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The Moebius transformation maps straight lines or circles in one complex domain into

straight lines or circles in another complex plane. This paper will demonstrate that the

acoustic response will trace a circle in the complex plane for straight line or circular

modifications to mechanical or acoustical impedance. This is due to the fact that the

equations relating the acoustic response to the modification are in a form consistent

with the Moebius transformation. This is demonstrated for series and parallel

mechanical and acoustic impedances. The principles presented in this paper for the

case of mechanical impedance are in essence equivalent to what has been termed the

generalized Vincent circle by other authors. This paper shows that the principle is valid

for multiple excitation problems while also showing the applicability of the principle to

acoustic impedance. The key qualifications for applying the Moebius transformation to

mechanical and acoustic impedances is that the problem should be linear, and the

impedance modification should be in one coordinate direction and at one position. The

principle is shown to be valuable for understanding the effect of acoustic impedance

modifications in waveguides. The principle is illustrated for several examples including

a point excited plate, a construction cab, and an acoustic waveguide.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The acoustic response (sound pressure at the driver’s ear or some other important location) can often be suppressed by
changing the mechanical or acoustic impedance at positions of high energy transmission (e.g. mount locations) although
successful impedance modifications can also be introduced at positions that are less intuitive. Changing the mechanical
impedance is inclusive of the addition of springs, masses, and/or dashpots at a single position or between two positions.
Similarly, acoustic impedance can be modified by the addition of absorbing material or perforated material, or by changing
the length of side branches.

Certainly, there are design rules in place to guide the selection of these impedance modifications for many problems
[1–2]. Additionally, numerical optimization has been successful. Nevertheless, it is believed that the principle described in
this paper can add insight when making design changes. Certainly, the principle described aids in understanding the effect
of changing either mechanical or acoustic impedance. Additionally, the method described provides a simple technique for
determining which positions are best for adding impedance modifications.
All rights reserved.
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The Moebius transformation can be expressed as

Z ¼
azþ b
gzþ d

(1)

where a, b, g, and d are complex numbers. This maps a straight line or circular modification of z in the complex plane
resulting in a straight line or circle of Z when traced in the complex plane [3].

This principle has in fact been applied to vibration suppression problems. It has been termed the Vincent circle [4–6]
and has proven useful as guide for mass, stiffness and damping modifications. It is applicable to any linear structural
system excited harmonically. Discovered by Vincent [4] of Westland Helicopters in 1972, it was apparently overlooked in
the intervening years until a recent paper by Tehrani et al. [5]. Vincent had noted that introducing a stiffness modification
and varying the stiffness from minus to plus infinity would result in a circle when the displacement response was plotted in
the complex plane. Vincent limited his scope to structures excited at a single point with a one-dimensional spring added
between two positions on a structure.

Tehrani et al. [5] made an important contribution by discovering that the principle could be generalized to a dynamic
stiffness modification in one dimension thereby including mass and damping modifications. Actually, a dynamic stiffness
can also be thought of as a mechanical impedance modification and will be considered such in this paper. They noted that
the vibratory response at any point will trace a circle as the real or imaginary part of the dynamic stiffness is varied from
minus to plus infinity. This amounts to a straight line modification of the dynamic stiffness in the complex plane.

Applying the principle, the entire response region can be described for a structural modification introduced between
two points or between a single point and ground. To the authors’ knowledge, the usage of Vincent’s circle had previously
been limited to vibration suppression problems [4–7], and has been proven valid for structural loads, dynamic stiffness
modifications and vibratory responses. The work described here demonstrates that the principle can be generalized for
both mechanical and acoustic impedance modifications and acoustic responses.

The development for mechanical impedance will be reviewed in light of the fact that it is unfamiliar to most in the NVH
(noise, vibration, and harshness) community. This paper will then demonstrate how the Moebius transformation can be
utilized for:
�

F

Visualizing the change in acoustic response due to an impedance modification.

�
 Multiple excitation problems.

�
 One-dimensional structural and acoustic impedance modifications (in series or in parallel) at a single position.
2. Application to mechanical impedance

The development of the method below is similar to that shown by Done and Hughes [6]. Fig. 1 shows a schematic of a
structure with a modification between points r and s. The structure is excited at a point p and the response will be
computed at a point q. Done and Hughes supposed that point q was on the structure and the response was a structural
vibration. However, the derivation in this paper will assume a structural force at point p and an acoustic response at a point
q. Note that in the derivation shown below, there is nothing that precludes the excitation at point p as being structural. It is
only essential that the structure be excited harmonically with FP being the complex amplitude of the force. Note also that
point p could be located in the acoustic domain and the excitation could be acoustical (i.e. a monopole).

Assume that the spring is replaced by two forces Fr and Fs. In that case, the vibrational responses at points r and s in the
direction of the mechanical impedance, and the acoustic response at point q can be written in terms of the applied forces
Fp, Fr, and Fs. Thus,

pq ¼ HqpFp þ HqrFr þ HqsFs (2a)

vr ¼ HrpFp þ HrrFr þ HrsFs (2b)

vs ¼ HspFp þ HsrFr þ HssFs (2c)
r s

p

Z
r s

p

q

Fr F
r s

p

Fp
q

ZM 
r s

p

Fp
q

Fr Fs

ig. 1. (a) Schematic showing excited structure and location of modification. (b) Schematic showing the mechanical impedance replaced by forces.
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where Hij are the unmodified transfer functions (determined prior to any impedance modification) between the vibrational
(velocity) or acoustic responses at point i and the forces or acoustical inputs at point j.

Note that the forces Fr and Fs can be expressed in terms of the mechanical impedance ZM and the velocity responses vr

and vs as

Fr ¼ ZMðvs � vrÞ ¼ �Fs (3)

and then substituted into Eq. (2). This results in a set of three simultaneous equations with three unknown responses xr, xs,
and pq. Solving for the modified transfer function (pq/Fp), the following expression is obtained:

pq

Fp
¼ Hqp þ

ZMðHsp � HrpÞðHqr � HqsÞ

1þ ZMðHrr þ Hss � Hrs � HsrÞ
(4)

Tehrani et al. [5] observed that Eq. (4) is a particular case of the Moebius transformation.
Eq. (4) can be written in the form

a ¼ bþ
ZMc

1þ ZMd
(5)

where a, b, c, and d are complex numbers defined as

a ¼
pq

Fp
(6a)

b ¼ Hqp (6b)

c ¼ ðHsp � HrpÞðHqr � HqsÞ (6c)

d ¼ ðHrr þ Hss � Hrs � HsrÞ (6d)

Tehrani et al. [5] further noted that the complex constants a, b, c, and d in Eq. (5) can be related to the complex constants
a, b, g, and d in Eq. (1) via

a ¼ bdþ c (7a)

b ¼ b (7b)

g ¼ d (7c)

d ¼ 1 (7d)

where the modified quantities a and ZM (Eq. (5)) correspond to Z and z (Eq. (1)), respectively.
Done and Hughes showed that for a strictly real modification of ZM, the radius r and center x of this circle can be

expressed as

r ¼ c

2 ImðdÞ

����
���� (8)

and

x ¼ b�
jcr
jcj

(9)

respectively. Similarly, the radius r and center x of the circle can be expressed as

r ¼ c

2 ReðdÞ

����
���� (10)

and

x ¼ bþ
cr
jcj

(11)

for a strictly imaginary modification of ZM.
Recall that mechanical impedance ZM can be expressed as

ZM ¼ cD þ j �
k

oþom

� �
(12)

where k, m and cD are stiffness, mass and damping, respectively. Thus, changing cD or the quantity�k/o+om (i.e. the real or
the imaginary part of ZM) from minus to plus infinity will trace a circle in the complex plane. Note that this impedance
modification is restricted to one direction. The minimum value of the complex modulus of a in Eq. (5) corresponds to the
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minimum response for the modified system. Graphically, this is the point on the circle closest to the origin of the complex
plane.

As an aside, it is notable that modifying the frequency in Eq. (12) results in a straight line modification of mechanical
impedance in the complex plane. Eq. (12) is the system impedance for a single degree of freedom mass, spring, and damper
combination. For viscous damping (proportional to velocity), it is well known that the mobility will trace a circle in the
complex plane as frequency is varied for a single degree of freedom system [8]. Indeed, this is an example of a Moebius
transformation. For hysteretic damping, it is the receptance which does so.

Likewise, plots of mobility for multiple degree of freedom systems will include sections of near-circular arcs in the
vicinity of a natural frequency [8]. For a multi-degree of freedom system with viscous damping, a mobility transfer function
(Hpq) can be written as

Hpq ¼
Ar

pq

cr þ j �
kr

o
þomr

� �þXN
s¼1
ar

As
pq

cs þ j �
ks

o
þoms

� � (13)

where Ar
pq is the residue or modal constant linking coordinates p and q [8]; mr, kr, and cr are the modal mass, stiffness, and

damping, respectively, for mode r. For a narrow range of frequency in the vicinity of or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kr=mr

p
, the second term on the

right hand side of Eq. (13) can be assumed to be independent of o. In that case, Eq. (13) is analogous to the single degree of
freedom case (Eq. (12)), and Hpq will trace an arc in the complex plane for a modification of o. Ewins [8] terms this
phenomenon the modal circle and this will be especially evident when the modal frequencies are well separated.

3. Series and parallel mechanical impedances

It is also interesting to consider the two separate cases where ZM is replaced by two mechanical impedances ZM1 and ZM2

placed in series or in parallel. Utilizing the equivalence of Eqs. (1) and (5) shown earlier, Eq. (4) can be written in the form

pq

Fp
¼
a1ZM þ b1

g1ZM þ d1
(14)

where a1, b1, g1, and d1 are complex constants. Now, if ZM in Eq. (14) is replaced by two mechanical impedances ZM1 and ZM2

placed in series so that

ZM ¼
ZM1ZM2

ZM1 þ ZM2
(15)

Eq. (13) can be written in the form

pq

Fp
¼
a2ZM1 þ b2

g2ZM1 þ d2
(16)

where

a2 ¼ a1ZM2 þ b1 (17a)

b2 ¼ b1ZM2 (17b)

g2 ¼ g1ZM2 þ d1 (17c)

d2 ¼ d1ZM2 (17d)

Note that Eq. (16) is in the form of the Moebius transformation shown in Eq. (1). Thus, the transfer function relating pq to Fp

will trace a circle in the complex plane for straight line modifications in the complex plane to either ZM1 or ZM2.
A similar expression can be developed for the case of mechanical impedances in parallel. Replace ZM by two mechanical

impedances ZM1 and ZM2 in parallel so that

ZM ¼ ZM1 þ ZM2 (18)

Eq. (14) can be rewritten in the form of Eq. (16) where

a2 ¼ a1 (19a)

b2 ¼ a1ZM2 þ b1 (19b)

g2 ¼ g1 (19c)

d2 ¼ g1ZM2 þ d1 (19d)

Thus, modifying a particular mechanical impedance in a combination of series and parallel impedances will map the
response or transfer function relating pq to Fp to a circle in the complex plane.
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4. Example—acoustic response due to an excited plate

The principle is illustrated via a plate with a single force excitation. Fig. 2 shows the geometry and the locations of the
excitation, response and mechanical impedance. The thickness of the plate was 1.6 mm. Young’s modulus, Poisson’s ratio,
and mass density were 200E9 N/m2, 0.3, and 7850 kg/m3, respectively. A spring-mass-damper modification was introduced
at the point r. Numerical simulation was used to calculate the sound pressure (in air) at a point q due to a force applied at
point p. A finite element model of the plate was created, and a forced response analysis was conducted to determine the
vibration of the plate. Shell elements were used to simulate the plate. The plate was cantilevered on one side as shown in
Fig. 2. The vibration response was subsequently used as the velocity boundary condition for a subsequent acoustic
boundary element analysis. All simulations were performed at a frequency of 140 Hz.

The results are shown for two modifications in Fig. 3. Simulation results are indicated on the circle. The large circle is for
a stiffness (k) and/or mass (m) modification with the damping (cD) set to zero. This corresponds to varying the imaginary
part of the mechanical impedance. Similarly, the smaller arc is for a damping modification (real mechanical impedance
modification) with the stiffness and mass set to zero. Note that the circle and arc intersect at two points. One point occurs
when all three constants (k, m, and cD) are zero (i.e. the unmodified case). The other is when either k, m, or cD is infinite. The
smaller circle divides the larger circle into two separate arc lengths. The longer and shorter arc lengths correspond to
stiffness and mass modifications, respectively, with the other set to zero. An optimum modification can be identified as that
point where the response is a minimum (i.e. closest to the origin of the complex plane).
r

k

m

Fp
p

q

0.61

0.46

c

0.45
0.31

x

y

z

(0.8, 0.5, 0.3)

0.10
0.45

Fig. 2. Schematic showing cantilevered plate dimensions, location of the mechanical impedance, and point q for acoustic response. All dimensions and

coordinates are in meters.
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In Fig. 4, the damping is plotted on the vertical axis and a series of circles are traced in the different complex planes as
the real part of the mechanical impedance (i.e. the damping) is increased. The circles have a smaller diameter for higher
values of damping since damping tends to reduce the differences between resonances (i.e. occurring at a maximum
distance from the origin of the complex plane) and anti-resonances (i.e. occurring at the minimum distance from the origin
of the complex plane). As expected, the circles move towards the origin of the complex plane as the damping is increased.

5. Application to multiple excitations

The Moebius transformation can straightforwardly be extended to cases having multiple excitations in the following
manner. Beginning with Eq. (4), the partial pressure response at point q due to a force or acoustic excitation at point n ðpðnÞq Þ

can be written as

pðnÞq ¼ HqnFn þ
ZMðHsn � HrnÞðHqr � HqsÞFn

1þ ZMðHrr þ Hss � Hrs � HsrÞ
(20)

where Fn is a force at point n (n ¼ 1–N). The complete pressure response pq is the summation of the partial pressure
responses and can be expressed as

pq ¼
XN
n¼1

pðnÞq ¼
XN
n¼1

HqnFn þ
ZMðHsn � HrnÞðHqr � HqsÞFn

1þ ZMðHrr þ Hss � Hrs � HsrÞ

� �
(21)

Observe that Eq. (21) can be written in the form of Eq. (5) with

a ¼ pq (22a)

b ¼
XN
n¼1

HqnFn (22b)

c ¼
XN
n¼1

ðHsn � HrnÞðHqr � HqsÞFn (22c)

d ¼ ðHrr þ Hss � Hrs � HsrÞ. (22d)

Eqs. (21) and (22) might not seem especially helpful at first glance due to the number of transfer functions which need to
be evaluated to find b, c, and d if a large number of excitations are applied. However, the fact that Eq. (21) is of the form of
Eq. (5) is potentially useful on its own. The complex constants b, c, and d can be solved for by making known modifications
to the mechanical impedance (ZM) to an analysis model or theoretically to an actual vibro-acoustic system. The constants b,
c and d can be easily found by determining the responses for three known modifications to the mechanical impedance (ZM).

Certainly, the aforementioned procedure could be applied experimentally. However, it is difficult to add a spring or mass
to a real structure without also modifying the damping (i.e. the real part of the mechanical impedance). Furthermore,
bolting a spring or mass to a plate adds rotational stiffness at the bolted location. Consequently, the authors’ attempts to
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prove this process experimentally have not been successful to this point. However, the approach could certainly be applied
experimentally in principle, and Tehrani et al. [5] were successful in applying the principle to a beam.
6. Example—construction cab with multiple inputs

Finite and boundary element analyses of a construction cab were conducted, and the results were utilized to show how
the Moebius transformation might be applied. Fig. 5 shows the finite element model of the construction cab as well as the
approximate locations of the input forces at the four mounts and a mechanical impedance modification to the floor. The
complex amplitudes for the four forces are indicated in Fig. 5 as well. The finite element model consisted 505 beam, 8852
shell, and 1778 solid elements. The finite element model for the cab was used to predict the structural vibration by a forced
response analysis. Modal superposition was used for this analysis and 1 percent viscous damping was assumed for all
modes.

The computed structural vibration was used for the velocity boundary condition for the subsequent boundary element
analysis. The boundary element mesh consisting of 1640 elements for the construction cab is shown in Fig. 6. The
absorption was applied (using a locally reacting model) to the indicated section of the construction cab. The impedance
F1

F2

F3

F4

ZM

F1 = 1 + 0j
F2 = 0.96 + 0.45j
F3 = 0.97 + 0.17j
F4 = 0.97 + 0.4j

Fig. 5. Structural finite element model of construction cab.

Receiver

Sound Absorptive Lining
on Shaded Elements
zn = 2.0 + j3.4

Fig. 6. Boundary element model of the construction cab showing location of absorption as shaded elements.
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Fig. 8. Schematic to illustrate the application of the Moebius transformation to acoustic impedance.
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corresponded to that of 1 in foam and the value for the local acoustic impedance at 140 Hz is shown in Fig. 6. The sound
pressure response was computed at the location of the driver’s ear.

Three finite and boundary element analyses were performed. The first was for the unmodified case and then two
subsequent analysis cases were conducted where the imaginary part of the mechanical impedance was varied. The
constants b, c, and d (Eq. (5)) were then determined using the results of these three simulations. The constants b, c, and d

can be solved for since the three modifications (ZM) and three corresponding responses pq are known.
Computed circles in the complex plane for this example are shown in Fig. 7. The large circle is for an imaginary change to

the mechanical impedance. This corresponds to a stiffness (k) and/or mass (m) modification with the damping (cD) set to
zero. The smaller arc is for a damping modification (real part of the mechanical impedance) with the stiffness and mass set
to zero. The circles intersect at two points. One occurs when the mechanical impedance is zero (the unmodified case), and
the other when either the real or imaginary part of the mechanical impedance is infinite. The longer arc length of the large
circle corresponds to a mass modification with the stiffness and damping set to zero.

Several other simulations were conducted to demonstrate that the results lie on the circle and arc shown in Fig. 7
though these results are not indicated in the figure.
7. Application to acoustic impedance

The Moebius transformation may also be applied to acoustic impedance. This will be demonstrated using a
development very similar to that shown earlier for mechanical impedance. Referring to Fig. 8, assume that a velocity source
is applied (vp) at position p and the response of interest is the pressure at point q (pq). In this case, the modification is the
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specific acoustic impedance at position r (Zr). This analysis assumes plane wave behavior at the location of the specific
acoustic impedance (position r) though not necessarily at points p or q.

The sound pressure at points q (pq) and r (pr) can be expressed as

pq ¼ Hqpvp þ Hqrvr (23a)

pr ¼ Hrpvp þ Hrrvr (23b)

where Hij are the unmodified transfer functions between the sound pressure responses at point i and the particle velocities
at point j. The particle velocity at position r (vr) can be expressed in terms of the specific acoustic impedance as

vr ¼
1

Zr
pr (24)

When Eq. (24) is inserted into Eqs. (23a) and (b), one obtains

pq

vp
¼ Hqp þ

1

Zr
HrpHqr

1�
1

Zr
Hrr

(25)

which has a form like Eq. (5) if ZM is replaced by the reciprocal of Zr. Similar to what was done for the mechanical
impedance case, Eq. (25) can be re-expressed in a form similar to Eq. (1) as

pq

vp
¼

a 1

Zr
þ b

g 1

Zr
þ d

(26)

If both the numerator and denominator on the right hand side of Eq. (26) are multiplied by Zr, Eq. (26) will be in a form
identical to Eq. (1). Thus, the response due to a straight line or circular modification to acoustic impedance likewise traces a
circle in the complex plane.

Additionally, the Moebius transformation can be proven to be applicable to both series and parallel acoustic impedances
using the identical analysis shown in Eqs. (14)–(19). In duct acoustics, series and parallel acoustic impedances are
commonly denoted as transfer (used for modeling perforates) and branch (used for modeling side branches) impedances.

Fahy [9] noted that the specific acoustic impedances at positions (shown in Fig. 9) upstream (z1) and downstream (z2)
could be related to one another via the expression

z1 ¼
z2 þ j tanðkLÞ

j tanðkLÞz2 þ 1
(27)

where k is the acoustic wavenumber and L is the distance separating positions 1 and 2. Plane wave propagation of sound is
assumed in the duct. Note that the expression is already in the form of the Moebius transformation (Eq. (1)) for both
modifications of tan(kL) and z2. Fahy previously demonstrated in Ref. [9] that z1 traces a circle in the complex plane as
tan(kL) varies from minus to plus infinity though not by utilizing the Moebius transformation. Similarly, it is apparent that
if z2 is modified along a straight line or circle, z1 will similarly trace a circle in the complex plane according to the Moebius
transformation.

Consider the case where the specific acoustic impedance z0 is at the inlet or outlet to an acoustic duct system as shown
in Fig. 10. Assuming that the duct system consists of a combination of series (indicated as ztr), parallel (zb), and termination
or end (ze) acoustic impedances, and straight ducts; z0 will trace a circle in the complex plane due to any straight line or
circular modification (in the complex plane) of any impedance in that system.

In the case of series impedance which is often referred to as transfer impedance, it is noteworthy that that Crocker and
Sullivan [10] developed an empirical equation for impedance. The transfer impedance was expressed as

ztr ¼
6� 10�3

þ jkðt þ 0:75dhÞ

s (28)
z1 z2

L

Fig. 9. Schematic showing impedance at two locations in a duct separated by length L.
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Fig. 10. Schematic showing a duct with a parallel (zb) and series (ztr) specific acoustic impedance.
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Fig. 11. Schematic illustrating the transfer matrix and source, load, and termination impedance.
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where s is the porosity, dh is the hole diameter, and t is the thickness of the perforate. Rao and Munjal [11] developed a
similar empirical equation which included the Mach number. Note that changing porosity (s), hole diameter (dh), or
thickness (t) result in straight line changes to ztr in the complex plane. In practice, these modifications will not extend from
minus to plus infinity so only a portion of a circle will be traced. Maa [12] developed a similar transfer impedance
expression for micro-perforates where both changing porosity and thickness though not hole diameter result in straight
line changes in the complex plane.

An example of a parallel or branch impedance is a closed side branch (i.e. quarter wave tube). The specific acoustic
impedance can be expressed as

zb ¼ �jrc cotðkLÞ (29)

where L is the length of the closed side branch [12]. Note that varying the length will lead to a straight line modification of
zb. Similarly, the branch impedance of a Helmholtz resonator is

zb ¼ �j roL0 �
1

o
rc2SB

V

 !
(30)

where L0 is the equivalent length of the neck, V is the volume of the resonator and SB is the area of the side branch [13].
Notice that modifying equivalent length, resonator volume, or side branch area produces a straight line change to the
branch impedance.

8. Application to duct acoustics

Below, equations are developed for special applications to duct acoustics based on the transfer matrix methodology
summarized by Munjal [13]. At lower frequencies, the duct cross-sectional dimensions are small compared to the acoustic
wavelength. Accordingly, it can be assumed that plane waves propagate inside the duct system simplifying the analysis. In
this case, a duct system can be described as an acoustic network using the well-known transfer matrix. The transfer matrix
composed of four-pole parameters A, B, C, and D is defined according to the matrix equation

p1

r0S1v1

( )
¼

A B

C D

� � p2

r0S2v2

( )
(31)

where p1 and p2 are sound pressures and v1 and v2 are particle velocities as defined in Fig. 11.
The four-pole parameters for certain components like rigid-walled straight pipes or ducts are well known [13]. However,

numerical or experimental methods must be used to determine the four-pole parameters of more sophisticated
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components like large expansion chambers and elbows in HVAC systems [14,15]. Fig. 11 shows a duct system including the
source (ZS) and termination impedance (ZT). AT, BT, CT, and DT are the overall four-pole parameters including the effect of the
inlet and outlet pipes.

The source pressure pS can be related to load pressure pL via

pS ¼ pL 1þ
ZS

ZL

� �
(32)

where ZS and ZL are the source and load impedances, respectively. In turn, the load and termination impedances can be
expressed as

ZL ¼
p2

r2S2v2
(33)

and

ZT ¼
p1

r1S1v1
(34)

By inserting Eqs. (32)–(34) into Eq. (31), the pressure at the termination (pT which is identical to p1) can be expressed as

pT ¼
pSZT

AT ZT þ BT þ CT ZSZT þ DT ZS
(35)

where pS is the source pressure. Note that Eq. (35) is already in the form of the Moebius transformation (Eq. (1)) for
modifications to either source or termination impedance. If the modification is for source impedance, the complex
constants identified in Eq. (1) can be expressed as

Z ¼
pT

pS
(36a)

a ¼ 0 (36b)

b ¼ ZT (36c)

g ¼ CT ZT þ DT (36d)

d ¼ AT ZT þ BT . (36e)

Similarly, if the termination impedance is modified, the complex constants can be expressed as

Z ¼
pT

pS
(37a)

a ¼ 1 (37b)

b ¼ 0 (37c)

g ¼ AT þ CT ZS (37d)

d ¼ BT þ DT ZS (37e)

Furthermore, the Moebius transformation is also directly applicable to a series or branch impedance inserted into a duct
system as shown in Fig. 12. In that case the pressure and particle velocity on the inlet side (indicated by the subscript 1) of
D1C1

B1A1

Source
Zs, ps

Load
ZL, pL

Zb or Ztr

D2C2

B2A2

ZT

Fig. 12. Schematic showing a parallel (Zb) or series acoustic impedance (Ztr) inserted into a acoustic duct system.
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the panel can be related to that at the outlet (indicated by the subscript 2) by

p1

r0S1v1

( )
¼

1 Ztr

0 1

� � p2

r0S2v2

( )
(38)

for a series impedance Ztr, and by

p1

r0S1v1

( )
¼

1 0

Zb 1

" #
p2

r0S2v2

( )
(39)

for a parallel impedance Zb. The four pole parameters for the duct work to the left of the series or parallel impedance is
given as A1, B1, C1, and D1 and to right of the impedance as A2, B2, C2, and D2. The overall four-pole parameters (AT, BT, CT, and
DT) can be determined by multiplying the transfer matrices together. Then after inserting into Eq. (35), the transfer function
relating pT to pS can be expressed in the form of the Moebius transformation (Eq. (1)) with

Z ¼
pT

pS
(40a)

a ¼ 0 (40b)

b ¼ ZT (40c)

g ¼ A1C2ZT þ A1D2 þ C1C2ZSZT þ C1D2ZS (40d)

d ¼ ðA1A2 þ B1C2ÞZT þ ðA1B2 þ B1D2Þ þ ðC1A2 þ C2D1ÞZSZT þ ðC1B2 þ D1D2ÞZS (40e)

for a series impedance. Similarly, the transfer function relating pT to pS for a parallel or branch impedance can be expressed
in the form of Eq. (1) with

Z ¼
pT

pS
(41a)

a ¼ ZT (41b)

b ¼ 0 (41c)

g ¼ ðA1A2 þ B1C2ÞZT þ ðA1B2 þ B1D2Þ þ ðC1A2 þ C2D1ÞZSZT þ ðC1B2 þ D1D2ÞZS (41d)

d ¼ A2B1ZT þ B1B2 þ A2D1ZSZT þ B2D1ZS. (41e)
9. Example—acoustics of a duct system

The application of the Moebius transformation is demonstrated on the duct system shown in Fig. 13. Dimensions are
shown in the figure. The duct system consists of source, termination, transfer, and branch impedances. The fluid was
assumed to be air with a characteristic impedance of 415 Rayls. Plane wave behavior was assumed and all responses were
computed making use of transfer matrix theory. All analyses were conducted at 1000 Hz.

The transfer function between pt and ps for a source impedance modification is shown in Fig. 14. The real part of the
source impedance was modified from minus to plus infinity while the imaginary part was held constant (�rc=

ffiffiffi
2
p

). Source
impedance can be classified as a series impedance. Notice that transfer function between pt and ps traces a circle in the
complex plane. Similar results were obtained for straight line modifications to termination impedance, and branch and
series impedances.
Zb

Termination

ps

Source

Expansion
Chamber

Ztr

ZT

Zs

pT

0.305 m 0.305 m
0.457 m

0.
22

9 
m

0.
15

2 
m

0.051 m

0.305 m 0.305 m

Fig. 13. Duct system including dimensions utilized for demonstration of Moebius transformation. Assume that all ducts are circular in cross-section.
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Fig. 14. Transfer function between pt and ps plotted in the complex plane for a real modification to source impedance (zs) for the waveguide shown in

Fig. 13.
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10. Discussion

It has been demonstrated that the Moebius transformation—which maps straight lines and circles in one complex
domain to circles in another complex domain—is a mathematical tool that can be employed to aid in determining and
understanding the impact of mechanical and acoustic impedance modifications on a vibro-acoustic system. It was also
demonstrated that the principle is suitable for multiple input problems.

Two vibro-acoustic examples were shown in the paper. The first demonstrated the validity of the principle for predicting
the transfer function between sound pressure in the fluid and the force on a plate due to a mechanical impedance
modification to the structure. The principle was also demonstrated for calculating the effect of a mechanical impedance
change to the floor of a construction cab on the acoustic response at the driver’s ear. It was shown that the principle was
easily applied in numerical models. By finding the responses due to three separate modifications to the mechanical
impedance, the entire response space for an impedance modification can be determined. It is believed that the principle
could be exploited in numerical optimization problems.

Furthermore, the Moebius transformation is applicable to both series and parallel impedance modifications. This was
shown to be especially enlightening for understanding the impact of impedance modifications to the response in
waveguides. It was shown that the acoustic response will trace a circle in the complex plane due to straight line
modifications to any impedance in a waveguide. It is believed that the method can be used to better understand the impact
of modifying the impedances in ducts and provides a simple analysis tool for selected problems.

It should be noted that the application of the Moebius transformation is limited to single degree of freedom lumped
element modifications. Certainly, this is a weakness to the approach. For example, a modification like changing the
thickness of a panel could not be directly considered by means of the Vincent circle. In the case of duct acoustics, changing
the length of an expansion chamber modifies impedance at two locations and the Moebius transformation is not directly
applicable. However, Tehrani et al. [5] suggested that the Vincent circle still could be utilized in cases where there are
multiple impedance modifications and researched visualizing Vincent circle results in such cases.

Similarly, the application of the Moebius transformation is limited to analysis at a single frequency. It is not advisable to
use the approach if the structural or acoustic excitations are not tonal in nature since moving resonant frequencies will be
of little benefit. That being the case, the methods are most applicable when anti-resonances can be assigned to important
excitation frequencies. Fortunately, excitations are generally tonal for compressors, internal combustion engines, and many
other sources of noise and vibration.

One drawback to the approach is that single degree of freedom lumped element modifications are difficult to implement
in practice especially in the case of mechanical impedance. For example, the addition of a translational spring or damper
generally also modifies the mechanical impedance in the other translational and rotational directions. Even if the
impedance modification is precisely controlled, the local damping will likely be changed.

Nonetheless, the approach can be applied experimentally in principle. In fact, Tehrani et al. [5] successfully utilized the
Vincent circle to minimize the structural vibration on a beam. Anti-resonances were identified using the Vincent circle and
masses were added at selected locations. In practice, mechanical impedance is most easily controlled by changing the mass.
If mass is welded to a structure, the change in damping (real part of the impedance) should be minimal compared to the
change in mass (imaginary part of the impedance).

Though it may not be practicable to assign impedance precisely, knowing the optimal impedance has intrinsic value. For
instance, by varying the impedance of a lumped element located on a panel, the impact of adding or subtracting mass,
stiffness, or damping at a particular location can be assessed.
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z1
z2

z3

Fig. 15. Schematic showing side branch with parallel (z1 and z2) and series (z3) impedances.
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Acoustic impedance modifications in ducts are more easily controlled than mechanical impedances. As was previously
noted, the method is amenable to any branch or series impedance modification. For the case of a side branch, the
impedance can be most easily adjusted by adjusting the length (Eq. (29)). Likewise, the impedance of a Helmholtz
resonator can be tuned by the equivalent length, resonator volume, and side branch area (Eq. (30)). Series impedances can
be tuned in the case of perforates by their porosity, hole diameter and thickness as demonstrated in Eq. (28).

A potential application is shown in Fig. 15. In this case, a side branch extends from the main duct which includes a
perforate and a connected side branch. Configurations similar to that shown in Fig. 15 are sometimes considered in industry
due to space limitations or other design concerns. Notice that any of the impedances listed in the figure could be selected
utilizing the Moebius transformation such that the acoustic response is optimized. After identifying the optimal
impedance, impedance could be selected by selecting a suitable side branch length for z1 or z2. Similarly, the impedance of
a series element like z3 could be tuned by choosing appropriate perforate parameters.

Though this paper suggests several uses of the Moebius transformation for vibro-acoustics problems, it should be
understood that the survey presented herein is by no means exhaustive. The authors suggest that this most useful
mathematical principle could be applied in a number of other vibro-acoustic applications as well.
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