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The classical Chelomei’s problem of stabilization of a statically unstable elastic column

by axial harmonic vibration is reconsidered. The excitation frequency is assumed to be

arbitrary. Two types of boundary conditions of the column, simply supported and

clamped–hinged ends, are considered. Both cases are studied analytically with check by

numerical analysis. For undamped columns with the axial force close to the critical

stability value, a finite number of triangular stabilization zones appears. This implies

that stabilization is attained at medium frequency range (compared to the second

eigenfrequency of the unexcited column). The high-frequency stabilization is impos-

sible, as the stabilization regions vanish with the increasing excitation frequency. With

addition of internal damping, a continuous stabilization region appears for small

excitation amplitudes, which starts at medium frequencies and extends to high-

frequency range. The influence of external damping on stabilization regions is shown to

be small.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The influence of vibration on stability properties of elastic systems is an important topic from the point of view of the
theory and applications in mechanical engineering [1,2]. Chelomei [3] predicted that statically unstable elastic systems can
be stabilized by high-frequency parametric excitation. In the next paper [4], he showed experimentally that an elastic
simply supported column, compressed by an axial force exceeding the critical Euler value, can be stabilized in its straight
position by high-frequency axial vibration applied to the end of the column. A heavy mass was mounted on a simply
supported column and caused the column to buckle. With the axial vibration applied to the mass, the column was reported
to straighten out. However, Chelomei did not report particular values of the stabilization frequencies achieved in the
experiment. Bolotin in [5] analyzed numerically the stabilization regions of a column compressed by a periodic axial force
exceeding in average Euler’s critical value. He arrived at the conclusion that the analogy with the problem of stabilization of
the inverted pendulum is not correct due to the presence of intermittent resonance zones caused by higher harmonics,
which diminish the stabilization region. Bolotin also warned about the use of averaging and similar high-frequency
asymptotic methods for the stability study of multiple degrees-of-freedom systems, since parametric excitation stabilizing
some of the modes may destabilize others, and the authors share this point of view.

New attempts to investigate the stabilization of statically unstable columns by means of axial vibration were
undertaken in [6–11]. It was stated [7], in particular, that a column subjected to high-frequency excitation has both a
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curved stable configuration and a straight stable equilibrium state for loads almost as low as the original buckling load. The
theory and experiments in [6,8,12,13] confirmed the stiffening effect of the longitudinal high-frequency excitation (increase
of the natural frequencies of transverse oscillations) for loads below the Euler critical value. Experimental investigation of a
buckled column under high-frequency excitation was undertaken in the works [14,15], see also the review paper [16]. The
increase of the buckling load with the excitation frequency was confirmed both theoretically and experimentally. However,
we note that the stabilization frequency reported in [14,15] is lying between the first and second eigenfrequencies of the
column, i.e. it is not high.

In the recent papers [17,18], formulas for higher and lower boundaries of the stabilization frequency of a statically
unstable simply supported column were derived and analyzed. It was shown that the column is stabilized by excitation
frequencies in the interval near the first frequency of free oscillations of the column, and the high-frequency assumption
used in many papers could be invalid. The problem of stabilization of statically unstable finite degrees-of-freedom systems
by parametric excitation with arbitrary frequency was studied in our previous paper [19]. It was shown that stabilization
may be achieved by low, medium and high excitation frequencies.

In the present paper we study stabilization regions of statically unstable columns excited by axial harmonic vibration.
Two types of boundary conditions of the columns are considered: simply supported at both ends and clamped–hinged. In
Section 1 for simply supported columns we reduce the stability analysis to Mathieu equations and derive analytical
expressions for the stability and instability regions. For undamped columns with the axial force close to the critical stability
value, a finite number of triangular stabilization zones appear. This means that, for rather high excitation frequencies,
stabilization of the column is impossible. The influence of internal damping, described by the Kelvin–Voigt model, and
external damping, described by viscous friction, on the stability bounds is investigated. It is shown that the internal
damping suppresses all the instability (parametric resonance) regions for large excitation frequencies when the excitation
amplitude is below a certain small value. The effect of the external damping is shown to be small.

In Section 2 the clamped–hinged column is considered. We note that this case cannot be reduced to a system of
uncoupled Mathieu equations, which is a general case. Here, using the results of [19], we derive the stabilization condition
in terms of eigenfrequencies and eigenmodes of the column for the whole range of excitation frequencies. A high-frequency
asymptotic stabilization condition is also derived, which is similar to the formula obtained in Section 1 for the simply
supported column. The influence of external and internal damping is studied. Main properties of stabilization regions are
shown to be similar to those for the simply supported column. However, some new resonance effects appear due to mode
coupling. It is shown that the analytical results for the stability and instability regions are in good agreement with the
numerical analysis.

Some necessary derivations are given in the Appendix, and the main results are summarized in the Conclusion.

2. Stabilization of a simply supported column

Let us consider vibrations of a straight elastic column of length l, compressed by the axial force P, Fig. 1. In this section,
we assume that the column is simply supported at both ends. The actuator is attached to the upper end of the column
moving freely in the axial direction x. The actuator possesses mass M that is periodically excited in the x direction according
to the harmonic law xa ¼ �d cosOt, and generates the axial force O2Md cosOt. The small transverse vibrations wðx; tÞ of the
Fig. 1. Buckled elastic column under parametric excitation.
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column are governed by the linearized equation

rA
q2w

qt2
þ EI

q4w

qx4
þ ðP þO2Md cosOtÞ

q2w

qx2
¼ 0, (1)

where the weight of the column is neglected. The boundary conditions are

x ¼ 0; l : w ¼
q2w

qx2
¼ 0. (2)

We introduce the dimensionless variables and parameters

x̃ ¼
x

l
; t̃ ¼ O0t; w̃ ¼

w

l
; p ¼

P

Pcr
; d ¼

p2Md

rAl2
; o ¼ O

O0
, (3)

where Pcr ¼ p2EI=l2 is the Euler critical load of the simply supported column, and O0 ¼ ðp=lÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
is its first natural

frequency. The parameter o describes the excitation frequency and d is the excitation amplitude parameter. We also
introduce the parameter m ¼ p� p0 for the deviation of the compressive force from the dimensionless critical value p0 ¼ 1.
Omitting the tildes, we reduce (1) and (2) to the form

€wþ p�4w0000 þ p�2ðpþo2d cosotÞw00 ¼ 0, (4)

x ¼ 0;1 : w ¼ w00 ¼ 0, (5)

where the dots and primes denote derivatives with respect to dimensionless t and x, respectively.
Looking for the solution in the form wk ¼ jðot=2Þ sinðkpxÞ with k ¼ 1;2; . . . ; we obtain for jðtÞ, t ¼ ot=2, the Mathieu

equation

d2j
dt2
þ ða� 2q cos 2tÞj ¼ 0, (6)

with the parameters

a ¼ 4k2
ðk2
� 1� mÞ=o2; q ¼ 2k2d. (7)

A linear combination of solutions wk with all positive integers k provides the general solution of (4) and (5). Therefore, the
trivial state of the column w ¼ 0 is stable if the solution j ¼ 0 of (6) is stable for all k ¼ 1;2 . . . .

We consider the case when the non-excited system is unstable, which means that m40 (in dimensional form, P4Pcr).
Taking k ¼ 1 in (7), we obtain a ¼ �4m=o2o0 and q ¼ 2d. The approximate stability condition for the Mathieu equation
with negative a is �aoq2=2 (accurate up to 3% for qt0:5), see, e.g. [20]. In terms of problem parameters, it gives the
stabilization condition due to periodic excitation as

o4

ffiffiffiffiffiffi
2m

p
d

. (8)

We must check the condition �aoq2=2 for all modes k giving negative a. For example, if m43, then ao0 for k ¼ 2, and
the corresponding stability condition becomes o4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm� 3Þ=2

p
=d. Since ðm� 3Þ=2o2m, this condition is always weaker than

(8). A similar argument shows that the same is true for larger k. Therefore, analysis of all modes with ao0 gives the
approximate stabilization condition (8).

For higher modes, we have a40, and the instability is related to parametric resonance zones. We will focus on the
primary resonance zones located at a � 1, which are the widest and therefore the important. For small q, the resonance
zone is given approximately by ja� 1joq (accurate up to 6% for qt0:5). Using (7), the instability condition takes the form

j4ðk2
� 1� mÞ=o2 � 1=k2

jo2d. (9)

For different k, this condition determines a set of intersecting instability regions.
Fig. 2(a and b) shows stability charts for m ¼ 0:05 and 0.5. The stability boundaries are computed numerically for the

Mathieu equation by solving a boundary value problem with MATLAB. The stability boundaries are close to those given by
asymptotic formulae (8) and (9). One can see that the main stabilization region lies in the medium-frequency interval
oo6. For higher excitation frequencies o, triangular stabilization regions exist when m is small (systems close to the
critical stability bound). There is a single triangular zone for 0:18omo0:40, two zones for 0:10omo0:18, etc. The number
of these zones is finite for any m40. Indeed, the largest d in such a triangular zone corresponds to the intersection point of
the adjacent boundaries corresponding to the resonant zones of modes k and kþ 1. Condition (9) gives for this point

2d ¼ �4ðk2
� 1� mÞ=o2 þ 1=k2

¼ 4ððkþ 1Þ2 � 1� mÞ=o2 � 1=ðkþ 1Þ2. (10)

For large k, the intersection point is found from (10) by expansion with respect to 1=k as

o � 2k2; d � k�3
� ðo=2Þ�3=2. (11)
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Fig. 2. Stability regions (shaded) for (a) m ¼ 0:05, (b) m ¼ 0:5, (c) effect of secondary parametric resonance zones for m ¼ 0:05, (d) effect of internal

damping for m ¼ 0:05, gi ¼ 0:1. The solid lines are the stability boundaries of the first mode, and the dashed lines show parametric resonance boundaries

for higher modes.
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But, for large k, these points do not satisfy the stabilization condition (8). Note that, at these points, q ¼ 2k2d � 2=k and the
condition for smallness of q is satisfied.

The effect of secondary resonances on the stabilization region is shown in Fig. 2(c) for m ¼ 0:05; here only the second
parametric resonance zones of the Mathieu equation are shown. Due to these zones, the stabilization region slightly
diminishes. For larger m, this effect is stronger: the stabilization region in Fig. 2(b) becomes almost one-half as large.

Let us study the effect of external (viscous friction) and internal (Kelvin–Voigt model) damping described, respectively,
by the extra terms c _w and ZI _w0000 in Eq. (1). In the dimensionless equation (4), these terms become ðge _wþ p�4gi _w

0000
Þ. The

dimensionless parameters ge ¼ c=ðrAO0Þ and gi ¼ ZO0=E are assumed to be small. Then Eq. (6) for each mode takes the
form

d2j
dt2
þ 2�

dj
dt þ ða� 2q cos 2tÞj ¼ 0; � ¼ ðge þ gik

4
Þ=o. (12)

The asymptotic stabilization condition for Eq. (12) with negative values of a and small �40 is [21]

a4�
q2ð1� �2Þ

2
. (13)

In terms of problem parameters this inequality yields

o24
2m
d2
þ ðge þ giÞ

2. (14)

The effect of damping appears to be very small.
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For primary parametric resonance, the first-order condition for the instability region is (see, e.g. [20])

q24ða� 1Þ2 þ 4�2. (15)

Resonance is not possible if qoqcr with the critical value qcr ¼ 2� corresponding to a ¼ 1. Taking q and � from (7) and (12),
we write this condition in terms of problem parameters as

k2do
ge þ gik

4

o
. (16)

For high modes (large k), the resonance condition a � 1 yields o � 2k2, so the inequality (16) becomes asymptotically

dogi=2. (17)

Therefore, if the excitation amplitude is small enough the internal damping completely suppresses parametric resonances.
We also note that, for k\

ffiffiffiffiffiffiffiffiffiffi
2=gi

p
, the damping coefficient becomes �\1, so that free oscillations of the k-th mode get

completely suppressed. The stability chart with resonance zones (15) is shown in Fig. 2(d) for m ¼ 0:05, ge ¼ 0 and gi ¼ 0:1.
One can see that parametric resonance does not occur in the region (17).

On the contrary, the effect of external damping is small. When gi ¼ 0, near the resonance o � 2k3 condition (16) yields
the inequality do2ge=o2. This condition is not compatible with the stabilization condition (8) for large o with fixed value
of m.

3. Stabilization of a clamped–hinged column

General properties of the stabilization region studied in the previous section should be valid for columns with different
boundary conditions. At least, this should hold for high frequencies, as influence of boundary conditions is small for high
modes. On the other hand, the simply supported column is specific, since this case reduces explicitly to a system of
uncoupled Mathieu equations. This implies, in particular, that no combination resonances appear. Below we consider the
case when the lower end of the column is clamped and the upper end is simply supported (Fig. 1), and study the
stabilization conditions.

Let us consider Eq. (4) with the new boundary conditions

x ¼ 0 : w ¼ w00 ¼ 0; x ¼ 1 : w ¼ w0 ¼ 0. (18)

The dimensionless Euler critical force is p0 ¼ 2:0457, see the Appendix.
In our previous paper [19], we studied systems with finite degrees of freedom of the form

M €qþ ðC0 þ pC1 þ dB0 cosotÞq ¼ 0; q 2 Rn, (19)

where M, C0, C1 and B0 are real symmetric matrices. The stability condition for the equilibrium q ¼ 0 is found to be

pop0 þ aðoÞd2=2þ oðd2
Þ, (20)

with the coefficient depending on the excitation frequency

aðoÞ ¼ � 1

wT
1C1w1

Xn

k¼1

ðwT
1B0wkÞ

2

o2 �o2
k

. (21)

Here ok and wk are the eigenfrequencies and eigenmodes of system (19) at p ¼ p0 and d ¼ 0, normalized as wT
k

Mwk ¼ 1.
Since p0 is the critical force, o1 ¼ 0 and ok40 for k41. Expression (21) was obtained under the non-resonance condition
ok �ok0aoj for any positive integers k, k0, j.

If aðoÞ40, the excitation increases the critical force pcr � p0 þ aðoÞd2=2. For fixed p4p0, the approximate lower bound
on the stabilizing excitation amplitude is found as d4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=aðoÞ

p
with m ¼ p� p0. Note that the resonance effects (studied

below) provide an upper stability bound on d.
Eq. (4) represents the infinite degree-of-freedom analog of (19), where instead of matrices we have the linear

differential operators

M! 1; C0 ! p�4 q4

qx4
; C1 ! p�2 q2

qx2
; B0 ! p�2o2 q2

qx2
. (22)

Eigenfrequencies ok and eigenmodes wkðxÞ for system (4), (18) with p ¼ p0, d ¼ 0 are given in the Appendix; the first
several eigenfrequencies are listed in Table 1. The eigenmodes are normalized asZ 1

0
w2

k ðxÞdx ¼ 1, (23)
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Fig. 3. Dependence of the coefficient a in (20) and (25) on the excitation frequency o.

Table 1
Values of eigenfrequencies and integrals (24) for the clamped–hinged column.

k 1 2 3 4 5 6 7 8

ok 0 4.091 9.595 17.090 26.584 38.079 51.575 67.072

J1k 12.114 �5.6879 �4.0413 �3.1312 �2.5569 �2.1614 �1.8722 �1.6516

A.A. Mailybaev, A.P. Seyranian / Journal of Sound and Vibration 328 (2009) 203–212208
which corresponds to the discrete condition wT
k

Mwk ¼ 1. Finally, using the operators (22), we must substitute in
formula (21)

wT
1B0wk !�p

�2o2J1k; wT
1C1w1 !�p�2J11; Jjk ¼

Z 1

0
w0jðxÞw

0
kðxÞdx, (24)

where J1k is obtained using integration by parts with boundary conditions (18). This yields

aðoÞ ¼ o2

p2
J11 þ

X1
k¼2

J2
1ko

2

J11ðo2 �o2
k
Þ

 !
. (25)

Numerical values of the integrals J1k are given in Table 1. The function aðoÞ is shown in Fig. 3. The vertical asymptotes in the
figure correspond to the resonant frequencies ok. For large k, it can be shown that J1k�k�1 and ok�k2, so the sum in (25)
converges as

P
k�6.

Note that, up to the small factor d2=2, Fig. 3 represents dependence of the critical parameter mcr ¼ pcr � p0 on the
excitation frequency o away from resonances.

The stabilization condition (20) and (25) takes the form

2m
d2

o
o2

p2
J11 þ

X1
k¼2

J2
1ko

2

J11ðo2 �o2
k
Þ

 !
, (26)

with m ¼ p� p0. Note that viscous damping has a very small effect on this condition, as shown in [19].
In order to obtain the stabilization regions of the column, we must also take into account parametric resonances. The

resonance excitation frequencies are o � ðok þok0 Þ=j with integer numbers k, k0 and j. The instability regions for simple
resonances o � 2ok and combination resonances o � ok þo0k (k; k041) are given for small d by the inequality
[22, Section 11.8]

ðo�ok �ok0 Þ
2o

J2
kk0
o4d2

4p4okok0
. (27)

Like in the previous section, we can take into account the external and internal damping with the dissipative terms
ge _wþ p�4gi _w

0000 in (4). Then the resonance condition (27) becomes

gkgk0 �
J2
kk0
o4d2

4p4okok0
þ

4gkgk0

ðgk þ gk0 Þ
2
ðo�ok �ok0 Þ

2o0, (28)
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with the constants

gk ¼ ge þ giðo
2
k þ p

�4p0JkkÞ; k ¼ 1;2; . . . . (29)

Note that the frequencies ok and eigenmodes wkðxÞ in (27)–(29) correspond to p ¼ p0 þ m. However, for small m, one can
use ok and wkðxÞ for p ¼ p0 computed in the Appendix.

Stability regions on the ðo; dÞ plane were determined numerically for m ¼ 0:1; see gray regions in Figs. 4 and 5.
For numerical computations we used Galerkin method with five eigenmodes expansion (taking more modes does not
lead to significant change of the results). Thus, substituting wðxÞ ¼ q1w1ðxÞ þ � � � þ q5w5ðxÞ into Eq. (4), multiplying
by wkðxÞ and integrating in the interval 0 � x � 1 yields the five degree-of-freedom system (19). In this system, M ¼ I
is the identity matrix, the stiffness matrix C0 þ pC1 ¼ diagð0;o2

2;o
2
3;o

2
4;o

2
5Þ � p

�2mJ, and the excitation matrix
B0 ¼ �p�2o2J, where J is the matrix with elements Jjk given in (24). Taking into account the dissipative terms ge _wþ

p�4gi _w
0000 in (4) leads to the additional term D _q in (19) with D ¼ geIþ giðdiagð0;o2

2;o
2
3;o

2
4;o

2
5Þ þ p

�2p0JÞ. The stability
was checked using the Floquet method. For this purpose, system (19) is reduced to the form _x ¼ AðtÞx. Asymptotic stability
is determined by the inequality jrjo1 for all the eigenvalues of the matrix F ¼ Xð2p=oÞ, where XðtÞ is found numerically
from the matrix differential equation _X ¼ AðtÞX with the initial condition Xð0Þ ¼ I, see, e.g. [22]. Results presented in Fig. 4
correspond to ge ¼ 0:1, gi ¼ 0 (external damping). Fig. 5 shows the stabilization region for ge ¼ 0 and gi ¼ 0:1 (internal
damping).

For comparison with analytical results, the lower stability bounds (26) are shown by solid lines in Figs. 4 and 5. The
boundaries of parametric resonance zones (28) are plotted by dashed lines for the resonances o � 2o2, o2 þo3, 2o3 in
Fig. 4 and for the resonances o � 2o2, 2o3 in Fig. 5. We see that the lower stability bounds (26) are in a very good
agreement with the stability regions found numerically. Approximations of resonance regions (28) are less accurate, but
still give adequate estimates. A number of thin secondary parametric resonance zones is observed in Fig. 4, giving broken
structure of the stability boundary.

We see that the main properties of the stabilization regions, described for a simply supported column in the previous
section, are also valid for the clamped–hinged column. In Fig. 4, the stabilization region is formed by several zones that get
smaller for larger frequencies. Numerical computations also show that these zones decrease and disappear with the
increase of m. The introduction of internal damping completely suppresses parametric resonances for a certain interval of
excitation amplitudes dtge=2, so the stabilization becomes possible for high excitation frequencies, see Fig. 5.

Some new effects are related to degenerate combination resonances. Since o1 ¼ 0, the excitation frequencies
close to o � ok correspond at the same time to the simple resonance ok and to the combination resonance o1 þok.
Hence, the stabilization bound (26) has singularities for o � ok, k ¼ 2;3; . . . . These singularities have complicated
structure as shown by numerical computations in Fig. 4 for o � o2 � 4. Recall that formula (26) is not valid near the points
o � ok.
Fig. 4. Stabilization regions (shaded) obtained numerically for m ¼ 0:1, ge ¼ 0:1, gi ¼ 0 (external damping). The solid lines are the stability boundaries of

the first mode, and the dashed lines show parametric resonance boundaries for higher modes. The dotted line shows the stability boundary for the high-

frequency asymptotics.
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Fig. 5. Stabilization regions (shaded) obtained numerically for m ¼ 0:1, ge ¼ 0, gi ¼ 0:1 (internal damping). The solid lines are the stability boundaries of

the first mode, and the dashed lines show parametric resonance boundaries for higher modes.
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Finally, let us consider the well-known high-frequency asymptotic stabilization condition. For large excitation
frequencies o\oK with Kb1, the asymptotic form of expression (26) is

2m
d2

o
o2

p2

X1
k¼1

J2
1k

J11
. (30)

Here we neglected o2
k

in the denominator for k5K; the terms with k\K are small and, thus, unimportant (the system must
be far from the resonances o � ok, so that none of the denominators is small). Using the summation formula (38) from the
Appendix, we write (30) as

o4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=p0

p
d

. (31)

This formula is the same as the formula (8) for the simply supported case with p0 ¼ 1.
We remark that (31) can be easily obtained using the averaging method for high-frequency excitation, see [23]. The

averaged equation is obtained from (4) by substituting the excitation term p�2o2d cosðotÞw00 with the term

p�4o2d2w0000=2 corresponding to the effective potential energy Ueff ¼
1
4p
�4o2d2 R l

0 w002 dx. After time scaling, the averaged

equation is reduced to the form (4) with d ¼ 0 and p=ð1þo2d2=2Þ instead of p. This yields the critical force

pcr ¼ p0ð1þo2d2=2Þ. The stability condition popcr is the same as (31). From the derivation, it is clear that the formula (31)
is valid also for other boundary conditions, like clamped–clamped.

The stability boundary determined by (31) is shown in Fig. 4 by the dotted line. We see that this stability boundary is
adequate, but it is much less accurate than the original formula (26) in the frequency range oo10. The fact that the high-
frequency asymptotic (31) gives reasonable results in the whole frequency range is related not to the high frequency o, but
to the smallness of the correction terms in the sum in (26). Indeed, already the second coefficient J2

12 � 32 is about 4.5
times smaller than the coefficient J2

11 � 147, see Table 1. In other words, the use of the high-frequency formula for
stabilization of statically unstable columns is justified by the small effect of non-critical modes. The formula (26) is free
from this restriction and gives more accurate results. However, it is valid only for small m.
4. Conclusion

We reconsidered a classical problem of stabilization of a statically unstable elastic column by axial harmonic excitation
with arbitrary frequency for two types of boundary conditions. In the first case corresponding to a column with simply
supported ends, the system is reduced to uncoupled Mathieu equations. Therefore, this case allows complete stability
study based on the known properties of the Ince–Strutt diagram. However, the simply supported column does not possess
all typical resonances since its modes are not coupled through the parametric excitation. The second case of a column with



ARTICLE IN PRESS

A.A. Mailybaev, A.P. Seyranian / Journal of Sound and Vibration 328 (2009) 203–212 211
clamped and simply supported ends, we believe, shows the most typical structure of stability zones. This case was studied
using the asymptotic stability formulae.

We conclude that for stabilization problems of statically unstable systems, there is an essential difference between
finite degrees-of-freedom and continuous column systems, which is caused mainly by the structure of parametric
resonance zones. It is known that systems with finite degrees-of-freedom can be stabilized by high frequency excitation in
the range where parametric resonances do not occur. For continuous columns, this is not true. Parametric resonance zones
get wider for higher modes, eventually filling up the whole space. Therefore, stabilization of columns is possible only by
medium excitation frequencies, of order of the first few natural frequencies of the column. In that frequency range, one
must be careful when using averaging methods, conventional for high-frequency excitation in finite degree-of-freedom
systems.

It turns out that addition of internal damping of the column provides, at rather small excitation amplitudes, the
stabilization region extending to high frequency range. This effect is also of continuous system spirit, as it is determined by
the specific nonlinear dependence of a damping force on a frequency. The internal damping force grows rapidly for higher
modes, and thus, for higher excitation frequencies. On the contrary, external damping forces, which grow much slower with
the excitation frequency, cannot provide high-frequency stabilization of the column.
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Appendix

Consider vibrations of a column governed by Eq. (4) with boundary conditions (18) and d ¼ 0. Its eigenfrequencies and
eigenmodes are found by taking wðx; tÞ ¼ wkðxÞ e

iokt , which yields

p�4w0000k þ p
�2pw00k ¼ o2

kwk. (32)

Using wkðxÞ ¼ epbx in (32), we obtain b4
þ pb2

¼ o2
k

. For o2
k
40, this gives four solutions with two purely imaginary

b ¼ �imk and two real b ¼ �nk, where

m2
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4o2

k

q
þ p

2
; n2

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4o2

k

q
� p

2
. (33)

A linear combination of these solutions satisfying the boundary conditions wkð0Þ ¼ w00
k
ð0Þ ¼ wkð1Þ ¼ 0 is

wkðxÞ ¼ ck
sinpmkx

sinpmk
�

sinhpnkx

sinhpnk

� �
, (34)

with a constant ck determined by the normalization condition
R 1

0 w2
k
ðxÞdx ¼ 1. Using (34) in the remaining boundary

condition w0
k
ð1Þ ¼ 0, we obtain the characteristic equation

tanpmk

mk
¼

tanhpnk

nk
. (35)

Together with (33), it determines the eigenfrequencies ok of the prestressed column.
The Euler critical force p0 is obtained by solving (32) with the boundary conditions (18) and o1 ¼ 0. The same result can

be obtained by taking the limit ok ! 0 in (33)–(35). This gives the critical mode

w1ðxÞ ¼ c1
sinp ffiffiffiffiffiffi

p0
p

x

sinp ffiffiffiffiffiffi
p0
p � x

� �
(36)

and the equation for p0:

tanp
ffiffiffiffiffiffi
p0
p
¼ p

ffiffiffiffiffiffi
p0
p

. (37)

The critical force, corresponding to the lowest solution of (37), is known to be p0 ¼ 2:0457 (the corresponding dimensional
value is 2:0457p2EI=l2). Solving numerically Eqs. (33) and (35) with p ¼ p0, we find the eigenfrequencies ok, k41, see
Table 1.

The following summation formula is valid

X1
k¼1

J2
1k ¼

X1
k¼1

Z 1

0
w01ðxÞw

0
kðxÞdx

 !2

¼
X1
k¼1

Z 1

0
w001ðxÞwkðxÞdx

 !2

¼

Z 1

0

Z 1

0
w001ðxÞw

00
1ðyÞ

X1
k¼1

wkðxÞwkðyÞ

 !
dx dy ¼

Z 1

0
w0021 ðxÞdx

¼

Z 1

0
w1ðxÞw

0000
1 ðxÞdx ¼ �p2p0

Z 1

0
w1ðxÞw

00
1ðxÞdx ¼ p2p0J11. (38)
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Here we used integration by parts with boundary conditions (18), the well-known summation formula
P1

k¼1wkðxÞwkðyÞ ¼

dðx� yÞ (Dirac delta function) valid for eigenfunctions of self-adjoint operators (see, e.g. [24]), and w00001 ðxÞ expressed from
Eq. (32) with o1 ¼ 0.
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