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a b s t r a c t

In case of non-diagonal modal damping, normal modes of vibration do not decouple

modal equations. The usual way to handle such a non-diagonal modal damping matrix

is to neglect its off-diagonal elements. In this paper, we propose an approximate method

based on an asymptotic expansion of the transfer function. It is intermediate between

inversion. Indeed, on the one hand, it allows to partially account for modal coupling and,

on the other hand, still allows the modal equations to be solved independently from

each other. We first provide the mathematical background necessary to canvass the

proposed method, then consider a benchmark against which the benefits of the method

are measured.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Various engineering applications are modeled by a set of coupled second-order ordinary differential equations such as

M €x þ C _x þ Kx ¼ f: ð1Þ

In the particular case of mechanical or structural vibrations, M, C and K represent the mass, damping and stiffness
matrices, while fðtÞ and xðtÞ represent externally applied loads and structural displacements. The normal modes of
vibrations, gathered here in a matrix U, are computed from M and K and normalized through the mass matrix, so that

UTMU ¼ I; UTKU ¼ X; ð2Þ

where I is the identity matrix and X is the diagonal matrix of squared circular frequencies [1]. In practical applications, a
limited number of modes is considered. This is practically performed by keeping some columns of U only, resulting
therefore in a slender rectangular n�m matrix ðm5nÞ. The change of variables xðtÞ ¼ UqðtÞ together with the projection
into the modal space (i.e. the pre-multiplication of (1) by UT) yields a set of m ordinary differential equations

€q þ D _q þXq ¼ g; ð3Þ

where D ¼ UTCU is the modal damping matrix and g ¼ UTf is the vector of modal forces. The frequency domain
formulation of (3), obtained by Fourier transformation of both sides of (3), writes

Q ðoÞ ¼ HðoÞGðoÞ; ð4Þ
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where Q ðoÞ and GðoÞ are, respectively, the Fourier transforms of q and g and

HðoÞ ¼ ð�o2Iþ ioDþXÞ�1
ð5Þ

is the modal transfer matrix of the system.
The modal approach is classically used in order (i) to reduce the number of unknowns (as m5n) and (ii) to uncouple the

set of equations (1). The normal modes of vibration are computed in such a way that UTMU and UTKU are precisely
diagonal, see (2), but nothing can in principle be said about D. Nevertheless, owing to the lack of knowledge about damping
in structures, the damping matrix C is commonly assumed to take a particular formulation, as the most famous Rayleigh
damping, allowing goal (ii) to be reached. However, in some circumstances as the presence of dash-pots or aerodynamic
loading, a specific mathematical modeling of damping forces is available. Unfortunately it usually yields a non-diagonal
modal damping matrix D, which does not allow for the proper decoupling of (3). For simplicity in the following
argumentation, it is convenient to decompose the modal damping matrix D as a sum of two matrices

D ¼ Dd þ Do ð6Þ

collecting exclusively diagonal ðDdÞ and off-diagonal ðDoÞ elements of D.
A thorough review of the literature related to non-diagonal modal damping matrices has been recently presented in

[2,3]. We therefore restrict the portrayal of the panorama to a brief description of three major philosophies.
In the first approach, being actually the formal one, the full modal damping matrix D is considered. The set of coupled

equations (3), but of reduced size m however, has to be handled. The only remaining advantage of the modal approach is
therefore a reduction of the number of unknowns, which may be substantial in some applications.

A second strategy is based on complex mode shapes [4,5], allowing a diagonalization of the system in a state space.
Because it doubles the size of eigenvectors ð2nÞ and due to the difficult interpretation of non-real mode shapes, this
solution is often overlooked.

At last but not least, the third solution, apparently due to Lord Rayleigh [6], is to neglect the off-diagonal terms of the
modal damping matrix and therefore to simply set Do ¼ 0 in (6). The origin of the method is based on the observation that
elements of Do are usually much smaller than those of Dd. There exists several ways to formally express the smallness of Do

compared to Dd. However they seem to be strongly interconnected and therefore equivalent [7]. Among them, we will thus
only exploit the diagonality index rðDÞ defined as the largest eigen value of D�1

d Do in absolute value

rðDÞ ¼ maxðjeigD�1
d DojÞ: ð7Þ

It is demonstrated that this index is connected to the mathematical concept of diagonal dominance [7].
This third method, referred to as the decoupling approximation next, has been prominently applied despite its evident

lack of formalism but condoned by virtue of its basement on an engineering thinking. In particular the modal superposition
method—a deterministic time domain approach—requires the modal equations (3) to be uncoupled and hinges therefore
on this approximation in case of non-diagonal modal damping matrix. Similarly a stochastic dynamic analysis in frequency
domain [8], for which the analysis requires pre- and post-multiplication of the power spectral density matrix of modal
forces by the transfer matrix H, is evidently faster when H is diagonal, i.e. when Do is neglected.

One could believe that the smaller the off-diagonal terms, the smaller the error, concerning the estimation of modal
responses q. This is not necessarily true. Indeed a recent research came to the puzzling conclusion that the error committed
when neglecting off-diagonal elements might grow as the diagonality index decreases [3]. Clearly these findings trigger the
questioning of decades of use of the decoupling approximation initially formulated by Lord Rayleigh.

In this paper we propose a novel approximate method to partially account for modal coupling. The method builds up on
the smallness of off-diagonal terms to construct an approximate expression of the modal dynamic transfer function H.
Actually we show that the classical decoupling approximation is the leading order solution of the asymptotic expansion of
(5) for small rðDÞ, whereas the proposed method simply consists in enriching it with the first-order correction.

The proposed model is presented in Section 2. Then, in Section 3, the major benefits brought by this first correction are
enlightened by comparison with results obtained with the decoupling approximation.

2. Mathematical formulation

Let us write the modal transfer matrix

H ¼ ðJd þ JoÞ
�1; ð8Þ

where the introduction of Jd ¼ �Io2 þ ioDd þX and Jo ¼ ioDo allows a formal separation of diagonal and off-diagonal
elements. Because Jd is a non-singular matrix for every o, we may also write

H ¼ ðIþ J�1
d JoÞ

�1Hd; ð9Þ

where Hd ¼ J�1
d is the modal transfer matrix obtained with the decoupling approximation. The factor ðIþ J�1

d JoÞ
�1 appears

therefore as a formal correction that needs to be applied to the decoupling approximation when non-diagonal modal
damping takes place ðJoa0Þ. It is interesting to notice that this factor regularly tends towards the identity matrix as Jo tends
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towards zero. In the following developments, we perform an asymptotic expansion of this factor for small diagonality
index, with the main objective of avoiding any full matrix inversion.

The eigenvalue decomposition of D�1
d Do is

D�1
d Do ¼ WkW�1; ð10Þ

where W is a matrix of L1-normalized eigenvectors and k is a diagonal matrix with eigenvalues. The definition of the
diagonality index r, see (7), is such that

rðDÞ ¼ JkJ1: ð11Þ

Consideration of a small diagonality index suggests to write

k ¼ eK; ð12Þ

where K ¼ oð1Þ and e51 is the small parameter. The off-diagonal component of modal damping Do is expressed by
substitution of (12) into (10)

Do ¼ eDdWKW�1: ð13Þ

Similarly the eigenvalue decomposition of J�1
d Jo is expressed as

J�1
d Jo ¼ !l!�1; ð14Þ

where !ðoÞ collects the L1-normalized eigenvectors and lðoÞ is a diagonal matrix with eigenvalues. A major difference
between (10) and (14) is the dependency upon frequency: (10) is an intrinsic property of modal damping and hence
independent from frequency whereas (14) is related to the frequency response of the system resulting therefore in
frequency dependent eigenvalues lðoÞ.

Two interesting limit behaviors of (14) are

lim
o-0

J�1
d Jo ¼ lim

o-0
ioX�1Do ¼ 0

and

lim
o-þ1

J�1
d Jo ¼ lim

o-þ1

�i

o Do ¼ 0: ð15Þ

They indicate that mð0Þ ¼ 0 and mðþ1Þ ¼ 0, and that ! tends towards the eigenmatrix of X�1Do for small o and towards
that of Do for large o.

Further developments are based on the fact that eigenvalues of J�1
d Jo are small when the diagonality index is small. To

justify this postulate, the expression of J�1
d Jo is expanded as follows:

J�1
d Jo ¼ ioðX� Io2 þ ioDdÞ

�1Do ¼ io ioDd
1

io
D�1

d ðX� Io2Þ þ I

� �� ��1

Do

¼
1

io
D�1

d ðX� Io2Þ þ I

� ��1

D�1
d Do ¼ e 1

io
D�1

d ðX� Io2Þ þ I

� ��1

WKW�1: ð16Þ

As the limit behaviors J�1
d Jo for o-0 and þ1 are established, see (15), and because only three different regimes (quasi-

static, resonant, inertial) are expected in a linear dynamical system, all there is left to find out is the behavior in the vicinity
of natural frequencies, where resonance phenomena can eventually take place. In frequency bands centered around natural
frequencies, the following condition holds:

X� Io2C0; ð17Þ

which indicates, after substitution into (16), that J�1
d JoCeWKW�1 in the vicinity of natural frequencies. As W and K are of

order 1, we may therefore conclude that the eigenvalues of J�1
d Jo are of order e at most, from where we write

lðoÞ ¼ eMðoÞ; ð18Þ

with MðoÞ ¼ oð1Þ. The eigenvalue decomposition of J�1
d Jo is therefore written

J�1
d Jo ¼ e!M!�1: ð19Þ

Finally we turn back to the correction factor introduced in (9), for which an approximate expression is sought. As the
spectral radius of J�1

d Jo is of order e, henceforth smaller than 1, we can define the following series

Y ¼ Iþ
Xþ1
k¼1

ð�1ÞkðJ�1
d JoÞ

k
ð20Þ
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and foresee that it presents a high convergence rate for small diagonality index. As the product YðIþ J�1
d JoÞ

YðIþ J�1
d JoÞ ¼ Iþ

Xþ1
k¼1

ð�1ÞkðJ�1
d JoÞ

k

 !
ðIþ J�1

d JoÞ

¼ Iþ J�1
d Jo þ

Xþ1
k¼1

ð�1ÞkðJ�1
d JoÞ

k
þ
Xþ1
k¼1

ð�1ÞkðJ�1
d JoÞ

kþ1

¼ Iþ J�1
d Jo þ

Xþ1
k¼1

ð�1ÞkðJ�1
d JoÞ

k
�
Xþ1
k¼0

ð�1ÞkðJ�1
d JoÞ

k
¼ I ð21Þ

is strictly equal to the identity matrix, it turns out that Y is precisely the correction factor we want to approximate, see (9).
Substitution of (19) into (20) yields the series expansion

Y ¼ ðIþ J�1
d JoÞ

�1
¼ Iþ

Xþ1
k¼1

ekð�1Þk!Mk!�1
ð22Þ

from which, on basis of the smallness of e, we propose to keep only the first term of the summation. After consideration of
(19), we finally obtain the approximate expression of the transfer function including the first correction term

Hc ¼ ðI� J�1
d JoÞ ¼ ðI� ioHdDoÞHd: ð23Þ

As announced, this expression is the sum of the leading order term Hd (the only one considered in the decoupling
approximation) and the first correction.

Substitution of (23) into (4) yields the approximate expression of modal responses

Q c ¼ ðI� ioHdDoÞHdG: ð24Þ

It is essential to notice that the proposed method allows to partially account for modal coupling and is numerically very
efficient. Indeed its application allows to compute the response in each mode independently from the others (according to
(24)), contrarily to a rigorous approach that would require a simultaneous determination of modal responses in all modes,
see (3). From a practical viewpoint, the decomposition as the sum of a leading order term and a first correction is also
written for the modal response as

Q c ¼ Q d þ DQ ; ð25Þ

with Q dðoÞ ¼ HdðoÞGðxÞ and DQ ðoÞ ¼ HdðoÞð�ioDoðoÞQ dðoÞÞ. This decomposition suggests therefore that the analysis be
performed in two steps: (i) first, to consider modal forces G and to compute the modal response Q d as would be obtained
with the decoupling approximation, (ii) then to compute the correction DQ as the response of the same uncoupled modal

system subjected to modal forces �ioDoQ d. This way of organizing the computation of the modal responses indicates that
two consecutive analyses of the decoupled system are used, contrary to the formal approach which requires inversion of a
full matrix.

This two-step procedure shows that the mind of proposed method fits with usual asymptotic expansion methods for
which successive corrections are traditionally expressed recursively from the knowledge of previously established
corrections and the leading order solution [9].

3. Performances of the proposed model

3.1. Benchmark problem

The performance of the proposed model is numerically assessed with a benchmark problem, previously considered in
[3,10], consisting of a couple of 4-DOF systems. The two considered systems have the same modal stiffness matrix X

X ¼

3:952

3:982

4:002

4:102

2
66664

3
77775 ð26Þ

and their modal damping matrices are

D1 ¼

1:61 �0:1865 �0:1742 0:3838

�0:1865 1:7 0:3792 �0:1773

�0:1742 0:3792 1:8 �0:1742

0:3838 �0:1773 �0:1742 1:75

2
6664

3
7775; D2 ¼

1:61 0:0009 0:04 0:041

0:0009 1:7 0:0227 0:0376

0:04 0:0227 1:8 0:04

0:041 0:0376 0:04 1:75

2
6664

3
7775: ð27Þ
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The diagonal elements of the modal damping matrices are strictly identical for both systems; modal damping matrices
differ from each other only by their off-diagonal elements. In this benchmark problem the modal forces are considered to
be harmonic with unit amplitude and forcing frequency equal to of ¼ 4:16 rad=s, that is

GðoÞ ¼ ½1; 1; 1; 1�Tdðo�of Þ: ð28Þ

The diagonality indices of the modal damping matrices, as defined in (11), are

rðD1Þ ¼ 0:431; rðD2Þ ¼ 0:055:

3.2. Illustration of eigenvalues l and lðoÞ

Fig. 1 depicts the ordered eigenvalues lk of D�1
d Do as horizontal lines and the frequency dependent eigenvalues mkðoÞ of

J�1
d Jo. The development of the proposed method hinges on the fact that the smallness of lk’s necessarily involves the

smallness of mk’s. This was formally proved in Section 2 and is illustrated in Fig. 1a for D1 and Fig. 1b for D2, where the
largest absolute value of m1, obtained in the vicinity of natural frequencies—in conformity with developments of Section 2,
is well smaller than l1. The largest eigenvalue of D�1

d Do denoted by l1 corresponds to the diagonality index r, namely
rðD1Þ ¼ 0:431 and rðD2Þ ¼ 0:055.

As a prelude to the forthcoming analysis of accuracy, we may focus on the smallness of the diagonality indices. It is
evident that a large diagonality index, more exactly a large eigenvalue m1, cuts down the convergence rate of series (22) and
therefore decreases the accuracy of the proposed method. As m1ðof Þ ¼ 0:298 for D1 and m1ðof Þ ¼ 0:051 for D2 have
different orders of magnitude, we should expect a larger discrepancy for D1 than for D2. This is illustrated in the following
section.

3.3. Accuracy of the proposed model

Fig. 2 provides the Fourier transform of the response in mode 1, obtained for D1 and D2, regardless of the narrow-band
nature of the applied force considered in the benchmark problem. It is actually the response of systems 1 and 2 to unit
modal forces with uniform frequency content (white noise). This alternative case is studied here for the sake of a more
comprehensive discussion on the influence of modal coupling.

The results obtained with the proposed method (represented by bullets) compares very well with the exact solution
(represented by dashed lines). The thick solid line is the result obtained with the decoupling approximation; it is obviously
identical for systems 1 and 2 as they just differ from each other by their off-diagonal elements, which are disregarded in the
decoupling approximation. Referring to the typical pattern of Fig. 1, it is evident to observe a very good matching of all
methods outside resonance frequency bands. In other words, both the decoupling approximation and the proposed method
provide accurate results in the quasi-static and inertial frequency ranges.

A closer look at the resonance frequency band, see insert in Fig. 2, reveals that the proposed method provides better
estimates for D2 than for D1 (bullets virtually lie on the dashed line for D2). This is naturally expected as our proposition
is based on the smallness of the diagonality index, which is much smaller for D2 than for D1. On the contrary, the
inaccuracy of the decoupling approximation is more serious for D2 than for D1, which goes beyond common sense as
pointed out in [3].
0 2
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0

0.1
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0.3

0.4

0 2 4 6 8
0

0.1

0.2

0.3

0.4
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� [rad/s] � [rad/s]

Fig. 1. Constant eigenvalues lk of D�1
d Do (horizontal lines) and frequency dependent eigenvalues mkðoÞ of J�1

d Jo . They are represented for two different

modal damping matrices, D1(a) and D2(b).
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Next we consider a harmonic force and study precisely the benchmark problem. The relevance of the proposed model is
assessed by the relative steady-state error due to the decoupling approximation, expressed as

Ec ¼
jQ ðof Þ � Q cðof Þj

jQ ðof Þj
; ð29Þ

where Q ðof Þ is the exact modal response, see (4), and Q cðof Þ is the approximate response obtained with the proposed
model, see (24). For comparison with the usual application of the decoupling approximation, we also define

Ed ¼
jQ ðof Þ � Q dðof Þj

jQ ðof Þj
; ð30Þ

with Q dðoÞ ¼ HdðoÞGðoÞ, as defined in (25).
In order to assess the relation between the decoupling error and the diagonality of the modal damping matrix, the error

(Ec or Ed) and the diagonality index are plotted against each other, see Fig. 3. To this purpose, it is interesting to construct
0 2 4 6 8
0

0.04

0.08

0.12

0.16

3 3.5

D2D1

4 4.5

0.12

0.14

0.16

� [rad/s]

Fig. 2. Fourier transform of the response in the first mode Q 1ðoÞ obtained by the decoupling approximation (solid line) and the proposed method

(bullets). They are given for D1 and D2 and should be compared to the exact result obtained by inversion of the full matrix (dashed line). NB: the result of

the decoupling approximation is identical for D1 and D2.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4
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6

D2

D2

D1

D1

� (D)

� = 1

0<�< 1

0<�< 1

Fig. 3. (a) Relative steady-state error on the modal response computed with the usual decoupling approximation (Ed) and the proposed method ðEcÞ.

The four curves passing through the origin correspond to errors related to matrices Db;1 and Db;2 defined in (33).
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virtual matrices Da, obtained by linear interpolation between D1 and D2 as

Da ¼ ð1� aÞD1 þ aD2; 0rar1 ð31Þ

and to plot their representative points ðrðDaÞ;EdÞ and ðrðDaÞ;EcÞ on the error-diagonality graph. This yields the thick
continuous, and respectively dashed, lines between representative points of D1 and D2. In particular both extremities of the
upper solid curve correspond precisely to D1 and D2 and represent the error Ed related to the decoupling approximation.
Similarly extremities of the lower dashed line represent the discrepancies obtained for D1 and D2, with the proposed
method.

The error Ed made with the classical decoupling approximation deserves an extensive discussion. Indeed, consideration
of systems intermediate between 1 and 2 roughs out a trend of the evolution of error with the diagonality index. This
unfortunately leads to the conclusion that larger errors may be obtained for smaller diagonality indices [3]. This looks
paradoxical as it is expected that an effectively diagonal matrix produce no error, and hence that the trend pass through the
origin of axes in Fig. 3, which is manifestly not the case. This conclusion may be demystified by noting that the order of
magnitude of the first term in series (22) is not only governed by the smallness of the diagonality index but also by the
eigenmatrix ! which is affected by the distribution of off-diagonal elements in the modal damping matrix. Both effects
have to be considered before drawing decisive conclusions.

To throw light on this, we introduce another set of intermediate matrices, and consider, to this purpose, the diagonal/
off-diagonal decomposition of D1 and D2

D1 ¼ D1;d þD1;o;

D2 ¼ D2;d þ D2;o ð32Þ

and define

Db;1 ¼ D1;d þ bD1;o;

Db;2 ¼ D2;d þ bD2;o; 0rbr1 ð33Þ

as a linear interpolation between D1 (or D2) and its diagonal elements, with D1 and D2 considered now separately. A
practical situation corresponding to this parametric study would be the influence of wind velocity—responsible for non-
diagonal modal damping—in a structure presenting a basic proportional damping [11].

The loci of couples ðrðDb;1Þ;EdÞ and ðrðDb;2Þ;EdÞ are represented by solid lines dropping from representative points of D1

and D2 to the origin. This monotonic behavior is now in agreement with intuition.
The results obtained with the proposed method are analyzed in a similar fashion, and are therefore reported in Fig. 3

too. Aside from the fact that the error Ec is much smaller than Ed (dashed line vs. solid line), the error Ec of matrices Da
exhibits now a barely monotonically increasing behavior from D2 to D1. This brings to the conclusion that, for this
particular example, consideration of the proposed correction enables to recover the expected trend. This is however of
minor importance as the definition of Db matrices is much more meaningful.

In this connection, Fig. 3 reveals that errors related to matrices Db;1 and Db;2 obtained with the proposed method start at
the origin, like for the decoupling approximation, but now with a horizontal tangent. This observation is in agreement with
the mathematical formulation of Section 2. Indeed as the classical decoupling approximation is the leading order term of
series (22), it is expected to obtain an error of order e, i.e. rðDÞ. On the contrary, in the proposed approach, we suggest to
include the first correction in the formulation, which pushes back the order of magnitude of the error to e2, i.e. r2ðDÞ, and
explains therefore the quadratic shape of the discussed error curve.

4. Conclusions

When non-diagonal modal damping takes place, the formal estimation of the modal transfer function requires the
inversion of a full matrix, but of reduced size however. For this reason, modal equations are seldom simultaneously
considered and alternative means such as complex eigenmodes are sometimes put forward. Nevertheless, for simplicity
and because it is believed that small off-diagonal elements do not affect significantly the modal response, only the diagonal
part of the modal damping matrix is usually considered. This allows naturally to perform the analysis with a decoupled set
of equations.

We have shown that this common approach is actually the leading order solution of a matrix inversion problem and we
propose to enrich the common solution with the first correction. In the proposed approach, no matrix inversion other than
a diagonal one is required, no more than for the usual procedure. This makes its numerical implementation as efficient as
simple. Furthermore, it still allows the computation of modal responses independently from each other, as in the usual
decoupling approximation. This obviously makes a substantial difference with the rigorous approach which requires a
simultaneous handling of all modal equations.

Because we include the first correction into the formulation, it is expected that the error committed on the estimation of
modal responses be expressed as a quadratic expression of the diagonality index, in contrast with a linear dependency for
the common decoupling approximation. This was illustrated with a benchmark problem.
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The proposed method is therefore an intermediate solution between the inaccurate decoupling approximation, and the
time-consuming formal approach. As it allows to significantly diminish the errors on modal responses (up to a factor of 10,
see Fig. 3), while still offering a low computational cost, it is suggested to systematically apply the proposed method in case
of non-diagonal modal damping.
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