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1. Introduction

Fundamental frequencies of vibrating plates have been determined analytically only for limited classes of plate
geometries. Leissa, in his monograph, gave an extensive survey of plates [1]. The problem has a general analytical solution
in a circular domain in terms of a linear combination of the Bessel functions [1,2]. However, difficulty in finding analytic
solutions arises when the domain is no longer circular. If the domain is a rectangle, Navier’s double series solution and
Levy’s single series solution are possible for certain boundary conditions [1]. But for other domains, numerical methods are
necessary. Asymptotic approximations of annular plates have been investigated by [3,4]. In the case of polygonal plates
(without core support), various numerical solutions are available [5-9]. However, in some cases, especially when numerical
methods become inadequate, such as plates with small internal supports, numerical methods often encounter the problem
of singularity, scaling, and sensitivity to the boundary conditions. This leads us to a special formulation of perturbation
theory to improve accuracy and reliability of the fundamental frequency. Recently, a boundary perturbation method (BPM)
is developed by Yiice and Wang [10] for the circularly periodic plates with clamped boundary conditions. A recent
important work dealing with a different BPM to approximate the frequencies and modes of circular and rectangular plates
with discontinuous boundary conditions (i.e. the situation where a portion of an edge is simply supported while the
remainder is clamped) is given by Febbo et al. [11]. The method presented in [10] uses not only the perturbed boundary to
obtain the desirable geometry, but also uses perturbed modes and frequencies. In this present work, we extend the method
developed in [10] to doubly connected domains by placing a concentric circular core into wavy and polygonal plates. Also
the extension includes perturbation of simply supported boundary conditions. The inner boundary conditions (boundary
conditions of the core) for the plates include clamped, simply supported, and free. The purpose of this study is to examine
the fundamental frequencies of vibrating polygonal plates with a concentric circular core. Perturbation solutions yield
analytic approximate formulations of the fundamental frequencies for such plates. We consider circularly periodic plates
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with an internal core support and we develop analytic approximate formulations of the fundamental frequencies of such
plates, using the boundary perturbation method in the case of clamped and simply supported outer boundary conditions.
The governing equation for the transverse vibration of a thin plate is given by

VAW — K*w =0, (1)

where k? = wl?./p/D, w is the natural frequency, p is the density, D is the flexural rigidity, L is a length scale. The
fundamental frequency is the smallest eigenvalue of the Eq. (1). However, the fundamental frequency may switch from no
nodal diameter to one nodal diameter in the case of annular plates as the radius of inner circle is decreased (with clamped,
simply supported, and free boundary conditions). We call this point of switch the transition point. The fundamental
frequency is essential in applied sciences before finalizing the design. It is desirable to increase the fundamental frequency,
below which no vibration would occur, by placing internal core supports.

2. Formulation of the perturbation method

Let L = 1 be the normalized average radius. The boundary is given by r = 1 + &f(0) where f{0) is the boundary function of
zero mean and ¢ is the small amplitude of the boundary as shown in Fig. 1. Perturb the solution W(r, #) and the fundamental
frequency k about the circular state as in [10]

W(r, 0) = Wo(r) + W4 (1, 0) + E2Wo(r, 0) + O(&3), (2)

K* = K311 + £2b + 0ch)), (3)

where £2b is the correction to the fundamental frequency and b = (k; /kg)*. Expansion of the clamped boundary conditions
is given by [10]

0 = W + &f(0),0) = Wo(1) + W1 (1,0) — D1(1,0)] + e2[W5(1,0) — P (1,0)] + - - -, (4)
ow ,

0=—— = Wo, (1) +eWq,(1,0) = P1(1,0)] + & [W,(1,0) — Po(1,0] + - - -, (5)
on |_1140)

Em—

X7

Fig. 1. The boundary perturbation about the unit circle.
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where n the unit normal vector and @4 (1, 0), ®,(1,60), ¥1(1,0), and ¥5,(1,0) are given in Appendix A. Then both Eqs. (4) and (5)
give the perturbed clamped boundary conditions.
At r =1 + ¢f(0), simply supported boundary conditions are given by

W1 + &f(6),0) =0, (6)

MW + f(0),0)] =0, (7)

where

?W(r,0) LYOWEo) *w(r,0)
onZ R ©On 0s2

is the moment operator with n the unit normal vector, s the unit tangential vector, v the Poisson ratio, and R the normalized
radius of curvature. Since there is no tangential deflection on the boundary of the plate, the tangential derivatives in the
moment vanish in the boundary condition (7). The first boundary condition (6) has the same expansion as in Eq. (4). The
second boundary condition (7) can be written as

MW(r,0)) =

VF VF v ( VF
VI V<|VF| ' VW) R (IVFI ' VW) =0 ®
where F(r,0) =r — 1 — ¢f(0) = 0. Then we have
1 1 14
W<FrGr+r—2FUG()) +EG:0’ (9)

where

G= |V]7F| <FrWr +rl2F9W9>.
Using the radius of curvature in polar coordinates,
dr\? 5 32
{(dﬂ) +7r
r2 +2<ﬂ>2 — rig.
do

do
We obtain the asymptotic expansion of the second boundary condition as

RO) = (10)

0 =[Wq,(1,0) + vWy, (1,0)] + elWq,,.(1,0) + vWq,(1,0) — 21(1,0)]

+ &2[Wo, (1,0) + YWo, (1,0) — Qp(1,0)] + - - -, (11)
where Q4 and Q, are given in Appendix A. Thus both Eqgs. (4) and (11) give the perturbed simply supported boundary
conditions for a boundary function f(0).

Substituting Egs. (2) and (3) into Eq. (1), we obtain the following sequential boundary value problems as in [10]
VAW(r) — KgWo(r) =0,
VAW, (r,0) — k§Wq(r,0) = 0,

VAW, (1, 0) — k§Wo (1, 0) = bW (1), (12)

Solutions of sequential Eqs. (12) with clamped and simply supported outer boundary conditions of specific shapes are
considered below.

3. Wavy boundary plates

In this section, we consider a wavy circular boundary by taking f(6) = cos(M#), where M > 2 is the number of
circumferential waves. Then the radius is defined by r = 1 + ¢ cos(M6), where ¢<1 is a small amplitude.

3.1. Clamped-clamped boundary conditions (CC)

We proceed with a perturbation scheme adopting the boundary perturbation method presented in Section 2. Let
c<1 — ¢ be the radius of the concentric circular core. We perturb the solution W(r, §) and the fundamental frequency k
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about the circular state as before in Egs. (2) and (3). We take the boundary function to be f(0) = cos(M0). Then the clamped
boundary conditions (both inner and outer boundary) are

w@a +8f(9),9)=0, %—W =0, (13)
n r=1+¢f(0)
ow
W(,0) =0, Hr:czo‘ (14)

where n is the unit normal vector. The Oth order equation, with corresponding Oth order homogenous clamped boundary
conditions, is given by

VAW,(r,0) — kK§W(r,0) = 0,
Wo(l,e) =0, Wo(C, 6) =0, (15)
Wo,(1,0) =0, Wq,(c,0)=0.

Eq. (15) corresponds to the CC annular plate (unperturbed case). The solution of Eq. (15) with the homogenous boundary
conditions is then given by

Wo(r,0) = Jo(rko) + afj Yo(rko) + 055 Io(rko) + aif5Ko(rkg), (16)

where o, 5, and a5 are given in Appendix B.1. The solution given by Eq. (16) is finite, since r cannot be zero due to the
concentric circular core. Imposing the clamped edge boundary conditions and using the recursion formulas for the Bessel
functions, we obtain the following frequency equation when ¢ =0 and n = 1:

J1tko)o (ko) + In (k)] — 11 (ko) o (ko) — J2(ko)] = O. (17)

The fundamental frequency rises from kg = 4.611 (for mode n = 1) which is the first root of Eq. (17). The transition location
(from mode n = 1 to mode n = 0) is at c = 0.00132 and the frequency at the transition location is ky = 4.769 [3]. Here, we
shall note that, unlike membranes, the limiting case as ¢ — 0 does not give the fundamental frequency of the circular plate
without a core (kg = 3.19). Fig. 2 shows the fundamental frequency of the annular plate with clamped inner and outer
boundary conditions for n =0 and 1 modes with respect to the radius of the core c. For the transition points of other
boundary conditions see Wang et al. [3]. Fig. 3 shows fundamental frequencies of CC wavy plates with different number of
sides for ¢ > 0.00132.

46

! ! L
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¢

Fig. 2. Fundamental frequency vs. radius of the core of CC annular plate.
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Fig. 3. Fundamental frequency vs. radius of the core of CC wavy plate.

The 1st order O(¢) equation with corresponding 1st order clamped boundary conditions

VAW, (1, 0) — kW4 (r,0) = 0,
W1(1,0) =0, Wq(,6) =0, (18)
er(]’g) = _f(e)WOrr(]’H)’ er(c> 9) = 0

has the following solution:

Wi(r,0) = > WiMr) cos(nMo), (19)
n=1
where
WIM(r) = 555 am(Tko) + 055 Y nm(rko) + 355 Tnm(Tko) + S5 Knn(Tko), (20)

and 655, 055, 655, 054 for n = 1,2,... are the coefficients given in Appendix B.1. The boundary conditions in Eq. (18) suggest
that the solution of the 1st order equation has the following form:

WM (r) cos(MO) = [0 m (ko) + 355 Y m(Tko) + 855 Im(Tko) + 055K (rko)] cos(MO). (21)
The 2nd order O(g?) equation with corresponding 2nd order clamped boundary conditions is

VAW, (1, 0) — k§Wo(r, 0) = bW (1),
Wy(1,0) = @(1,0), Wy(c,0)=0, (22)
Wy, (1,0) = V5(1,0), Wy (c,0)=0.

The outer boundary conditions of Eq. (22) consist of two parts:

D, (1,0) = @o(r) + @y(r) cos(2M0),

¥o(r,0) = Eo(r) + E2(r) cos(ZMO), (23)
where @y(r) = Wy, (/4 and &o(r) = M2W11V'(r)/2 — W’l\{r(r)/z — Wy, (/4. Since the contribution to the fundamental

frequency comes from the 0-independent terms, we can ignore the functions ¢, and &,. However, in the case of clamped
outer boundary condition, we have ¢q(r) = ¢,(r) and £y(r) = £,(r). The 2nd order boundary conditions suggest that we
have a solution of type W5 (r, 0) = U(r) + V(r) cos(2M0), which gives us the following 0-independent equation:

VAU(r) — k§U(r) = bk§W (1), (24)
which has the following general solution:

U(r) = B-ljo(k()r) + Bz Yo(kor) + 8310(’(Or) + B4K0(l<0r) — % (]] (k()r) + OC(Cﬁ Y] (kgr) — Otsczll (kor)
+ OC(C)%K] (kor)), (25)
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Table 1
Fundamental frequency k of M-sided CC wavy boundary with core radius c for ¢ = 0.1.

M\c 0.4 0.3 0.2 0.1 0.05 0.00132
5 7.89626 6.89962 6.06790 5.39755 5.12037 4.92724
6 8.11501 7.01781 6.14575 5.45469 5.17060 4.97287
7 8.27750 7.11699 6.21573 5.50789 5.21786 5.01608
8 8.41292 7.20617 6.28104 5.55851 5.26309 5.05760

12 8.84567 7.51468 6.51594 5.74450 5.43054 5.21205

where By, B;, B3, B4 are constants. Imposing the boundary conditions

{ B e o), UH=d (26)
on Eq. (24), we obtain
B1Jo(ko) + B2 Yo (ko) + B3lg(ko) + B4Ko(ko) = bF(1) + (1),
B1J1(ko) + B2 Y1 (ko) — B3l (ko) + B4K1(ko) = —%F'(U + o), o

B1Jo(ckg) + By Yo(ckg) + B3lg(ckg) + B4Kq(ckg) = bF(c),
b
B]]] (Cko) + BZY] (Cko) — B3I] (Ck()) + B4K1 (Cko) = —%F (©),

where F(r) = kor/4[J1(kor) + of Y1(kor) — 8511 (kor) + g5 K (kr)]. Since the rank of the coefficient matrix on the left-hand
side of Eq. (27) and the augmented matrix of Eq. (27) are the same and <4, every possible 4 x 4 matrix coming from the
system Eq. (27) has determinant zero (solvability condition). Thus, we obtain a unique solution of b,
Yoko)  Ioko)  Ko(ko)  DF(1)+ @o(1)
b,
Yi(ko) —Ii(kg) Kq(ko) *EF (D + &o(D)
Yo(Cko) Io(Cko) K()(Cko) bF(C) =0. (28)

b,
Yi(ckg) —Ii(ckg) Kiq(ckg) *EF(C)

The product &2b is the first correction to the square of the fundamental frequency of the CC wavy boundary plate. Table 1 lists the
values of the fundamental frequencies k with various core radii c for the CC wavy plates of amplitude & = 0.1. Notice that for
& = 0, the fundamental frequency of the CC annular plate is recovered. Frequency values in Table 1 are obtained down to the

transition point ¢ = 0.00132. Since the area of each wavy boundary plate is the same, 7(1 + (£2/2) — c2), and independent of the
number of sides, the fundamental frequency increases as M increases for the same c and fixed ¢. Note that the area of the annular
state (¢ — 0) is slightly smaller than the area of the M-sided wavy plates. The frequency comparisons between annular and wavy

plates can be made only if the outer radius of the annular plate is r = /1 + (¢2 /2), resulting the same area as the wavy plates. In

this case, the CC annular plate has smaller frequency than CC wavy plates, which verifies Polya and Szeg6 [12] (the smallest
eigenvalue is attained in a circular domain). Note also that larger areas result smaller frequencies of the same shape plates.

3.2. Simply supported—clamped boundary conditions (SC)

The clamped outer and the simply supported inner boundary conditions are given by

ow

W( +&f(0),0)=0, 2 _
on | _11¢0)

0, (29)

W(,0)=0, IMW(,0)]=0. (30)
The Oth order equation with simply supported inner, clamped outer boundary conditions is given by
VAW,(r, 0) — k§Wo(r,0) = 0,

Wo(1,0) =0, Wpy(c,0) =0, (31)
W, (1,0) =0, 9MM[Wq(c,0)] =0,

where the moment in polar coordinates for W is IM[W(r, 0)] = W, (1, 0) + (v/1)W, (1, 0). Eq. (30) corresponds to the annular
plate and its solution is given by Eq. (16) with new coefficients o], o35, 35 given in Appendix B.2. In this case we have
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ogg = %6y, %5 = a5, and oG = of5, because the last boundary condition (the only difference from CC case) involving
moment includes the first and the second derivatives of Bessel functions. Due to recurrence relations of Bessel functions, the
moment equation is linearly dependent with other boundary conditions. For a small ¢, the fundamental frequency of SC
annular plate is governed by the n = 1 mode and its value is kg = 4.611, which is the first root of Eq. (17), when c = 0. As ¢

increases, the frequency k rises singularly as | Inc|=! and crosses the n = 0 mode at ¢ = 0.0042 for the Poisson ratio v = 0.3 [3].
The 1st order O(¢) equation with simply supported inner and clamped outer boundary conditions is given by

VAW, (r,0) — kK§W1(r,0) = 0,
W1(1,0) = d1(1,0), W;(c,0) =0, (32)
W]r(] ) H) = 'Pl (] R 9), YDE[W1 (C, 9)] =0.

The solution of Eq. (32) is given by Eq. (21) with new coefficients 435, 435, 635, 3% given in Appendix B.2. The 2nd order

0(¢?) equation with simply supported inner, clamped outer boundary conditions is given by

VAW, (1, 0) — k§Wo (1, 0) = bW, (1),
Wy(1,0) = @(1,0), Wy(c,0)=0, (33)
W, (1,0) = ¥,(1,0), INW,(c,0)]=0.

The outer boundary conditions of Eq. (33) consist of two parts given by Eq. (23). Then we have a solution of type
W (r,0) = U(r) + V(r) cos(2M0). The contribution to the first correction term &b of the square of the fundamental
frequency comes from the non-homogenous Eq. (24), the general solution of which is given by Eq. (25) with coefficients
89 495, and o in the part of the particular solution. Imposing SC boundary conditions

U1) = @p(1), U(c)=0, (34)
Ur(1) = So(1),  Urr(0) + (v/0)Ur(c) =0
into the solution gives us a linear system of equations which leads to a unique solution of b,
Yo(ko) Io(ko) Ko(ko) bF(1) + ¢g(1)
b
Yk —I1(k Kq(k ——F' (1) + &1
1(ko) 1(ko) 1(ko) ko (1) + So(1) o (35)
Yo(cko) Io(cko) Ko(cko) bF(c)

M(Yo(ckp)) Mdo(ckp)) IM(Ko(cke)) bIN(F(c))

where F(r) = kor/4[J1 (kor) + 03 Y1(kor) — o511 (kor) + a§5 K1 (ko)1
Fig. 4 shows fundamental frequencies of wavy plates with simply supported inner, clamped outer boundary conditions
for the n = 0 mode with respect to the core radius ¢ > 0.0042. Table 2 lists the values of the fundamental frequencies k with

A
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Fig. 4. Fundamental frequency vs. radius of the core of SC wavy plate.
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Table 2
Fundamental frequency k of M-sided SC wavy boundary plate with core radius c for ¢ = 0.1 and v = 0.3.

M\c 0.3 0.2 0.1 0.05 0.01 0.0042
5 6.01485 5.35819 4.93049 4.84897 4.90484 4.91991
6 6.09833 5.41869 4.97828 4.89362 4.94996 4.96536
7 6.17351 5.47500 5.02350 4.93598 4.99271 5.00840
8 6.24364 5.52853 5.06689 4.97673 5.03381 5.04977

12 6.49491 5.72464 5.22795 5.12848 5.18677 5.20369

various core radii c for the SC wavy plates of amplitude ¢ = 0.1. Notice that ¢ = 0 gives the fundamental frequency of the SC
annular plate. Frequency values in Table 2 are obtained down to the transition point ¢ = 0.0042.

3.3. Free-clamped boundary conditions (FC)

The boundary conditions of the FC plate are given by

WA +ef0),0 =0, W o, (36)
0N |_1.44f(0)
MW(c,0) =0, BW(,0)=0, (37)
where Mt is the moment and B is the shear operator:
*w 10w 1°w
MW (r, 9)) :W_H)(FF-FTZW)' (38)
0. 1-v) % /ow W

The Oth order equation with free inner, clamped outer boundary conditions is

VAW,(r,0) — kK§Wo(r,0) = 0,
Wo(1,0) =0, MM(Wq(c,0) =0, (40)
Wy, (1,0) =0, BWp(c,0) =0,

. . . . . . . f
which corresponds to the annular plate. The solution of Eq. (40) is given by Eq. (16) with the corresponding coefficients ogg;,

ocgcz, and oc{)% given in Appendix B.3.

In the case of the FC boundary conditions, the n = 0 mode gives the fundamental frequency with no singular rise. Fig. 5
shows fundamental frequencies of wavy plates with free inner, clamped outer boundary conditions for the n = 0 mode with
respect to the core radius ¢ > 0. For a small ¢, the fundamental frequency of the annular plate is governed by the n =0
mode and when ¢ = 0, its value is kg = 3.19622. The 1st order O(¢) equation with free inner, clamped outer boundary
conditions is given by

VAW, (1, 0) — k§W1(r,0) = 0,
W1(1,0) = &1(1,0), MW1(c,0)) =0, (41)
er(l,e) = ‘111(1,0), %(W1(C, 9)) =0.

The boundary conditions in Eq. (41) suggest that the 1st order equation has the solution Eq. (21) with corresponding
coefficients 51, 6%, 6'S, 6%, given in Appendix B.3 for n = 1. The 2nd order O(¢2) equation with free inner, clamped outer
boundary conditions is given by

VAW, (1, 0) — KgWo(r,0) = bkgWo (1),
W5(1,0) = &5(1,0), IMW5(c,0) =0, (42)
Wzr(], 0) = ‘1’2(], 0), i;(Wz(C, 9)) =0.
The first correction term &2b of the square of the fundamental frequency can be obtained from the non-homogenous
Eq. (24), the solution of which is given by Eq. (25) with the corresponding coefficients (xgﬂ, ocgcz, and ocg% (for the particular
solution) given in Appendix B.3. Imposing FC boundary conditions
{ Ul) = @o(1), MMU(c)) =0,

Ur(1) = &p(1), BU() =0 (43)
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Fig. 5. Fundamental frequency vs. radius of the core of FC wavy plate.
Table 3
Fundamental frequency k of M-sided FC wavy boundary plate with core radius c for ¢ = 0.1 and v = 0.3.
M\c 0.3 0.2 0.1 0.05 0.01 0.001
5 3.54707 3.36795 3.31970 3.32384 3.32805 3.32827
6 3.58191 3.39787 3.34791 3.35206 3.35636 3.35659
7 3.61577 3.42687 3.37528 3.37944 3.38383 3.38406
8 3.64863 3.45507 3.40193 3.40610 3.41057 3.41081
12 3.77149 3.56117 3.50245 3.50665 3.51141 3.51167
into the solution gives us a linear system of equations which leads to a unique solution of b,
Yo(ko) Io(ko) Ko(ko) bF(1) + (1)
b
Y1(kg) —I1(kg) K1 (ko) ——F'(1) + &(1)
1(Ko 1(Ko 1(Ko ko 0 _o, (44)

M(Yo(cky)) Mdo(cky)) IMKo(cke)) bM(F(c))
B(Yo(ckg)) Bo(cky) B(Ko(cko)) bB(F(c))

where F(r) = (kor/4)[J1 (kor) + ol Y1 (kor) — afS I (Kor) + of K1 (ko). Table 3 lists the values of the fundamental frequencies

k with various core radii ¢ for the FC wavy plates of amplitude ¢ = 0.1. Note that ¢ = 0 gives the fundamental frequency of
the FC annular plate.

3.4. Clamped-simply supported boundary conditions (CS)

The boundary conditions for the CS plate are given by

WA +&f(0),0) =0, MW + &f(0), 0)] = 0, (45)
ow
W(c,0) =0, onl,_, = 0. (46)

The Oth order equation with the CS boundary conditions is

VAW, (r, 0) — k§Wq(r,0) = 0,
Wo(c,0) =0, Wy(1,0)=0, (47)
Wo,(c,0) =0, IMWy(1,0)] =0,

which corresponds to the CS annular plate. Then the solution of Eq. (47) is given by Eq. (16) with corresponding coefficients
oGy %65, and oG given in Appendix B.4. For small ¢, the fundamental frequency is governed by the n = 1 mode. When ¢ = 0,
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the n = 1 mode rises singularly as |In c|~! from the first root (ky = 3.728 for v = 0.3) of the equation

{2v[lg(ko) + I (k)] + kol3(ko)}J1 (ko) — {2vUo(ko) —J2(ko)] — ko[6]1 (ko) — J3(ko)IH1 (ko) = O, (48)

given in [3]. As c increases, the frequency k rises singularly as |In c|~! and crosses the n = 0 mode at ¢ = 0.00034 with the
value kg = 3.849 for the Poisson ratio v = 0.3 [3]. The 1st order, O(¢), equation with the CS boundary conditions is given by

VAW, (r,0) — k§W,(r,0) = 0,
W] (1,9) = ¢1 (],0), W1 (C, 0) = 0, (49)
MW, (1,0)] = Q1(1,0), Wy, (c,0) =0.

The solution of which is given by Eq. (21) with corresponding coefficients 653, 653, 653, 854 given in Appendix B.4. The 2nd
order, O(g2), equation with the CS boundary conditions is given by

VAW, (1, 0) — k§Wo (1, 0) = bW (1),
Wy(1,0) = §5(1,0), Wy(c,0)=0, (50)
SJE[Wz(l, 9)] = .Qz(], 9), Wzr(C, 9) =0.

Then the outer boundary conditions of Eq. (50) consist of two parts:

D, (1,0) = @g(r) + @, (r) cos(2M0),

Q5(r,0) = wo(r) + wy(r) cos(2M0), (51)
where

Po(r) = —3Wo,, (1) — Wi ),

1 1 1
00(r) = 5 Wo, (IM? +v(1 = M2)] = T W, (1) — 5 Wo,., (1) — 5 M2 — ()
+ [m2 +%(1 - M| Wi —%W’l\”n(r) —%W’l"'m(r). (52)

Since the contribution to the fundamental frequency comes from the 0-independent terms, we can ignore the functions ¢,
and w;. In the case of simply supported outer boundary condition, we have @q(r) = ¢, (r), but wq(r)##w,(r). The 2nd order
boundary conditions suggest that we have a solution of type Wi (r,0) = U(r) + V(r) cos(2M0), which gives us the
0-independent Eq. (24), which has the general solution Eq. (25) with corresponding coefficients o, oG5, and o} given in
Appendix B.4. Imposing the CS boundary conditions

U = @o(1), U() =0, =3
MUY = wo(1),  Ur(c) = 0 (33)
into the solution gives us a linear system of equations which leads to a unique solution of b,
Yo(ko) Io(ko) Ko(ko) bF(1) + @o(1)
M[Yo(ko)] Milo(ko)] M[Ko(ko)] bIM[F(1)] + wo(1)
Yo(Cko) Io(Cko) Ko(Cko) bF(C) =0, (54)

b,
Yi(ckg)  —Ii(ckg)  Kq(cko) *%F ©

where F(r) = (kor/4)J1 (kor) + o§3 Y1 (ko) — 0§11 (koT) + a5 K1 (koT)).

Fig. 6 shows fundamental frequencies of wavy plates with clamped inner, simply supported outer boundary conditions
for the n = 0 mode with respect to the core radius ¢ > 0.00034. Table 4 lists the values of the fundamental frequencies k
with various core radii ¢ for the CS wavy plates of amplitude ¢ = 0.1. Frequency values in Table 4 are obtained down to the
transition point ¢ = 0.00034.

3.5. Simply supported-simply supported boundary conditions (SS)

The boundary conditions of the SS plate are given by
W@ +&f(0),0) =0, IMW(@ + &f(0),0)] =0, (55)

W(c,0)=0, INW(c,0)]=0. (56)
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Fig. 6. Fundamental frequency vs. radius of the core of CS wavy plate.

Table 4
Fundamental frequency k of M-sided CS wavy boundary plate with core radius c for ¢ = 0.1 and v = 0.3.

M\c 0.3 0.2 0.1 0.05 0.01 0.001 0.00034
5 5.59360 4.91488 4.37478 4.15478 4.02084 4.00602 4.00570
6 5.72013 5.02189 4.47292 4.25021 4.11459 4.09955 4.09922
7 5.85816 5.14675 4.59130 4.36642 4.22934 4.21408 4.21374
8 6.01294 5.29126 4.73019 4.50325 4.36467 4.34919 4.34885

12 6.80398 6.04377 5.45499 5.21607 5.06877 5.05207 5.05170

The Oth order equation with the SS boundary conditions is

VAW, (r, 0) — kK§Wo(r,0) = 0,
Wo(c,0) =0, Wy(1,0) =0, (57)
MIWo(c,0)] =0, IMWo(1,0)] =0,

which corresponds to the SS annular plate with solution Eq. (16), where the coefficients are replaced by o}, o33, and o}
given in Appendix B.5. For a small ¢, the fundamental frequency is governed by the n = 1 mode. When ¢ =0, the n =1
mode rises singularly as |In c|~! from the first root (ky = 3.728 for v = 0.3) of Eq. (48), which is the same as the CS case
except the transition point is much bigger than that of the SS case. As c increases, the frequency k rises singularly as | In ¢|~!
and crosses the n = 0 mode at ¢ = 0.0013 with the value ky = 3.848 for the Poisson ratio v = 0.3 [3]. The 1st order, O(e),
equation with simply supported inner and outer boundary conditions is given by

VAW, (r,0) — k§W1(r,0) = 0,
W1(1,0) = d1(1,0), W;(c,0) =0, (58)
9]3[W1 (1, 0)] = .Q1 (1 N 9), ‘JJE[W1 (C, 9)] =0.

The solution of which is given by Eq. (21) with the corresponding coefficients 655, 533, 5%, 934 given in Appendix B.5. The
2nd order, O(¢2), equation with the SS boundary conditions is given by

VAW, (1, 0) — k§Wo(r, 0) = bW (1),
Wz(l, 9) = @2(1, 6), Wz(C, 9) = O, (59)
E].R[Wz(‘l, 0)] = .Qz(l, 6), ﬁn[WZ(C, 9)] =0.

The 6-independent non-homogenous part of Eq. (59) is given by Eq. (24), the solution of which is Eq. (25) with
the corresponding coefficients oy, 0%, and o3 (for the particular solution) given in Appendix B.5. Imposing the SS
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Fig. 7. Fundamental frequency vs. radius of the core of SS wavy plate.

Table 5

Fundamental frequency k of M-sided SS wavy boundary plate with core radius ¢ for e = 0.1 and v = 0.3.

M\c 0.3 0.2 0.1 0.05 0.01 0.0013
5 4.76073 4.26665 3.96902 3.93136 3.98899 4.00483
6 4.87437 4.36993 4.06545 4.02517 4.08230 4.09833
7 5.00747 4.49443 418334 414022 419664 421284
8 5.16116 4.64002 4.32207 4.27591 4.33155 4.34794

12 5.95033 5.39027 5.03876 4.97952 5.03326 5.05071

boundary conditions

U(1) = ¢o(1), U(c) =0, 60
MUD)] = wo(1), MU©] =0 (69)
into the solution gives us a linear system of equations which leads to a unique solution of b,
Yo (ko) To(ko) Ko (ko) bF(1) + @o(1)
MYoko)]  Milotke)]  M[Koke)]  bIM[F(1)] + wo(1) 61
Yocky)  Io(cky)  Kolcko) bF(c) =0 (1)

where F(r) = (kor/4)[]1 (kor) + 06851 Yq (kor) — 0685211 (kor) + O%SBK] (kor)]

Fig. 7 shows fundamental frequencies of wavy plates with simply supported inner and outer boundary conditions for
the n = 0 mode with respect to the core radius ¢ > 0.0013. Table 5 lists the values of the fundamental frequencies k with
various core radii ¢ for the SS wavy plates of amplitude ¢ = 0.1. Frequency values in Table 5 are obtained down to the
transition point ¢ = 0.0013.

3.6. Free-simply supported boundary conditions (FS)

The boundary conditions of the FS plate are given by

WA +&f(0),0) =0, IMWA + &f(6),0)] = 0, (62)

MW(c,0)] =0, BIW(c,0)] = 0. (63)
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The Oth order equation with the FS boundary conditions is

VAW, (r, 0) — k§Wq(r,0) = 0,
9ﬁ[W0(C, 9)] = O, W0(1, 9) = O, (64)
B[Wo(c, )] =0, IMWq(1,0)] = 0.

Eq. (64) corresponds to annular plate (unperturbed case) and its solution is given by Eq. (16) with the corresponding
coefficients ocg-“], oc(f)sz, and ocgs3 given in Appendix B.6. There is no singular rise in the fundamental frequency as ¢ — 0 for the
FS case, which gives the following characteristic equation for the axisymmetric mode (n = 0):

[2vI1 (ko) + kol2(ko)lo (ko) + [2kaJo (ko) + 2v]1 (ko) — kaJ2(ko)Ho(ko) = 0 (65)

and the value for the fundamental frequency, when c = 0, is kg = 2.222 for the Poisson ratio v = 0.3 [3]. The 1st order, O(¢),
equation with the FS boundary conditions is

VAW, (1, 0) — kKW (r,0) = 0,
W1(1,0) = d1(1,60), IM[W(c,0)] =0, (66)
YDE[W](LH)] = Q] (],0), %[Wl(C, 0)] =0.

The solution of which is given by Eq. (21) with the corresponding coefficients 6251, 6%2, 5253, 6;54 for n = 1 given in Appendix
B.6. The 2nd order, O(e2), equation with the FS boundary conditions is given by

VAW, (1, 0) — k§Wo(r, 0) = bW, (1),
W3(1,0) = 95(1,0), MW7 (c,0)] =0, (67)
MW, (1,0)] = 2,(1,0), B[W>(c,0)] =0.

The 6-independent non-homogenous part of Eq. (67) is given by Eq. (24), the solution of which is Eq. (25) with the

corresponding coefficients ocgsl, ocgsz, and ocg-‘g (for the particular solution) given in Appendix B.6. Imposing the FS boundary
conditions

U = @o(D), M[U(0)] =0, (68)
IMUM)] = wo(1), BU©)]=0
into the solution gives us a linear system of equations which leads to a unique solution of b,
Yo(ko) Io(ko) Ko(ko) bF(1) + ¢o(1)
M[Yoko)]  Milo(ko)]  M[Ko(ko)]  BIMF(1)]+ wo(1)| (69)

M[Yo(cko)] Milg(ckg)] IMM[Ko(ckg)] bIM[F(0)] -
B[Yo(cko)] Bllo(cko)] B[Ko(cko)] bB[F(0)]

where F(r) = (kgr/4)[J1 (kor) + ocgsl Y1 (kor) — otgszh (kor) + oc5531(1 (kon)].

Fig. 8 shows fundamental frequencies of wavy plates with free inner and simply supported outer boundary conditions
for the mode n = 0 with respect to the core radius c > 0. Table 6 lists the values of the fundamental frequencies k with
various core radii c for the FS wavy plates of amplitude ¢ = 0.1.
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Fig. 8. Fundamental frequency vs. radius of the core of FS wavy plate.
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Table 6
Fundamental frequency k of M-sided FS wavy boundary plate with core radius c for ¢ = 0.1 and v = 0.3.

M\c 0.3 0.2 0.1 0.05 0.01 0.001 0.0001
5 2.44617 2.42291 2.43745 2.44772 242202 2.45221 2.45222
6 2.59777 2.55830 2.56472 2.57342 2.57730 2.57748 2.57748
7 2.77204 2.71600 2.71421 2.72135 2.72482 2.72498 2.72499
8 2.96166 2.88978 2.88023 2.88595 2.88905 2.88920 2.88921

12 3.78321 3.65848 3.62452 3.62623 3.62841 3.62853 3.62853

4. Polygonal plates

This section uses a boundary perturbation method (BPM) given in Section 2 to study free vibration of polygonal plates
with a concentric circular core. The natural frequencies of these plates are determined by calculating the eigenvalues of the
governing equations using the BPM. The boundary of the polygon can be written as

r=1+f0) =1+ io: cn cos(nMo), (70)

n=1

where

. _2a B cos(nM6) 0
"B Jo cos@ ’

Here, we determine a such that the mean radius of the polygon is 1. See [13] for tabulated values of c;. Thus the boundary
perturbation in Section 2 applies to r = 1 + f(0). Now f is O(¢), instead of the previous order O(1), due to known Fourier
coefficients (71). The more terms in the Fourier series (70) will result in a better-approximated polygon. While very few
results are available about circularly periodic plates with a core, Grossi et al. [14], and Huang and Sakiyama [15] gave
numerical results for fundamental frequencies of clamped rectangular plates with a circular cutout, FC case. Gutierrez et al.
[16] approximate the frequency by means of conformal mapping-Rayleigh—Ritz approach and finite element method for SC
and SS plates. We compared our results with the available literature in the case of FC, SC, and SS square plates (M = 4) in
the corresponding sections below.

B=m/M. (71)

4.1. Clamped-clamped boundary conditions (CC)

Let c be the radius of the concentric circular core. We perturbed the outer boundary of an annular plate to obtain an M-
sided regular polygonal plate with a concentric circular core. The general solution of a circular plate with a concentric
circular core is given by

(o]
W(r, 0) = Z[Cnljn(kr) + CpaYn(kr) + Cpsln(kr) + CpgKn(kr)] cos(n0), (72)
n=0
where Cp1,Cp2, Cp3, Cpg are arbitrary constants to be determined. We proceed with a perturbation scheme adopting the
boundary perturbation method presented in Section 2. Let b be the correction parameter to the fundamental frequency. We
perturb the solution W(r, 6) and the fundamental frequency k about the circular state as before in Egs. (2) and (3). We take
the boundary function f(6) given by Eq. (70). Solutions of the Oth and the 1st order equations with the CC boundary
conditions are given in Section 3. The 2nd order, O(¢%), equation with corresponding 2nd order clamped boundary
conditions is given by Eq. (22). Boundary conditions of Eq. (22) suggest that we have a solution of type
Wy (r,0) = U(r) + >_521 V() cos(nM0). Then we obtain

§ V4Vn(r, 0) — kévn(r, 0)=0,
n=1 (73)
V4U(r) — kéU(r) = bkgwo(r).

The solution of the homogenous part of Eq. (73) has no effect on the correction parameter, b, of the fundamental frequency.
Therefore, we solve the non-homogenous part of Eq. (73), the solution of which is given by Eq. (25). The outer boundary
conditions for V4U(r) - k3U(r) = bkgwo(r) are the 0-independent part of

Dy (r,0) = o (r) + z @n(r) cosnMO,

n=1

Vo (r,0) = Eo(r) + Y En(r) cos nMo. (74)

n=1
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Table 7
Fundamental frequency k of M-sided CC polygonal plate with core radius ¢ and N iterations.

N\c 0.3 0.2 0.1 0.05 0.00132

M=5 3 6.91338 6.06538 5.38948 511118 4.94787
6 6.92578 6.07494 5.39711 5.11807 4.95431

12 6.92982 6.07802 5.39954 5.12026 4.95636

M=6 3 6.86461 6.00014 5.32464 5.04868 4.88731
6 6.87090 6.00502 5.32854 5.05219 4.89060

12 6.87291 6.00657 5.32978 5.05330 4.89164

M=7 3 6.82564 5.96114 5.28916 5.01525 4.85531
6 6.82933 5.96401 5.29145 5.01731 4.85724

12 6.83050 5.96491 5.29216 5.01795 4.85784

M=38 3 6.79942 5.93732 5.26835 4.99589 4.83690
6 6.80179 5.93916 5.26982 4.99721 4.83813

12 6.80253 5.93973 5.27027 4.99762 4.83851

M=12 3 6.75570 5.90030 5.23716 4.96721 4.80979
6 6.75636 5.90081 5.23756 4.96757 4.81013

12 6.75656 5.90096 5.23768 4.96768 4.81023

e—~> 0 N/A 6.73396 5.88296 5.22308 4.95444 4.76911

Then we have the following CC boundary conditions:

U@) = @o(1), U(c) =0, 75
Ur(1) = E(1),  Up(c) =0, (75)
where the constant terms @g(1) and £y(1) are
1 o 1
Po(1) =~z Wo, ()Y cii =5 > caWiM(D),
n=1 n=1
1 o 2, 1 21/nM 13 M

o) = — ZlWom(l) n; A+ jn; cn(MM*WM(1) — §nZ=:1 cnWiM(1). (76)

Imposing the boundary conditions (75) into Eq. (25), gives us a linear system of equations which leads to a unique solution
of b, Eq. (28). Table 7 lists the values of the fundamental frequencies k with first N partial sum, N = 3,6, 12, and various c for
the polygonal plate with the CC boundary conditions. In practice the corners may not be mathematically sharp and a finite
N in the summation Egs. (76) would be desirable. For N = 12, the boundary function f(f) gives good approximation to a
hexagon (given the corner curvature, see [13] for determination of N). In the polygonal case, we no longer have the same
area for each M-sided polygon, since the Fourier coefficients ¢, keep adding to the area. Therefore, the area of a polygon
depends on the number of sides and it increases as M increases. Thus fundamental frequencies decrease as M increases for
the same c since larger areas result in smaller frequencies.

4.2. Simply supported-clamped boundary condition (SC)

Solutions of the Oth, the 1st, and the 2nd order equations for SC boundary conditions are given in Section 3.2. The only
contribution to the correction term of the fundamental frequency comes from the non-homogenous equation
V4U(r) - kéU(r) = bkgWO(r). the boundary conditions of which are the #-independent part of Eq. (74):

{ UM = @o(1), U(©) =0,

Ur(1) = o), Un©) + 2Ur©) = 0, 77

where the constant terms ¢q(1) and &g(1) are given by Egs. (76). A unique solution for the correction term of the
fundamental frequency, b, can be obtained from Eq. (35). Table 8 lists the values of the fundamental frequencies k with
N = 3,6, 12 and various c for the polygonal plate with the SC boundary conditions. Frequency values in Table 8 are obtained
down to the transition point ¢ = 0.0042. Results in Table 8 are normalized with respect to the averaging circle and we
determine the radius of the inscribing circle a such that the mean radius of the polygon is 1, a =[(1/f) fg 1/ cos 0do7!
where ff = /M. Frequency values in the literature are normalized with respect to the side of a polygon. The frequency
values of square plates are compared with the existing literature in Table 9. Although our frequency values are in good
agreement with those that are given in Table 9, our method gives a better approximation for polygons with M > 5. In the
case of hexagonal plate with SC boundary conditions, Gutierrez et al. [16] reported 5.9250 (= +/44.21a), 5.38585
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Table 8
Fundamental frequency k of M-sided SC polygonal plate with core radius c and N iterations, v = 0.3.

N\c 0.3 0.2 0.1 0.01 0.0042
M=4 3 6.12105 5.48565 5.05373 5.02268 5.03792
6 6.14729 5.50587 5.07029 5.03838 5.05372
12 6.15598 5.51251 5.07569 5.04350 5.05887
M=5 3 6.01154 5.34938 4.92046 4.89518 4.91020
6 6.02191 5.35750 4.92712 4.90147 4.91654

12 6.02525 5.36009 4.92924 4.90347 4.91855
M=6 3 5.93938 5.27977 4.85756 4.83538 4.85022
6 5.94470 5.28393 4.86097 4.83859 4.85345
12 5.94638 5.28525 4.86204 4.83960 4.85447
M=7 3 5.89653 5.24170 4.82432 4.80389 4.81860
6 5.89966 5.24415 4.82632 4.80577 4.82049

12 5.90064 5.24491 4.82694 4.80636 4.82108
M=38 3 5.87040 5.21938 4.80519 4.78581 4.80043
6 5.87241 5.22094 4.80647 4.78701 4.80164

12 5.87303 5.22143 4.80687 4.78738 4.80201
M=12 3 5.82981 5.18591 4.77704 4.75925 4.77373
6 5.83037 5.18634 4.77739 4.75957 4.77406

12 5.83054 5.18647 4.77750 4.75967 4.77416
e—> 0 N/A 5.81080 5.17080 4.76460 4.74753 4.76194

Table 9
Comparison of fundamental frequencies k of M-sided FC, SC, and SS, square plates with core radius ¢, v = 0.3.

Cc

0.3 0.2 0.1 0.01 0.001

FC

Present 3.70382 3.50078 3.44409 3.45211 3.45234
Grossi et al. [14] 3.58314 3.45201 - - -
Huang and Sakiyama (by extrapolation) [15] - 3.50126 - - -
Huang and Sakiyama [15] - 3.48499 - - -

Ne

Present 6.15598 5.51251 5.07569 5.04350 5.05887
Gutierrez et al. [16] 6.18127 5.64261 5.22908 - -
Gutierrez et al. (finite element solution) [16] 6.05182 5.55772 5.17613 - -

SS

Present 5.18079 4.69140 4.38264 4.38975 4.40599
Gutierrez et al. [16] 5.05301 4.61673 4.27100 - -
Gutierrez et al. (finite element solution) [16] 4.92363 451781 4.25993 - -

(= +/36.530a), and 4.96867 (= +/31.09a) for the core radii 0.3, 0.2, and 0.1, respectively. Our frequency values are 5.94638,
5.28525, and 4.86204, respectively, for the same core radii given in Table 8.

4.3. Free—clamped boundary condition (FC)

The Oth, the 1st, and the 2nd order solutions for the FC polygonal plates are given in Section 3.3. The boundary
conditions for the 2nd order equation are given by

U = @o(1),  MU(c) =0, (78)
Ur(1) = (1),  BU(0)) = 0.

Then the unique solution for the correction term of the fundamental frequency, b, can be obtained from Eq. (44). A small
free inner boundary condition has little effect on the frequency. In the case of annular plate with FC boundary condition, the
fundamental frequency is found to be 3.196, which is the frequency of the full clamped circular plate at c = 0 [3]. Table 10
lists the values of the fundamental frequencies k with N = 3,6,12 and various values of c for the polygonal plate with FC
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Table 10
Fundamental frequency k of M-sided FC polygonal plate with core radius c and N iterations, v = 0.3.
N\¢ 0.3 0.2 0.1 0.01 0.001
M=4 6 3.69971 3.49723 3.44072 3.44873 3.44897
12 3.70382 3.50078 3.44409 3.45211 3.45234
24 3.70497 3.50178 3.44503 3.45306 3.45329
M=5 3 3.53237 3.35537 3.30801 3.31645 3.31667
6 3.53774 3.35996 3.31232 3.32077 3.32099
12 3.53943 3.36139 3.31367 3.32213 3.32235
M=6 3 3.46708 3.29983 3.25613 3.26471 3.26493
6 3.46986 3.30219 3.25834 3.26693 3.26715
12 3.47072 3.30292 3.25903 3.26762 3.26783
M=7 3 3.43445 3.27216 3.23030 3.23893 3.23915
6 3.43608 3.27354 3.23159 3.24023 3.24044
12 3.43658 3.27396 3.23199 3.24063 3.24084
M=8 3 3.41630 3.25681 3.21598 3.22463 3.22485
6 3.41735 3.25769 3.21681 3.22546 3.22567
12 3.41767 3.25797 3.21706 3.22572 3.22593
M=12 3 3.39064 3.23517 3.19579 3.20445 3.20466
6 3.39092 3.23541 3.19601 3.20467 3.20488
12 3.39101 3.23548 3.19608 3.20474 3.20495
e—> 0 N/A 3.37991 3.22614 3.18736 3.19601 3.19622

boundary conditions. The comparison of the fundamental frequency values of FC square plates is given in Table 9. Our

values are in excellent agreement with Grossi et al. [14] and Huang and Sakiyama [15].

4.4. Clamped-simply supported boundary conditions (CS)

The Oth and the 1st order solutions for the CS polygonal plates are given in Section 3.4. The 2nd order, O(¢?), equation

with the corresponding 2nd order CS boundary conditions is given by Eq. (50) where

.Qz(r, 49) =

Dy (1,0) = @o(r) + > @u(r)cosnMo,
n=1

(1) + icj wn(r) cos nMo.
n=1

Then the 6-independent part of the 2nd order boundary conditions for the CS polygonal plates are

{

U) = @o(D),
Urr(1) + vUr(1) = mp(1),

where the constant terms ¢g(1) and wg(1) are

1 o0
Po(1) ==z Wo, (1) 3" — Z cnWiM(1D),
n=1
wo(1) = 1 2 Wo, (1) Z c[(My? +v(1 — (nM)?)] — Wom(]) Z c2
1
= 2 Worr (1) Z -5 Z cn(MMY? (2 — WM (1)

=1 n_l

+f:cn [(nM)2+ a- (nM)z)]W”M(l)——chwlrr(l)

3

ic wiM ().

n=

K\J\v—k

(79)

(80)

(81)

Similarly, the unique solution for the correction term of the fundamental frequency, b, can be obtained from Eq. (54).
Table 11 lists the values of the fundamental frequencies k with N = 3,6, 12 and various values of ¢ for the polygonal plate

with the CS boundary conditions.
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Fundamental frequency k of M-sided CS polygonal plate with core radius c and N iterations, v = 0.3.

N\¢ 0.3 0.2 0.1 0.01 0.00034

M=5 3 5.67104 4.98180 4.43837 4.08340 4.06819

6 5.74499 5.05492 4.51133 4.15606 414079

12 5.81934 5.12869 4.58500 4.22940 4.21406

M=6 3 5.63758 4.93225 4.38417 4.02879 4.01363

6 5.68982 4.98474 4.43707 4.08175 4.06656

12 5.74301 5.03828 4.49103 413574 412052

M=7 3 5.60807 4.89925 4.35062 3.99572 3.98062

6 5.64893 4.94058 4.39247 4.03775 4.02263

12 5.69086 4.98305 4.43546 4.08087 4.06573

M=8 3 5.58612 4.87664 4.32821 3.97378 3.95873

6 5.61990 4.91094 4.36305 4.00882 3.99375

12 5.65475 4.94636 4.39899 4.04495 4.02986

M=12 3 5.54064 4.83174 4.28412 3.93054 3.91556

6 5.56107 4.85263 4.30545 3.95207 3.93708

12 5.58239 4.87441 4.32767 3.97448 3.95949

e—> 0 N/A 5.47519 4.76597 4.21774 3.86398 3.84905

Table 12
Fundamental frequency k of M-sided SS polygonal plate with core radius c and N iterations, v = 0.3.
N\¢ 0.3 0.2 0.1 0.01 0.0013

M=4 3 4.91759 4.43960 4.14090 4.15457 417029

6 5.05028 4.56632 4.26241 4.27264 4.28847

12 5.18079 4.69140 4.38264 4.38975 4.40570

M=5 3 4.83190 4.33382 4.03353 4.05143 4.06731

6 491114 4.41130 4.10849 4.12400 413991

12 4.99077 4.48925 418399 419723 4.21317

M=6 3 4.77499 4.27512 3.97686 3.99691 4.01276

6 4.83225 4.33156 4.03163 4.04983 4.06569

12 4.89047 4.38897 4.08738 4.10377 4.11964

M=7 3 4.73816 4.23908 3.94260 3.96395 3.97975

6 4.78342 4.28386 3.98613 4.00595 4.02176

12 4.82979 4.32974 4.03074 4.04904 4.06486

M=8 3 4.71319 4.21507 3.91989 3.94209 3.95786

6 4.75084 4.25241 3.95622 3.97711 3.99289

12 4.78961 4.29086 3.99363 4.01321 4.02899

M =12 3 4.66385 416783 3.87509 3.89898 3.91470

6 4.68687 419078 3.89745 3.92050 3.93622

12 4.71085 4.21465 3.92071 3.94290 3.95862

e— 0 N/A 4.59121 4.09630 3.80588 3.83247 3.84819

4.5. Simply supported-simply supported boundary condition (SS)

The Oth, the 1st, and the 2nd order solutions for the SS polygonal plates are given in Section 3.5. The 0-independent part
of the 2nd order boundary conditions for the SS polygonal plates are

U = @o(1), U(©)=0,

Une(1) 4+ VUr(1) = (D), Unn(©) +2Ur(©) =0, (82)

where the constant terms ¢q(1) and wq(1) are given by Egs. (81). Then unique solution for the correction term of the
fundamental frequency, b, can be obtained from Eq. (61). Table 12 lists the values of the fundamental frequencies k with
N = 3,6,12 and various c for the polygonal plate with the SS boundary conditions. Frequency values in Table 12 are
obtained down to the transition point ¢ = 0.0013. The comparison of the fundamental frequency values of SS square plates
is given in Table 9. Our values are in good agreement with Gutierrez et al. [16]. In the case of hexagonal plate with SS
boundary conditions, Gutierrez et al. [16] reported 4.85223 (= +/29.65a), 4.40535 (= +/24.44a), and 4.06016 (= +/20.76a)
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Table 13
Fundamental frequency k of M-sided FS polygonal plate with core radius c and N iterations, v = 0.3.

N\c 0.3 0.2 0.1 0.01 0.001

M=4 6 2.90008 2.83241 2.82605 2.83579 2.83595
12 3.06285 2.98238 2.96957 297777 2.97792

24 3.20856 3.11763 3.09964 3.10667 3.10681

M=5 3 2.56477 2.52763 2.53503 2.54772 2.54790
6 2.68765 2.63805 2.63918 2.65032 2.65048

12 2.80353 2.74323 2.73900 2.74883 2.74898

M=6 3 2.48054 2.45151 2.46254 2.47598 2.47616
6 2.57677 2.53719 2.54292 2.55503 2.55520

12 2.66902 2.62011 2.62117 2.63212 2.63228

M=7 3 2.42737 2.40388 2.41750 2.43151 2.43169
6 2.50751 2.47475 2.48373 2.49656 2.49674

12 2.58524 2.54413 2.54891 2.56070 2.56086

M=38 3 2.39036 2.37100 2.38659 2.40104 2.40123
6 2.45958 2.43189 2.44332 2.45671 2.45689

12 2.52732 2.49201 2.49960 2.51204 2.51221

M=12 3 2.31069 2.30109 2.32138 2.33695 2.33715
6 2.35681 2.34113 2.35840 2.37321 2.37340

12 2.40295 2.38147 2.39586 2.40993 2.41012

e—~> 0 N/A 2.15965 2.17203 2.20301 2.22130 2.22152

for the core radii 0.3, 0.2, and 0.1, respectively. Our frequency values for the same core radii are 4.89047, 4.38897, and
4.08738, respectively, given in Table 12 and they are in excellent agreement (with the maximum difference 2.7 percent).

4.6. Free-simply supported boundary condition (FS)

The Oth, the 1st, and the 2nd order solutions for the FS polygonal plates are given in Section 3.6. The 0-independent part
of the 2nd order boundary conditions for the FS polygonal plates are
Uu@) = @o(1), MU(©) =0, (83)
MU(D)) = wp(1), BU(c)) = 0.
Similarly, the unique solution for the correction term of the fundamental frequency, b, can be obtained from Eq. (69). As in
the case of the FC, a small free inner boundary condition has little effect on the frequency [3]. Table 13 lists the values of the
fundamental frequencies k with N = 3,6,12 and various c for the polygonal plate with the FS boundary conditions.

6. Conclusions

Fundamental frequencies of clamped and simply supported circularly periodic plates with a core are now determined.
A boundary perturbation method is developed to extract the fundamental eigenvalue of the biharmonic boundary value
problem (BVP). The method is then applied to wavy and polygonal plates with clamped, simply supported, and free cores.
For simplicity, we started with wavy boundary plates and generalized the boundary function to polygons. Approximate
analytical solutions of the biharmonic BVP and formulations of the fundamental frequencies for the plates are obtained.
Fundamental frequency values of rectangular plates with boundary conditions SC, FC, and SS are compared with the
existing literature and found in good agreement with our results. The comparison is also made with hexagonal plates with
SC and SS boundary conditions and the values are found to be in excellent agreement with the existing literature with the
maximum difference being of the order of 2.7 percent.

In case of CC, SC, CS, and SS frequencies are calculated down to the transition radius of the core. When the radius c is
very small (smaller then the transition radius), the approximation to the frequency should start from the mode n = 1, in
which fundamental frequency occurs. Since there is no singular rise of the frequency in the case of FC, FS, the approximate
solutions (44) and (83) are valid for all values of c. The smaller cores result in smaller frequencies, since the plates become
less rigid with the exceptions of FS and FC polygonal and wavy plates. Our tables would be useful in the design of vibrating
clamped and simply supported plates with a core and the parameters of the approximate formulations in Egs. (28), (35),
(44), (54), (61), and (69) can be modified to fit the specifics and the needs of the applications. The present analysis can be
used to obtain the higher frequencies by simply applying the perturbation method to higher modes and frequencies about
the circular state. It is worth to study &* correction of the fundamental frequency, only if ¢ is large. Otherwise, O(e?%) is
negligible.
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Appendix A. Perturbed boundary condition coefficients

Perturbed clamped and simply supported boundary conditions are given by the following functions:

@1(1,0) = =f(O)Wy,(1,0),
®5(1,0) = —f(O)W1,(1,0) — f*(O)Wo,,(1.0),
P1(1,0) = —f(O)Wo,, (1,0),

P5(1.0) = f(OW1,(1,0) - F(OW1,,(1.0) - If2(OWq,,.(1.0),

Q1(1,0) = vf(O)Wo,(1,0) + vf" (W, (1,0) — vf(O)Wo,, (1,0) — f(O)Wo,, (1,0),

Q5(1,0) = (v = 2)f (OW1,(1,0) — v(f?(©0) + 2f(0) + ()W, (1, 0)
+v(f(0) + " (0)W1,(1,0) + 2f (OW4 (1, 0)
+ 20 + (FO)* + O "(0)Wo,, (1,0) — vf(O)W1,,(1,0)
1
— 3P OWo,,(1.0) = fOW1,,,(1,0) = 5 (OWo,, (1,0)

Appendix B. Plate coefficients
B.1. Coefficients of the CC plates

The coefficients of the Oth order solution (16) are

cc _ Bo1Ko(ko) — Boz2Ko(cko) — Bo3Ki (ko)
01 BoaYo(ko) — PosYo(cko) — BogY1(ko)’

1
g5 = Fos U1(ko)Ko (ko) — Jo(ko)K7 (ko) — g5 (K1 (ko)Y o (ko) — Ko(ko)Y1(ko))},

CcC 1

Op3 = — Ko(ko) Uotko) + 55 Yotko) + 5510 (ko).

where

Bo1 = I1(kg)Jo(cko) + Io(cko)J1 (ko)
Boz = I1(kg)Jo(ko) + Io(ko)1 (ko).
Boz = lo(cko)o(ko) — Io(ko)o(cko),
Boa = 11(kg)Ko(ckg) + In(cko)K1 (ko),
Bos = 11(kg)Ko (ko) + Io(ko)K1 (ko),
Bos = lo(cko)Ko(ko) — Io(ko)Ko(ckg).

The coefficients of the first-order solution (20) can be determined by Cramer’s rule. Let

Jnmko)  Yamko)  Inmko)  Knm(ko)
Jamko)  Youko)  Inp(ko)  Kipg(ko)
Jnm(cko)  Yum(cko) Inp(cko) Knm(cko) |’
Jam(cko)  Yin(cko)  Iny(cko)  Kipp(cko)

cc _
Ay =

BE =[0 —caWo, (1) 0 0T,

(A.6)

(B.1)

(B.2)

(B.4)

(B.5)
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and let AS; be the matrix obtained by replacing the i-th column of A};® by Bf. Then the coefficients are given by

det(A%$)
cc_ ni
O = qetath (B.7)

fori=1,2,3,4andn=1,2,3,....
B.2. Coefficients of the SC plates

The coefficients of the Oth order solution are the same as in CC case i.e. o] = 0§, %35 = 065, %05 = %55- The coefficients
of the first-order solution can be determined by Cramer’s rule. Let

Jnm(ko) Ynm(ko) Inm(ko) Kum(ko)
ASC Jam(ko) Yim(ko) Iop(ko) Khpm(ko) (B.8)
T Jam(cko) Ym(cko) Inm(cko) Knm(cko) )
M nm(cke)) M(Ynm(cke)) Mpp(cke)) MKnm(cko))
B =[0 —ciWo, (1) 0 0], (B.9)
and let A3; be the matrix obtained by replacing the i-th column of A;¢ by B;". Then the coefficients are given by
det(ASS
s¢ _ ni (B.10)
T det(ASS)
fori=1,2,3,4andn=1,2,3,....
B.3. Coefficients of the FC plates
The coefficients of the Oth order solution are
ofe _ P11Mdo(cko)) — B12Mo(Cko)) + f13WiKo (ko)) (B.11)
ot B12M(Yo(cko)) — B1aYolko) + B15Y1(kg) )
1
ol = P U1(ko)Ko (ko) — Jotko)K1 (ko) — ofS; (K7 (k)Y o (ko) — Ko(ko)Y1(ko))}, (B.12)
1
ke Uo(ko) + o Yo (ko) + oS Io (ko). (B.13)

703 = " Ko(ko)
where
B11 = Joko)K1 (ko) — J1(ko)Ko (ko).
B12 = I1(kg)Ko(ko) + Io(ko)K1 (ko).
B13 = 11(kg)Jo(ko) + In(kg)J1 (ko), (B.14)
B1a = Kq(ko)Mdg(ckg)) + I1 (ko) M(Ko(cko)),
B1s = Ko(kg)Mo(cko)) — Io(ko)Mi(Ko(cko)).

The coefficients of the 1st order solution can be determined by Cramer’s rule. Let

Jnm(ko) Yam(ko) Inm(ko) Knm(ko)
Afc Jam(ko) Yo (ko) Iv(ko) Kip(ko) (B.15)
| M pmlcko))  M(Ynm(cko)) Mnpm(cke))  M(Knm(cke)) |’ )
BJnm(cko))  B(Ynmlcko)) Blumlcko)) BKumlcko))
B = [0 —caW,,.(1) 0 O, (B.16)
and let Affl be the matrix obtained by replacing the i-th column of Af.f by Bff. Then the coefficients are given by
fc
fe _ det(Ay; (B.17)

det(Al%)
fori=1,2,3,4andn=1,2,3,....
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B.4. Coefficients of the CS plates

The coefficients of the Oth order solution are

cs _ B21Ko(ko) — BaaKo(cko) + f23K5 (cko)
01 ™ By4Yo(ko) — BasYo(cko) + BagY1(cko)’

oGy = _ﬁ_{ —Jo(cko)Ko(ko) + Jo(ko)Ko(cko) + a5 [Yo(ko)Ko(ckg) — Yo(cko)Ko(ko)l},

CS

1
g3 = m Uo(ko) + O‘ Yo(ko) + O‘ Io(ko)]

where

B21 = I1(cko)Jo(cko) + Io(cko)l1 (cko),
B2z = I1(cko)o(ko) + To(ko)J1(cko),
B2z = —lo(cko)o(ko) + Io(ko)o(cko),
Baa = I1(ckg)Ko(cko) + Io(cko)Ky (cko),
Bas = 11(cko)Ko(ko) + Io(ko)K1(cko),
Bas = —lo(cko)Ko(ko) + Io(ko)Ko(Cko).

The coefficients of the 1st order solution can be determined by Cramer’s rule. Let

Jnm(ko) Ynm(ko) Inm(ko) Knm(ko)
A _ MUnmko)) MYnmko)) Mpmko)) MKnm(ko))
m | Jam(cko) Ynm(cko) Inm(cko) Knm(cko)

Jam(cko) — Yium(cko)  Iyy(cko)  Kip(cko)

—CnWOr(])
venWo, (1) — vi2M2Wo, (1) — venWo,, (1) — cnWo,,, (1)
0 ,
0

cs _
By =

and let A5} be the matrix obtained by replacing the i-th column of Ay’ by BfS. Then the coefficients are given by

M det(AS)

58 det(AS})
fori=1,2,3,4andn=1,2,3,....

B.5. Coefficients of the SS plates

The coefficients of the Oth order solution are

w5 - P319o(ko) — f3Mo (ko)) + f33MiKo (ko))
01 B3y M(Yo(ko)) + B34Yo (ko) — B35Yo(cko)

oy = ﬁ {—Jo(cko)Ko (ko) +Jo(ko)Ko(cko) + o3 [Yo(ko)Ko(cko) — Yo(cko)Ko(ko)T}

gy = X (I< )Uo(ko)Jrfx 3 Yo(ko) + agdIo(ko)l,

where

B31 =Jo(ckg)Ko(ko) — Jo(ko)Ko(cko),

B3z = Io(ckg)Ko (ko) — Io(ko)Ko(cko),

B33 = Io(cko)o(ko) — In(ko)Jo(cko).

B34 = Ko(cko)Mo (ko)) — Io(cko)MKo(ko)),
B3s = Ko(kg)Mig (ko)) — Io(ko)IMM(Ko (ko))

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)
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The coefficients of the 1st order solution can be determined by Cramer’s rule. Let

Jnm(ko) Ynm(ko) Lim(ko) Knm(ko)
MUamko)) MY pmko))  MUppko))  MKpp(ko))

ASS — ,
" Jnm(cko) Ynm(cko) Inm(cko) Knm(cko)
MJnm(cko)) MY nm(cke)) MUup(cko)) MKnp(cko))
—Cn Wor(l)
pss _ | YenWo, (1) = v M2 W, (1) = veaWo, (1) = caWo,,. (1)
n — y
0
0
and let A3} be the matrix obtained by replacing the i-th column of A}’ by B;’. Then the coefficients are given by
sss _ det(An
ni = det(ASS)

fori=1,2,3,4andn=1,2,3,....
B.6. Coefficients of the FS plates

The coefficients of the Oth order solution are

ofs — ParKo(ko) + fay M(Ko (ko)) — BazM(Ko(cko))
01 ™ BagM(Yo (ko)) — BasM(Yo(cko)) — BasYo(ko)’

off, = [3 Joko)M(Ko (ko)) — M(Jo(ko)Ko (ko) — ofy; [Ko (ko)WY (ko)) — M(Ko(ko)Y o ko)),

B3 =~ (k Kooy Uotko) + o6 Yolko) + B lotko)l

where

Bar = M o(ke)M(Jo(ckg)) — MUg(cko))M(Jo(ko)),
Baz =Jo(ko)Mio(cke)) — Io(ko)Mo(cko)),

Baz = Mg(ko)o(ko) — lo(ko) Mo (ko))

Baa = Ko(ko)Milo(cky)) — Io(kg)Mi(Ko(cko)),

Bas = Ko(ko)M(Ip (ko)) — Io(ko)IM(Ko(ko)),

Bas = M g(cko))M(Ko (ko)) — MIg(ke)M(Ko(cko)).

The coefficients of the 1st order solution can be determined by Cramer’s rule. Let

Jnm(ko) Yam(ko) Inm(ko) Knm(ko)
MU ko)) M(Ynmko))  Mnpko)) MK ppr(ko))

AfS — ,
n MU np(cko))  M(Ynp(cko))  Mnp(cko)) MK ppr(cko))
B(nm(ckg)  B(Ynm(cko))  Bnm(cke)) B(Kpp(cko))
_CnWOr(l)
Bfs _ | venWo, (1) = vn2M? W, (1) — venWo, (1) — cnWo,, (1)
n O ’
0
and let AfS be the matrix obtained by replacing the i-th column of AfS by st Then the coefficients are given by

fs det(AfS
M= Ger Al

fori=1,2,3,4andn=1,2,3,....
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