaginary parts of the complex
natural frequencies of the system will decrease. Since the base value of the mass is very small in this study, the effects of
the value of the mass are more sensible at higher values.

5.2.2. Sensitivity to rocking-mass length, l

The variations of the real and the imaginary parts of the complex natural frequencies with the mass length being varied
from zero to twice of its base value are illustrated in Fig. 10 and 11, respectively.

It can be seen that the increase in the length of the mass would result into higher values of the real and the imaginary
parts of the complex natural frequencies.
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Fig. 10. Variations of the real part of complex natural frequencies with length of the rocking-mass for O3 ¼ 20.

Fig. 11. Variations of the imaginary part of complex natural frequencies with length of the rocking-mass for O3 ¼ 20.
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5.3. Sensitivity to secondary base rotation, O2

In this part, the effects of the secondary base rotation on the complex natural frequencies of the system are studied. The
variations of the real and imaginary parts of the first five complex natural frequencies with the changes of O2 from zero to
50 rad/s are presented in Figs. 12 and 13, respectively.
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Fig. 12. Variations of the real part of complex natural frequencies with O2 for O3 ¼ 20.

Fig. 13. Variations of the imaginary part of complex natural frequencies with O2 for O3 ¼ 20.

M. Ansari et al. / Journal of Sound and Vibration 327 (2009) 564–583578
It can be seen that there are no significant frequency variations when O2 is varied from zero to 50 rad/s. It should be
noted that higher values of O2 have also been considered, however, no significant differences were observed. This indicates
that the secondary base rotation has almost no effect on the complex natural frequencies of the system. This is a valuable
finding and is a significant result of the unique configuration of the rocking-mass gyroscope.
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6. Conclusions

The traditional single beam gyroscopes often encounter with cross-axis error in their measurements as the secondary
rotation is always available in reality. The rocking-mass gyroscope, consists of four elastic beams with the piezoelectric
sensors and actuators and a mass attached to them in the middle, provides a better performance. However, due to the
complexities of the analysis of such a system, this area had remained intact. Along this line of reasoning, the vibration of a
rocking-mass gyroscope was studied in this paper. The eight coupled partial differential equations as well as the twenty
four boundary conditions were derived for the system using the extended Hamilton’s principle. The closed-form
characteristic equation of the system was obtained for the two different cases of the fixed supporting base and the rotating
one. The parameter sensitivity analysis was also performed on the system and the effects of the primary and the secondary
base rotations as well as the value and the length of the rocking-mass on the complex natural frequencies of the system
were determined. Results obtained demonstrate that the increase in the primary base rotation would increase the real and
the imaginary parts of the frequencies; however, the secondary base rotation has almost no effect on them. In addition, an
increase in rocking-mass will decrease the frequencies, while also increasing the rocking-mass length causes a higher
values of the real and the imaginary parts of the complex natural frequencies.

Appendix A. Detailed solutions of Eqs. (39–41)

The solutions of Eqs. (39) and (40), when j ¼ 1, are considered to have the following forms

P1ðx1Þ ¼ Aesx1 (A.1)

Q1ðx1Þ ¼ Besx1 (A.2)

where ‘‘s’’ is an expression in terms of the system parameters and o, and can be found through Eq. (A.7).
Substituting Eqs. (A.1) and (A.2) into Eqs. (39) and (40), when j ¼ 1, yields

r1o
2Aþ iIx1oO3sBþ Ix1O

2
3s2A� EI1s4A ¼ 0 (A.3)

Ix1o2B� iIx1oO3sAþ GJ1s2B ¼ 0 (A.4)

From (A.3) and (A.4), it can be found that

A

B
¼

�iIx1oO3s

r1o2 þ Ix1O
2
3s2 � EI1s4

(A.5)

A

B
¼

Ix1o2 þ GJ1s2

iIx1oO3s
(A.6)

Comparing (A.5) and (A.6), one could conclude that

ðr1o
2 þ Ix1O

2
3s2 � EI1s4ÞðIx1o2 þ GJ1s2Þ þ ðiIx1oO3sÞ2 ¼ 0) sn;n ¼ 1;2; . . . ;6 (A.7)

from which, the characteristic roots sn;n ¼ 1;2; . . . ;6 can be obtained.
Therefore, the solutions of Eqs. (39) and (40), when j ¼ 1, can be written in the following form

P1ðx1Þ ¼
X6

n¼1

Anesnx1 (A.8)

Q1ðx1Þ ¼
X6

n¼1

Ananesnx1 (A.9)

where

an ¼
iIx1oO3sn

Ix1o2 þ GJ1s2
n

; n ¼ 1;2; . . . ;6 (A.10)

Following the same approach for each pairs of Eq. (39)–(41), one can determine a couple of equations similar to Eqs. (A.7)
and (A.10) for each pair in the following form

½r2ðo
2 þO2

2Þ þ Ix2O
2
3s2 � EI2s4�½Ix2o2 þ GJ2s2� þ ðiIx2oO3sÞ2 ¼ 0) snan ¼

iIx2oO3s

Ix2o2 þ GJ2s2
; n ¼ 7; . . . ;12 (A.11)

ðr3o
2 þ Ix3O

2
3s2 � EI3s4ÞðIx3o2 þ GJ3s2Þ þ ðiIx3oO3sÞ2 ¼ 0) snan ¼

iIx3oO3sn

Ix3o2 þ GJ3s2
n

; n ¼ 13; . . . ;18 (A.12)
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½r4ðo
2 þO2

2Þ þ Ix4O
2
3s2 � EI4s4�½Ix4o2 þ GJ4s2� þ ðiIx4oO3sÞ2 ¼ 0) snan ¼

iIx4oO3s

Ix4o2 þ GJ4s2
; n ¼ 19; . . . ;24 (A.13)

Therefore, the solutions of Eqs. (39)–(41), in the presence of the primary base rotation of O3, can be written in the form of
Eq. (50).

In the absence of the primary base rotation, each pairs of Eqs. (39)–(41) will be decoupled. Following the same approach
as stated here, one can determine the eight equations whose roots aresn, used in Eq. (49).

rjo2 � EIjs
4 ¼ 0) sn;n ¼ 6j� 5; :::;6j� 2

Ixjo2 þ GJjs
2 ¼ 0) sn;n ¼ 6j� 1;6j

9=
; j ¼ 1;2;3;4 (A.14)

Appendix B. Closed-form frequency equation

Substituting Eq. (49) into the Eqs (42)–(48) yields the following system of equations in the matrix form.

C01 C02 C03 C04
C05 C06 C07 C08
C09 C010 C011 C012

C013 C014 C015 C016

2
66664

3
77775

A01
A02
A03
A04

2
66664

3
77775 ¼

Z1

Z2

Z3

Z4

2
66664

3
77775 (B.1)

where

Z1 ¼ Z2 ¼ Z3 ¼ Z4 ¼ 0ð6�1Þ (B.2)

A0m ¼

Am

Amþ1

Amþ2

Amþ3

Amþ4

Amþ5

2
6666666664

3
7777777775
; m ¼ 1; . . . ;4 (B.3)

C01 ¼

1 1 1 1 0 0

s1 s2 s3 s4 0 0

0 0 0 0 s5 s6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C02 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

s7 s8 s9 s10 0 0

0 0 0 0 s11 s12

2
6666666664

3
7777777775

(B.4)

C07 ¼

1 1 1 1 0 0

s13 s14 s15 s16 0 0

0 0 0 0 s17 s18

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C08 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

s19 s20 s21 s22 0 0

0 0 0 0 s23 s24

2
6666666664

3
7777777775

(B.5)

C09 ¼

c0131 c0132 c0133 c0134 c0135 c0136

c0141 c0142 c0143 c0144 c0145 c0146

0 0 0 0 0 0

c0161 c0162 c0163 c0164 c0165 c0166

0 0 0 0 0 0

c0181 c0182 c0183 c0184 c0185 c0186

2
6666666664

3
7777777775
; C013 ¼

c0191 c0192 c0193 c0194 c0195 c0196

c0201 c0202 c0203 c0204 c0205 c0206

0 0 0 0 0 0

c0221 c0222 c0223 c0224 c0225 c0226

0 0 0 0 0 0

c0241 c0242 c0243 c0244 c0245 c0246

2
6666666664

3
7777777775

(B.6)
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C010 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c0167 c0168 c0169 c01610 c01611 c01612

c0177 c0178 c0179 c01710 c01711 c01712

0 0 0 0 0 0

2
666666664

3
777777775

C03 ¼ C04 ¼ C05 ¼ C06 ¼ C011 ¼ C012 ¼ C014 ¼ 0ð6�6Þ

(B.7)

C015 ¼

c01913 c01914 c01915 c01916 c01917 c01918

c02013 c02014 c02015 c02016 c02017 c02018

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C016 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c02219 c02220 c02221 c02222 c02223 c02224

c02319 c02320 c02321 c02322 c02323 c02324

0 0 0 0 0 0

2
666666664

3
777777775

(B.8)

where

n ¼ 1; . . . ;6

C013n ¼ ½Mo2 þ 0:5:Mlsno2 þ EI1s3
n�e

snL1

C014n ¼ ½2Mlo2 þ ðMl2o2 þ 4IyMo2Þsn � 4EI1s2
n�e

snL1

C016n ¼ �½1þ 0:5lsn�esnL1 ; C018n ¼ �snesnL1 ; C019n ¼ �½1þ lsn�esnL1

C020n ¼ snesnL1 ; C022n ¼ �½1þ 0:5lsn�esnL1 ; C024n ¼ snesnL1

(B.9)

n ¼ 7; . . . ;12! c016n ¼ esnL2 ; c017n ¼ snesnL2 (B.10)

n ¼ 13; . . . ;18! c019n ¼ esnL3 ; c020n ¼ snesnL3 (B.11)

n ¼ 19; . . . ;24! c022n ¼ esnL4 ; c23n ¼ snesnL4 (B.12)

where sn are found from Eq. (A.14).
In this case, the characteristic equation would become

det

C01 C02 C03 C04
C05 C06 C07 C08
C09 C010 C011 C012

C013 C014 C015 C016

2
66664

3
77775 ¼ 0 (B.13)

Substituting Eq. (50) into Eq. (42)–(48) yields the following system of equations.

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

2
66664

3
77775

A01
A02
A03
A04

2
66664

3
77775 ¼

Z1

Z2

Z3

Z4

2
66664

3
77775 (B.14)

where

C1 ¼

1 1 1 1 1 1

s1 s2 s3 s4 s4 s5

a1 a2 a3 a4 a4 a5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C2 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

s7 s8 s9 s10 s11 s12

a7 a8 a9 a10 a11 a12

2
6666666664

3
7777777775

(B.15)
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C7 ¼

1 1 1 1 1 1

s13 s14 s15 s16 s17 s18

a13 a14 a15 a16 a17 a18

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C8 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

s19 s20 s21 s22 s23 s24

a19 a20 a21 a22 a23 a24

2
6666666664

3
7777777775

(B.16)

C9 ¼

c131 c132 c133 c134 c135 c136

c141 c142 c143 c144 c145 c146

c151 c152 c153 c154 c155 c156

c161 c162 c163 c164 c165 c166

c171 c172 c173 c174 c175 c176

c181 c182 c183 c184 c185 c186

2
6666666664

3
7777777775
; C10 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c167 c168 c169 c1610 c1611 c1612

c177 c178 c179 c1710 c1711 c1712

c187 c188 c189 c1810 c1811 c1812

2
6666666664

3
7777777775

(B.17)

C13 ¼

c191 c192 c193 c194 c195 c196

c201 c202 c203 c204 c205 c206

c211 c212 c213 c214 c215 c216

c221 c222 c223 c224 c225 c226

c231 c232 c233 c234 c235 c236

c241 c242 c243 c244 c245 c246

2
6666666664

3
7777777775

C3 ¼ C4 ¼ C5 ¼ C6 ¼ C11 ¼ C12 ¼ C14 ¼ 0ð6�6Þ

(B.18)

C15 ¼

c1913 c1914 c1915 c1916 c1917 c1918

c2013 c2014 c2015 c2016 c2017 c2018

c2113 c2114 c2115 c2116 c2117 c2118

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
; C16 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

c2219 c2220 c2221 c2222 c2223 c2224

c2319 c2320 c2321 c2322 c2323 c2324

c2419 c2420 c2421 c2422 c2423 c2424

2
6666666664

3
7777777775

(B.19)

in which

n ¼ 1; . . . ;6

C13n ¼ ½Mo2 þ ð0:5:Mlo2 � Ix1O
2
3Þsn þ EI1s3

n þ iIx1oO3an�esnL1

C14n ¼ ½2Mlo2 þ ðMl2o2 � 4IxMO2
3 þ 4IyMo2Þsn � 4EI1s2

n þ 4ianoO3ðIxM � IyMÞ�e
snL1

C15n ¼ ½ðIxMo2 � IyMO2
3Þan � GJ1ansn þ ioO3ðIxM � IyMÞsn�esnL1

C16n ¼ ½1þ 0:5lsn�esnL1 ; C17n ¼ anesnL1 ; C18n ¼ snesnL1

C19n ¼ ½1þ lsn�esnL1 ; C20n ¼ snesnL1 ; C21n ¼ anesnL1

C22n ¼ ½1þ 0:5lsn�esnL1 ; C23n ¼ anesnL1 ; C24n ¼ snesnL1

(B.20)

n ¼ 7; . . . ;12! c16n ¼ �esnL2 ; c17n ¼ �snesnL2 ; c18n ¼ �anesnL2 (B.21)

n ¼ 13; . . . ;18! c19n ¼ �esnL3 ; c20n ¼ snesnL3 ; c21n ¼ anesnL3 (B.22)

n ¼ 19; . . . ;24! c22n ¼ �esnL4 ; c23n ¼ snesnL4 ; c24n ¼ anesnL4 (B.23)

where sn are found from Eq. (A.7) and Eq. (A.11)–(A.13).
Finally, in this case the characteristic equation reduces to

det

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

2
66664

3
77775 ¼ 0 (B.24)
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