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1. Introduction

Axially moving beams can represent many engineering devices [1-3]. As parametric vibration excited by the variation of
the beam tension or the beam axial speed, large transverse motion of axially moving beams may occur under certain
conditions.

Transverse parametric vibration of axially accelerating elastic beams has been extensively analyzed since first study by
Pasin [4]. Oz et al. [5] employed the method of multiple scales to study dynamic stability of an axially accelerating beam
with small bending stiffness. Ozkaya and Pakdemirli [6] combined the method of multiple scales and the method of
matched asymptotic expansions to construct nonresonant boundary layer solutions for an axially accelerating beam with
small bending stiffness. Oz and Pakdemirli [7] and Oz [8] applied the method of multiple scales to calculate analytically the
stability boundaries of an axially accelerating beam under pinned-pinned and clamped-clamped conditions, respectively.
Parker and Lin [9] adopted a 1-term Galerkin discretization and the perturbation method to study dynamic stability of an
axially accelerating beam subjected to a tension fluctuation. Ozkaya and Oz [10] used an artificial neural network algorithm
to determine stability boundary of an axially accelerating beam. Suweken and Horssen [11] applied the method of multiple
scales to a discretized system via the Galerkin method to study the dynamic stability of an axially accelerating beam with
pinned-pinned ends. Pakdemirli and Oz [12] employed the method of multiple scales to analyze the stability in the
resonances involved up to four modes.
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In addition to elastic beams, axially accelerating viscoelastic beams have recently been investigated. Chen et al. [13]
applied the averaging method to a discretized system via the Galerkin method to present analytically the stability
boundaries of axially accelerating viscoelastic beams with clamped-clamped ends. Chen and Yang [14] applied the method
of multiple scales without discretization to obtain analytically the stability boundaries of axially accelerating viscoelastic
beams with pinned-pinned or clamped-clamped ends. Yang and Chen [15] applied the method of multiple scales to
present analytically vibration and stability of an axially moving beam constituted by the viscoelastic constitutive law of an
integral type. Chen and Yang [16] investigated an axially accelerating viscoelastic beam constrained by simple supports
with rotational springs. In Chen et al. [13], Chen and Yang [14], and Chen and Yang [16], the Kelvin model containing the
partial time derivative was used to describe the viscoelastic behavior of beam materials. Compared with Kelvin model, the
standard linear solid model is more typical and representative, meanwhile this model can degenerate to the Kevin or
Maxwell model by varying alternative of the stiffness of beam. In addition, if the viscoelastic materials are constituted by
Botlzmann'’s superposition principle with the relaxation modulus expressed by the exponential function, the governing
equation has the similar form as the standard linear solid model [15]. Mockensturm and Guo [17] convincingly argued that
the Kelvin model generalized to axially moving materials should contain the material time derivative to account for the
energy dissipation in steady motion. Based on the Kelvin model containing the material time derivative, Ding and Chen [18]
employed the method of multiple scales to study the stability of an axially accelerating viscoelastic beam. Chen and Wang
[19] revisited the problem in [18] via an asymptotic approach proposed by Maccari [20] and yield the same outcomes. The
present investigation performs an asymptotic analysis for an axially accelerating viscoelastic beam based on the standard
linear solid model with the material time derivative to represent the beam viscoelastic material property.

In spite of the fact that there have been many approximately analytical investigations on stability of axially accelerating
beams, there are very limited researches on the topic to confirm the analytical results via the numerical solutions to the
governing equations. Ding and Chen [18] studied the stability in principal parametric resonance of an axially accelerating
viscoelastic beam via the finite difference scheme. Chen and Wang [19] presented the comparison between the analytical
results and the numerical results in both summation and principal parametric resonances via the differential quadrature
scheme. However, only the Kelvin model was considered in [18,19]. In the present investigation, the authors develop a
differential quadrature scheme for an axially accelerating viscoelastic beam constituted by the standard linear solid model
and contrast the approximately analytical results with the numerical ones.

The present paper is organized as follows. Section 2 presents the mathematical model. Section 3 proposes an asymptotic
analysis approach to investigate stability in the model presented in Section 2. Section 4 develops a differential quadrature
scheme to solve the governing equation in Section 2. Section 5 presents numerical examples to demonstrate the effects of
some parameters on the stability boundaries in the summation and principal parametric resonances, and compares the
analytical and numerical results. Section 6 ends the paper with the concluding remarks.

2. The governing equation

A uniform axially moving viscoelastic beam, with density p, cross-sectional area A, moment of inertial I and initial
tension Py, travels at time-dependent axial transport speed 7(t) between two transversely motionless ends separated by
distance L. Consider only the bending vibration described by the transverse displacement v(x, t), where t is the time and x is
the axial coordinate. The physical model is shown in Fig. 1. Newton’s second law of motion yields

d*v
pAW—POV,xx‘FM,xx:O (M

where the material time derivative is introduced by defining differential operator d/dt as

d o8 _d
Y )

de ot Tax
where speed y(t) is equal to dx/dt, and M(x, t) is the bending moment given by

M(x,t) = —/Aza(x,z, t)dA 3

Fig. 1. The physical model of an axially accelerating beam.
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Fig. 2. The standard linear solid model.

where the z-x plane is the principal plane of bending, and o(x, z, t) is the disturbed normal stress. The viscoelastic material
of the beam obeys the standard linear solid model shown in Fig. 2, which contains three parameters. For one-dimensional
problem, the stress-strain relationship of the model is expressed in a differential form as

do de
(El+Ez)0+ﬂa=E1Ezﬁ+E1ﬂa 4)

where E; and E, are the stiffness of the beam, # is the viscosity of dashpot and &(x ,z, t) is the axial strain. The standard
linear solid model can be used to describe the behavior of linear viscoelastic materials of solid type with limited creep
deformation. It can reduce to Kelvin model (E; — co and E;#0) or Maxwell model (E;=0 and E,#0). The material time
derivative is employed in standard linear solid model by substituting Eq. (2) into Eq. (4), and the resulting equation is

(E1 +Ex)o + 1o, +nyo.x = E1Exe + E1né,e + E1nyex (5)

Substituting Eqs. (2) and (3) into Eq. (1) leads to
. o?
PAW .t 4 2YVxe + PV + P2 Voxx) — PoVx — o /za(x,z, tHHdA=0 (6)
JA

Introduce the dimensionless variables and parameters

v X [ Po L [pA 1
v<—>z, X<—>Z, tet W Yy By’ g(x,t)_m./Azo(x,z,t)dA @

and then Eq. (6) can be cast into the dimensionless form

Vit + 27Uaxt + ?U,x + (Vz — DV —Cxx=0 8)
For small deflections, the strain-displacement relation is
Q*u(x, t)
&x,z,t)=—z 2 9
Substituting Eq. (6) into Eq. (5) leads to
(E1 + E2)o + 10 +1y0x = —Z(E1E2V xx + E\NV xxt + E1NYV xxx) (10

In order to nondimensionalize and to eliminate ¢, multiplying the both sides of Eq. (10) with z/PgL and then integrating
the resulting equation yield

1 1
pop |1+ B2 [20dA+ [z0,dn i [z0.0a) = 0 [2 AAE Bt B+ Eppad (1)
PoL A A A PoL Ja
Substituting (9) into Eq. (11) leads to
1
(E1 +E)S+ NG +1ySx = — m(& ExIv xx 4+ E1InV xx + E1INYV xxx) (12)
where [ is the moment of inertial and expressed as
I= / 2dA 13)
A
Introduce the dimensionless variables and parameters
. n Po _ E] Ezl _ E]I
N g B\ pAl T RDPE 1B DT Rl a4
here b can be also expressed as b=a(1+E;/E;). Then Eq. (12) can be cast into the dimensionless form
¢+ 8’7(C,r =+ Vg,x) = —AUxx — Snb(v,xxt + PV xxx) (15)

where bookkeeping device ¢ is a small dimensionless parameter accounting for the fact that the viscosity is very small.
Assume that the beam is with simple supports at both ends. Then the boundary conditions in dimensionless form are

v(0,6) =0, v,x(0,t)=0, v(1,t)=0,v,x(1,£)=0 (16)
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In the present investigation, the axial speed is assumed to be a small simple harmonic variation about the constant
mean speed:

P(t) = Vo + &y sSinwt a7
where g is the constant mean speed, and ¢y, and w are, respectively, the amplitude and the frequency of the axial speed
variation, all in the dimensionless form. Here the bookkeeping device ¢ is used to indicate the fact that fluctuation

amplitude is small, with the same order as the dimensionless viscosity. Substituting Eqs. (17) and (15) into Eq. (9) and
neglect higher order ¢ terms in the resulting equation yield

Mv,¢ 4+ GU,e + Kv = —£[p(2 SIN0LV,x + @ COS WLV .x 4 27 SIN DLV,xx) — N(Coxxt + PoSwxxx — DVoxxxxt — BYoVsxxn)]  (18)

where the mass, gyroscopic, and linear stiffness operators are, respectively, defined as

o? ot

Gl
M=1, Gzzyoa, K:(y%—l)@-kaw (19)

3. Asymptotic analyses on stability

Under certain conditions, the straight configuration of the beam may become unstable. The conditions will be located
via the analysis on the stability of the zero solution if Egs. (15) and (18). If &=0 in Eq. (18), under boundary conditions (16),
the natural frequencies of the undisturbed gyroscopic continuous system

MU,{[ + Gv,t +Kv=0 (20)

can be determined. Previous studies found that, for elastic beams [12] and the Kelvin viscoelastic beams [18,19], if the axial
speed variation frequency o approaches the sum of any two natural frequencies of Eq. (20), the summation parametric
resonance may occur. Therefore it can be expected that the summation parametric resonance occurs for the viscoelastic
beams constituted by the standard linear solid model. A detuning parameter p is introduced to quantify the deviation of
from w,,+w, (m<n), and w is described by

W= Wmn + Oy + EU 21

If €0, as ¢ is rather small to investigate the summation parametric resonance, it is usually assumed that the response is
mainly influenced by two corresponding modes and thus the effects of other modes can be neglected. Therefore, the
solution to Eq. (18) may take the following form:

VX, ) =YX, T3 £) €O (%, Ts 6) € cc (22)

where 7=¢t is the slow time scale and cc denotes the complex conjugate of all preceding terms on the right hand side of an
equation. Functions ,,,(x,7,6) and ¥/,(x,7,6) can be expanded in the power series of ¢

Vie= Yo+ ey + @) (k=mn) (23)
The chain rule of partial derivatives leads to
0 ; . .
Sele M) = (xio + ) e (k=m.n) (24)
Substituting Eq. (23) into Eq. (22) leads to
VX, 1) = Wom + EW1m) €97 + (Yon + eW1,) €97 + cC 4 O(e?) (25)

Expanding ¢ in power series of ¢
¢ =co+ect +0@?) (26)

Inserting Eqgs. (17), (21), (25) and (26) into Eq. (15) equating the coefficients at the order £° and ¢! in the resulting
equation yield, at order &°

So = —a(hGy € + g, € +co) 27)
at order &!
S+ MGos + VoltSox = (—ibNOmpGy — Qi — byonom)e”nt + (—ibnwng, — ai, — bygmbg)e + cc+0(e)  (28)

Substituting Eq. (27) into Eq. (28) leads to

c1= [17((1 - b)(lwml//l/)/m + Vo‘//,(’)m) - al//a/m]eiwm[ + [1’](6! - b)(lwnl//(/)/n + Volﬁgn) - alp{n]eiwnt +cc+ O(S) (29)
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Substituting Eqgs. (27) and (29) into Eq. (26) leads to
¢ =¢Co+ &S
= A € 4 Yy € + £11(a — DY + YoWom) — AWl
+ e[n(a — b)iwnPg, + Yolon) — A1 + cc + 0(e?) (30)

Inserting Eqs. (25) and (30) into Eqs. (18) and (16) equating the coefficients of el®«t (k=m, n) at the order ¢° and ¢! in the
resulting equation yield, at order &°

—2Mrgp + 10k Ghg + Koy =0 (k = m, n) 31
Yor(0,7) = Yo (1,7) =Yg (0,7) =g (1,7) =0 (k=m,n) (32)

at order &!

— O M1+ IOm G 1+ Ky = ~[HOm — O — oW 6 1717 + 1@ — b)iomply) + Y0¥ o)
= 2GOm om — VoW om ) (33)
—OFMY 1+ i0nG 1 + K1y = —[HOn — OmWom — (Y0¥ 6m 1714 + 1(a — b)ioapi, + 1oty
— 2(inYon — VoW on ) 34)
V1.(0,7) =0, Yi, (0,7) =0, Yq,(1,7) =0, ¥i, (1,7) =0k =m,n) 35)
Assume the solution to Eq. (31) is in the following form
Yok, 7) = q(T) P (x)(k = m,n) (36)
then

—wiM@, + i Gp + Ko, =0 (k=m,n) 37)
d(0)=0, ¢; (0)=0, ¢ (1)=0, ¢; (1)=0. (38)

Under boundary (38), Eq. (37) has the solution [7,16]

Bage = Broes — ey oy B — Froels —elw) gy

(Bax — Bop)(eihs: — eifn) (Bik — Bao(eiP — eif)

1- (ﬁik — [)’%k)(eiﬁ% — e’ﬁw) B ([)"2”{ — [)’%k)(eiﬁzk — eiﬁlk) eiﬁ4kx (39)
(Bai — Br(eibs — eiba) (B3, — B (eiba — eif)

Pr(x) = el —

where Bk (j=1,2,3,4; k=m, n) are four roots of the following four-order algebraic equation
~0} = 2900Bi — 7 — DB +af; =0 (40)
Substituting Eq. (36) into Egs. (33) and (34) leads to
— M1+ iOmGY 1 + Ky = ~[(Om — 0@y — 170@5 171" + (@ = DYiOon@R +7003)dm

= 2(0mPm + 270Pn Mm 41)
—OpMiy, + i Gy, + Kify, = —[%(C,o" — Om)Ppy, —'1705;;1 1Gmy1€™" + na - b)(ion @l + 7o @) dn
= 2(iwn @y + Yo Pp )n (42)
Introduce an inner product
1 —
k> = [ a0 dx 3)

for complex functions f; and f, defined on [0,1]. Under the boundary conditions of vanishing the function values and the
second-order x-partial derivatives, both M and K are symmetric in the sense

(Mfi.f2> = fi.Mf>, (Kfi.f2> = f1.KfR> (44)

G is skew symmetric in the sense
(Gfr,hh> =—<f1,GhR> (45)
For function ¢,(x) satisfying Eq. (39), the distribution law of the inner product, and Eq. (45) with Eqs. (44) and (43) yield
= My + ik G + Ky, i > = g —0fMepy + 10 Gy + Kpy > =0 (k =m,n) (46)
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Taking both sides of Eqs. (41) and (42) inner product with ¢(x) (k=m, n) and using Eq. (46) give
qpm + (b — A)CumGm + Vldmnqneim =0

dn + (b — OCunGn + y1dumqme™* =0 47

where
o — SHoed + 9007, B>
T2 Gy + 70k - by
Ao — (@0 — 0wy +2090f7 P )
" 40mbm +Y0Pm > Pm>
(@ — O+ 270Pm - P> 48)
4intpy + 0Pk . Pn>

The coefficients d;;, dpm, and ¢y, (k=m, n) are determined by the natural frequencies and the modal function (39) of linear

system (20) under boundary condition, which are independent of the viscosity and the axial speed variation.
Express the solutions to Eq. (47) in polar form

Qi = S(v) e/ (k =m,n) (49)

(k=m,n)

dnm:*

Substituting Eq. (49) into (47) yields
sm + igsm + n(b — A)CmmSm + Vldmngn =0

S+ igsn 4 1(b — a)CunSn + Y1 dpmSm = O (50)

Suppose that the solutions of Eq. (50) take the form
S = Sme™, Sy = spe’t (51)

where s,;; and s, are real coefficients, and A is a complex to be determined later. Substituting Eq. (51) into Eq. (50) and taking
the complex conjugation of the second resulting equation yields

[)v + ig +nb— a)cmm]sm + 71dmnSn =0

Y1dnmSm + {i - ig +n(b— a)Enn]sn =0 (52)

As a set of homogeneous linear algebraic equations of s,;, and s, Eq. (52) possesses nontrivial solutions if and only if its
determinant of coefficient vanishes. That is

/»LZ + ﬂ(b — a)(Cmm + Cnn)A + [lg + ”](b - a)cmm] [—lg + 77(17 - a)fnn] - V%dnrnamn =0 (53)

For the roots of Eq. (53) with respect to /, if either of them has a positive real part, then the system is unstable. On the
contrary if both of them have negative real parts the system is stable. It is numerically demonstrated that cy is a positive
real number. Separating real and imaginary parts in Eq. (53) can lead to two new equations. Then the instability condition
of the summation parametric resonance can obtained as

2 “/'% Re(dnmamn) — b — a)]zcmmcrm

2
2t <4(Cmm + Cnn)
(Cmm = Can)* + (Cmm + Cun)*

(54

after some algebraic manipulations. Namely, if the positive square root of the right term of inequality (54) is more than
modulus of y, the system is unstable. Based on inequality (54), one can develop the analytical expression of the instability
boundary in summation parametric resonance

{1 . Cmm = Cn)?

5 12+ 4N — AP CumCnn = 4y3damdmn (55)
(Cmm + Cnn)

More details have been presented by Chen and Yang [14].
If the axial speed variation frequency w approaches two times the any natural frequency of Eq. (20), the principal

parametric resonance may occur, herein  is described by
W =2w,+ U (56)

Let m=n=k in Eq. (55), then stability boundary in the kth principal parametric resonance is described by
12 +4lnb — o ¢y = 497 Iducl (57)
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where ¢y is expressed in Eq. (48), and

ipodk . di>

dik = —5— 58
kk 2oy + Vo Pk » bi> ©9
4. Differential quadrature investigations on stability
The differential quadrature scheme will be employed to solve numerically equation
Vit + 2PVt + PVx + P2 Vox — Vax — Gpx = 0 (59)
¢+ n(g,t +76x) = —AVxx — nb(u,xxt + PV xxx) (60)

Eq. (60) is the same as Eq. (15) with the exception that ¢=1 here. Other numerical methods such as the Galerkin finite-
element method [21] and the finite difference method [18] may also serve the proposition.
Introduce N sampling points as

_ i—-Drn .
_j{lfcos N—]} i=1,2,...,N) (61)

The quadrature rules for the derivatives of a function at the sampling points yield [22,23]

N N N
Vi, ) = Y APV, 0, Ui 1) = D APV D, VX D) =Y AP (X, D) (62)
j=1 j=1 Jj=1
Sl 1) = ZAﬁ,”c(xj, £, CoxlXi 1) = ZA(Z’Q(XJ, ) (ij=1.2.....N) (63)
j=1 j=1

where the weighting coefficients are the expression

N
i = X0 (j=1.2,....N: j#i) (64)
- X;) Hllyzl.k#j(xj — Xk)
and the recurrence relationship
A(T 1)
( (r=1) (1) i L L
Aij’) =r|Af A X J_XJ r=2,3,4,5; i,j=1,2,...,N; j#i)
N
A = Z AY (r=1,2,3,4,5 i=12,....N) (65)
k=1,k#i
Substituting Eqs. (62) and (63) into Egs. (59) and (60) leads to
i +2yZA“>v,+yZA“>v,+(y —1)ZA<2’ ZA‘U '5i=0 (i=12,..,N) (66)
j=1 =1
X e e X6
néi+ci+ny Y Ay =—ad APvi—nbY AP —nbyd> APV (=1,2,....N) (67)
j=1 = =1 =1
where
vi(t) = v(x;, 1), Gi(t) = G(Xi, t) (68)

In order to overcome difficulties in the implementation of the boundary conditions, the idea of incorporating the
boundary conditions into the weighting coefficient matrices [24] is adopted. The simplest of the boundary conditions to
invoke in Egs. (66) and (67) is the condition of zero displacement (v) at a simply supported edge. This is done by simply
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ignoring the corresponding grid points in Egs. (66) and (67). For the boundary condition (16), consider the DQ analogue of
the second derivative with respect to x at the grid points on a line parallel to the x-axis.

AT AR - AR AR
A%’ A&é’ A;Z’N,l Ay
[A?] = - : (69)
Aﬁ)ll Aﬁ)lz Aﬁ)lN 1 Aﬁzl,N
LAY AD A A

Let the modified weighting coefficient matrix in Eq. (69) now be written as

T o 0o - 0 0 7
2 2 2 2
F I BT
A7 = : : : : (70)
2 2 2 2
AF\Ill,l A§\I11,2 e ANlLN—l A;Vil,N
0 0o - 0 0

and let the weighting coefficient matrix of the third-order derivatives be modified as

A%V = AVA®)

Let Egs. (66) and (67) be rewritten replacing the original x-derivative weighting coefficients by the modified coefficients

1)

i +2yZA‘”u +VZA(”UJ+()) —1)ZA(2) ZA(Z’g]:o (i=1,2,...,N) (72)
=1

N N N
~(2) (). ~(3) .
n§l+sl+nyzAu G=—ad Ajv;—nb> A;v;—nbyY Ajv; (i=1,2,....N) (73)
j= J=1 Jj=1 Jj=1

From the aforementioned discussion, the DQ analogue equations (72) and (73) may be written in terms of modified
weighting coefficients. Thus

N—
. 2)
v,-+2yZA“)vj+yZA(.j”vj+(y 1)2/\ v — ZA,] G=0 (i=23,..,N-1) (74)
j=2
) N-1 a @ L N=1 5 )
néi+ci+ny > A aZA vi—nbY AU —nbyY Ay vy (i=23,....N-1) (75)
j=2 j=2 j=2

In the present investigation, the fourth-order Runge-Kutta method was used to integrate ordinary differential equations
and analyze the stability of system. The initial conditions for Eqs. (74) and (75) are chosen as

v(x,0) = 0.0001x(1 — x), v,(x,00=0, ¢(x,00=0 (76)

In the differential quadrature method, let N=7. To decide the stability, choose T;=20, T,=2T; and T=60. In the first
principal parametric resonance, u=2w;—o. In the second principal parametric resonance, yu=2w,—. In the summation
parametric resonance, p(=mw+w,—o. For the given parameters and initial conditions, Egs. (74) and (75) can be numerically
solved via the fourth-order Runge-Kutta. After a time interval [0, T;] to remove the transient response, the maximum beam
center displacements V; and V; are, respectively, recorded for time intervals [Ty, T>] and [T, T]. If V; is bigger than V5, the
parametric resonance is stable. If V; is smaller than V,, the parametric resonance is unstable. Varying the parameters, one
can locate the stability boundary in the parameter space.

5. Numerical examples

In this paper, the stiffness of an axially moving beam a=0.64 is specified. Egs. (14), (39), (40), (48), and (56) are helpful
for analytical computation. Actually, E; and E, should be given an actual physical value, e.g., 1 x 10'9(N/m?). Some other
values of E; and E, are specified to examine the changing tendencies, even if the parameter values cannot depict the actual
physical meanings.

Next to demonstrate the effects of stiffness, viscosity, and constant mean speed on the instability boundary in
summation and principal parametric resonances. Fig. 3 shows the effects of stiffness E; and E,, respectively, in summation
resonance. Figs. 4 and 5 show the effects of the viscosity and the mean speed in summation and principal parametric
resonances, respectively. Fig. 6 compares the instability boundaries in summation parametric resonances with those in the
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a b
0.4 . y 0.4
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nalytical b=1.28(% £ =3) = = - analytical b=1.28(E =3.E =3)
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numerical 51 12(£,~3.E,
numerical 5=1,28(F
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06 0.0 0.6 B8 :f 0.6
P

Fig. 3. The effects of stiffness in summation parametric resonance (#=0.0003 and y0=2.0): (a) the effects of stiffness E; on stability boundaries and (b) the
effects of stiffness E, on stability boundaries.
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Fig. 4. The effects of viscosity on instability boundaries (b=1.28 and 70=2.0): (a) the summation parametric resonance and (b) the first principal

parametric resonance.
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Fig. 5. The effects of constant mean speed on instability boundaries (b=1.28): (a) the summation parametric resonance (#=0.0003) and (b) the first
principal parametric resonance (#=0.0007).

first principle parametric resonances. Both analytical (in line) and numerical (in symbol markers) results are given in

Figs. 3-6.

In Figs. 3-5, the instability boundaries in the summation and the first principal parametric resonance have the same
changing trend. The increasing stiffness E; makes the instability boundaries move towards the increasing direction of y; in
plane u-y; and the instability regions become narrow. However, the stiffness E, has an opposite effect on the instability
boundaries. The relationship between b and E; (E;), that b increases with the increase of E; and b decreases with the
increase of E,. Apparently, the direct effects on the instability boundaries are the coefficient b and instability regions
become narrow with the coefficient b increasing. The viscosity # increasing makes instability regions become narrow in
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Fig. 6. The comparison of instability boundaries between summation and first principle parametric resonance (b=1.28, 70=2.0 and #=0.0011).

both summation resonance and principal parametric resonances, as shown in Fig. 4. The conclusions are accordant with the
foregoing statements just under Eq. (55).

There is implicit effect of the constant mean speed on instability boundary, which cannot be directly achieved from
expression (55) or (57). Numerical examples show that the instability boundaries move towards the decreasing direction of
71 in plane u-y; and the instability regions become narrow in the summation resonance with constant mean speed yq
increasing, but there is an opposite effect in the principal resonance in Fig. 5. Fig. 6 indicates that instability region of
summation resonance is dramatically smaller than those of the first principal resonance under the same conditions.

The numerical examples show that changing trends predicted by both methods are qualitatively same. It demonstrates
that the difference is very small in the first principal parametric resonances, but the difference in the summation
parametric resonance is rather large.

6. Conclusions

This paper is devoted to parametric vibration of an axially accelerating beam constituted by the standard linear solid
model using the material time derivative. The beam moves at an axial speed fluctuating harmonically about a constant
mean speed. An asymptotic analysis is proposed to determine the stability condition, which is the same as that derived
from the method of multiple scales. The differential quadrature scheme is developed to locate the stability boundary
numerically. The analytical results are compared with the numerical calculations:

(1) Based on analytical expressions (55) and (57), with the stiffness coefficient E; increasing, the instability regions will
become narrow. On the contrary, the decreasing stiffness coefficient E; leads the instability regions to become narrow.
In addition, the instability regions will become narrow with the increase of viscosity 7.

(2) When the material time derivative is used in the constitutive relation, the increasing constant mean speed leads to the
additional viscosity. This conclusion cannot be achieved directly via the analytical conditions. Based on numerical
results, with the increasing constant mean speed, the instability regions become narrow in the summation parametric
resonance but there is an opposite effect in the principal resonance for standard linear solid model.

(3) Both analytical and numerical results indicate that instability region of summation resonance is dramatically smaller
than those of the first principal resonance under the same conditions.

(4) The results compared indicate that the changing trend predicted by the numerical simulations is qualitatively same as
by the analytical analysis.

(5) Quantitatively, the analytical results are validated by the numerical calculations in the principal parametric resonance,
while there are differences in the summation parametric resonance is rather large.
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