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The Karhunen–Lo �eve transform (KLT) has become a popular method in various fields of

engineering science. Due to its ability to identify the most prominent features in the

underlying system dynamics the KLT is a favorable method for such tasks as process

monitoring, model order reduction or optimum control. However, it is a well-known fact

decisively affect the KLT results. As much as this property is desired for monitoring

problems, it limits the performance of KLT in model order reduction or optimum control

problems, if systems are subject to structural changes.

Recent research interest focuses on extending applications of KLT to systems with

transient dynamic behavior or changing boundary conditions. Approaches have been

published that circumvent the limitations of KLT by either assuming reasonable

comparability of system dynamics or by measuring the representative performance of

KLT-bases a posteriori. However, such methods require additional simulations of the full

size system and thus jeopardize the idea of model order reduction.

In this paper, we introduce a novel a priori measure to evaluate the performance of

the current KLT-basis. This procedure can be of great help in either monitoring or

adaptive control of systems that show intermittent transient and (quasi-)stationary

dynamic behavior. This a priori measure prepares the path for adaptive model order

reduction schemes. Moreover, it can be used to measure the stationarity of multi-

dimensional dynamic processes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Karhunen–Lo�eve transform (KLT)1 has become a well-established method in various fields of scientific research
ranging from biological, meteorological and seismological to engineering applications (we refer to [1,2] for review articles).
In mechanical engineering the KLT has become a very popular especially for process monitoring [2–6], model order
reduction [7–11] and control problems [12,13]. In any application the KLT is used to capture the most prominent dynamic
behavior neglecting degrees of freedom of vanishing contribution. This is done by truncating the KL-series expansion of the
All rights reserved.

smann).

n (POD), principal component analysis (PCA) or singular value decomposition (SVD).
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time-dependent, spatially distributed vector function y : R�Rn-yðtÞ 2 Y � Rn as in

yðtÞ ¼ y þ
Xn

i¼1

aiðtÞwi; ai : N-aiðkÞ 2 R; w 2 Rn; ð1Þ

at i ¼ mon. y the is vector of mean-values, wi are the spatially distributed ‘characteristic functions’,2 ai are the
corresponding time-dependent ‘weight factors’ and n 2N is the number of degrees of freedom. As a result the system
dynamics are projected onto a submanifold spanned by the reduced basis ~C ¼ fw1;w2; . . . ;wmg � Y of characteristic
functions.

It can be shown that the reduced KLT-basis ~C is the optimum reduced basis to describe the dynamic behavior of yðtÞ in
least square sense (Ref. e.g. to [12]). It is also well known that the KLT is case-sensitive, since the characteristic functions
not only represent the structural system properties, but also those of the excitation. This effect has been studied by Ma
et al. [14] who compare the characteristic functions derived from numerical simulation results to those first wi calculated
from experimental measurement data: Although the underlying systems seem to be comparable, due to model
uncertainties and slight differences in the excitations, only the very first characteristic functions show reasonable
agreement between simulation and measurement. Starting with the second characteristic functions the results differ
significantly.

Recently, this restriction has challenged scientists to push forward applications of KLT into the field of transient
dynamics and changing boundary conditions/excitation features, respectively. In an attempt to capture both transient and
stationary parts in wave motion (standing and traveling waves) Feeny [15] discusses the complex orthogonal
decomposition (COD) as a generalization of KLT. In his work he extends real oscillators to complex ‘phasors’ by Fourier
or Hilbert transform to preserve the phase information during the spatial decomposition. Ma et al. [16] introduce an a
posteriori criterion for the approximation performance of a KLT-reduced order simulation of transient coupled oscillator
dynamics. In a recent publication Buffoni et al. [17] encounter problems with a nonlinear observer for unsteady three-
dimensional flows based on KLT. The first characteristic functions fail to give an accurate representation of the flow field.
The authors suggest to increase the amount of data for KLT to improve the accuracy of the reduced basis ~C.

The majority of current approaches to extend the reduced KLT-basis representation to transient system dynamics share
a lack of information and raise the principal question: Equipped with a reduced KLT-basis ~C

Q
derived from previous data

YQ , how do we know whether ~C
Q

is still optimal or needs to be updated. In this case, it would be favorable to have a
method to relate the approximation performance of a given KLT-basis to the current system dynamics yðyÞ. In an approach,
Homescu et al. [18] combine small sample statistical condition estimation (SCE) method, adjoint method for error
estimation and a perturbation-ansatz to estimate regions of validity for POD-reduced models and the approximation error.
In spite of being an a priori method, this approach not only requires to solve the adjoint problem of the initial differential
equation but also bears uncertainty of the derived error-estimates that are subject to probability distributions and may
deviate from the effective approximation errors by magnitudes.

In an attempt to solve these problems, we introduce an a priori measure to associate the current underlying system
dynamics with the given KLT-basis. This procedure can be of great help in either monitoring or adaptive control of systems
that show intermittent transient and (quasi-)stationary dynamic behavior. It could prepare the path for efficient adaptive
model reduction schemes. Moreover, it could be used to measure the stationarity of multidimensional dynamic processes.

This paper is outlined as follows: In Section 2 we briefly introduce the basic properties of KLT. In Section 4 we discuss
the issue of stationarity with the focus on KLT. In Section 5 we introduce a new approach of a priori measurement. In
Section 6 we display examples for the effect of the new measure. Finally we summarize our findings in Section 7.

2. Basics of KLT

In this section, we sketch the mathematical background of KLT with emphasis on the part that introduces the case-
sensitivity to the transform. Throughout the paper we consider discretized time t ¼ k T and for the sake of simplicity
assume zero-mean y ¼ 0 unless stated otherwise.

3. Calculation of the KLT-basis

Following Karhunen [19], we are looking for a transform as in Eq. (1) and require uncorrelated weight factors:

EfaiðkÞajðkÞg ¼ ljdij; i; j ¼ 1; . . . ;n; ð2Þ

where lj 2 R � 0 are unknown scalars and Kronecker’s function dij. The decorrelation of weight factors ai corresponds to
orthogonal characteristic functions. Thus, supposing normalized characteristic functions, W�1

¼ WT and forming the vector
of weight factors aðkÞ :¼ ½a1ðkÞ a2ðkÞ � � � anðkÞ�

T and transfer matrix W :¼ ½w1 w2 � � � wn� we can rewrite Eq. (1) as

aðkÞ ¼ W�1yðkÞ: ð3Þ
2 Also referred to as the ‘KL-modes’, ‘nonlinear eigenmodes’ or ‘empirical eigenmodes’.
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Combining Eqs. (2), (3) and Eq. (3) leads to

EfwT
i yyTwjg ¼ ljdij; i; j ¼ 1; . . . ;n: ð4Þ

Extracting time independent wi;j from estimate Ef�; �g and regarding yðkÞ as vector random process gives

wT
i Cyywj ¼ ljdij; i; j ¼ 1;2; . . . ;n: ð5Þ

that is satisfied by solutions wi, i ¼ 1;2; . . . ;n, of eigenvalue problem

Cyywi ¼ liwi; i ¼ 1;2; . . . ;n; ð6Þ

since wT
i wj ¼ dij, with covariance matrix Cyy ¼ EfyyTg of yðkÞ.

Eq. (6) gives n eigenvalues li and n eigenvectors wi that can be normalized by the Gram–Schmidt procedure. While basis
C spans vector space Y � Rn of system dynamics y completely, eigenvalues li represent the average energy contribution of
the corresponding characteristic function wi to yðkÞ. The original KLT is unique and in case of discrete signals a lossless
coordinate transform. For reduced order representation of yðkÞ, characteristic functions wi are ordered according to the
corresponding eigenvalues li. Then, series expansion of yðkÞ in (1) is truncated according to a desired portion of system
energy. In general, the motion represented by the very first few weight factors ai; i ¼ 1; 2; . . . ; ‘5n, cover more than 95
percent of the signal power/kinetic energy of the system.

3.1. Case-sensitivity of the KLT

The KLT is ‘signal dependent’, because the characteristic functions are derived from Covariance matrix Cyy by (6) that

contains the second order statistical properties of yðkÞ. In practice, Cyy is calculated from data YQ gathered over a fixed time

interval k 2 IQ ¼ ½aQ bQ �. Thus, structural changes in the dynamical pattern of yðkÞ affect Cyy leading to different sets of

characteristic functions wP
i if (6) was updated at a later interval IP ¼ ½aP bP�.

Nevertheless, if the underlying dynamics of yðkÞ change Eq. (1) still holds true. However, the principal motion of the

system may not occur along the previously chosen reduced set of characteristic functions ~C
Q
¼ fwQ

1 ;w
Q
2 ; . . . ;w

Q
‘ g any more.

Thus, the initial reduced basis ~C
Q

may not be the optimal basis any longer. In order to represent the same portion of kinetic

energy of the current dynamics of yðkÞ basis ~C
Q

has to be extended to consider a larger number m; ‘ompn of
characteristic functions. Of course this step would reduce the computational advantage of the KLT reduced order model.

Therefore, the better choice might be to update basis CQ .

4. On the performance of the KLT-basis

4.1. Stationarity in the sense of KLT

In order to determine the performance of a given reduced KLT-basis ~C
Q

to represent yðkÞ in the presence of changing
boundary conditions a priori, we have to relate the current dynamics to the set of reference data
YQ ¼ fyðkÞjk 2 IQ ¼ ½aq; bq�g

3 used to derive CQ . In order to judge whether basis ~C
Q

still is optimal or has to be updated,
we need to detect changes in the dynamic behavior of yðkÞ that affect Cyy. Thus, we have to compare the statistical
properties of the system dynamics during the reference interval IQ with the present statistical properties of yðkÞ.4

Due to

Dcij ¼ cNþ1
ij � cN

ij

¼
1

N þ 1

XNþ1

k¼1

yiðkÞyjðkÞ �
1

N

XN

k¼1

yiðkÞyjðkÞ

¼
1

NðN þ 1Þ

XN

k¼1

yiðkÞyjðkÞ þ
1

N þ 1
yiðN þ 1ÞyjðN þ 1Þ

leading to

lim
N-1

Dcij ¼ 0; ð7Þ

differences of the kind of DCyy ¼ CNþ1
yy � CN

yy, where CNþ1
yy and CN

yy are based on intervals INþ1 ¼ ½1;N þ 1� and IN ¼ ½1;N�, are
of little help for monitoring the statistical properties.
3 We apply Sirovich’s ‘method of snapshots’ [20] to accumulate data sets Y.
4 The use of subintervals is quite common in time series analysis, Refs. e. g. [21,22].
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As a consequence, we compare the covariance matrix of yðkÞ of reference interval IQ

CQ
yy ¼

1

bq � ðaq þ 1Þ

Xbq

k¼aq

yðkÞyTðkÞ; ð8Þ

with the covariance matrix

CP
yy ¼

1

bp � ðap þ 1Þ

Xbp

k¼ap

yðkÞyTðkÞ ð9Þ

calculated from most recent data YP ¼ fyðkÞ j k 2 IP ¼ ½ap; bp�g. It is tempting to demand the covariance of current dynamics
CP

yy to comply with

CP
yy � CQ

yy ð10Þ

to assure that ~C
Q

remains the optimal basis for the current values of yðkÞ.
Note that requiring constant covariance matrix and considering the assumption of constant mean y corresponds to the

definition of ‘weak stationarity’ as in e.g. [23]:

yiðqÞ ¼
1

bq � ðaq � 1Þ

Xbq

k¼aq

yiðkÞ ¼ const:;

cijðqÞ ¼
1

bq � ðaq � 1Þ

Xbq

k¼aq

ðyiðkÞ � yiÞðyjðkÞ � yjÞ ¼ const:; ð11Þ

for all time shifts q 2N.
However, since KLT-basis C consists of normalized characteristic functions, a given reduced basis ~C

Q
remains the

optimal representation of yðkÞ if

CP
yy � W � CQ

yy ð12Þ

holds, where W 2 R is arbitrary, CP
yy is based on recent data gathered from time interval IP . Thus, we can loosen requirement

(10) and take (12) to define the ‘stationarity in the sense of KLT’.

5. Measure of stationarity

For application, we need to find a practical way to evaluate Eq. (12). Instead of comparing covariance matrices CQ
yy, CP

yy

element wise, we find it favorable to have a single coefficient. Therefore, we take advantage of the symmetry of Cyy and
define representative vector

v :¼ ½c11 c12 . . . c1n c22 c23 . . . c2n . . . cnn�
T ð13Þ

that resembles the upper triangular matrix of Cyy including the diagonal elements. As a metric, we choose the correlation
function and define the performance coefficient

y :¼
vQ T

vP

JvQ JJvPJ
: ð14Þ

Thus, we can compare the statistical properties of yðkÞ of two intervals IQ , IP of arbitrary sizes NQ , NP and arbitrary time
shift Dk ¼ aP � aQ .

Interpretation: Comparing the statistical properties of stationary system behavior with that of transient behavior y
becomes a measure of stationarity. Thus, we can monitor the performance of ~C

Q
based on data YQ to represent the current

dynamics of yðkÞ; k 2 IP without updating KLT. Measure y has a range of ½�1;1�. Values of y close to 1 resemble good
similarity, values close to 0 resemble poor similarity in the statistical properties.

5.1. Application

In a KLT-based model order reduction scheme, we define a tolerance region ½ylim;1�with lower bound ylim. Thus, we can
use a given reduced basis ~CQ as long as y 2 ½ylim;1�. We can control the approximation accuracy of the reduced order model
by choice of limit ylim.

Remark. Focusing on transient dynamical systems we face a dilemma: On the one hand, there is a minimum length for
time intervals IQ , IP to capture representative sets of data YQ and YP . On the other hand, there is a maximum length for
intervals IQ , IP to precisely detect structural changes (transients) in the dynamical behavior of yðkÞ. The minimum interval
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length Tmin can be calculated for stationary systems, only, by measuring the convergence of series CyyðbÞ (e.g. in Eq. (8)) as
upper bound b increases. For transient systems, we have to predefine the minimum interval length Tmin and assume that
data of the corresponding interval will be representative. Thus, we can only detect one or the other: We can either calculate
minimum interval length, assuming stationarity of yðkÞ or we can detect changes in the dynamics of yðkÞ, assuming to have
chosen the right interval length.

In our investigation we focused on linear and nonlinear oscillators. Therefore, we took Shannon’s theorem as a reference
and defined Tmin ¼ 2 maxftmax ig, with maximum period time tmax of coordinate yiðkÞ.
5.1.1. Detecting the onset of stationarity

In cases of transient dynamics followed by stationary motion, it is of interest to detect the onset of stationarity.
Examples are monitoring problems, where different dynamic states shall be detected and characterized, e.g. [24] or
adaptive model reduction applications, where the number of full size model simulations necessary for calculating KLT-basis
C shall be minimized.

Since we do not have any reference or starting point, we need to calculate covariance matrices CQ
yy and CP

yy based on two
floating intervals of minimum size Tmin:

CQ
yyðkÞ ¼

1

Tmin

Xk�Dkþð1=2ÞTmin

k¼k�Dk�ð1=2ÞTmin

yðkÞyTðkÞ ð15Þ

and

CP
yyðkÞ ¼

1

Tmin

Xk

k¼k�Tmin

yðkÞyTðkÞ; ð16Þ

with recent simulation/observation time k. According to the definition of weak stationarity, the choice of time lag Dk is
arbitrary. Thus we set Dk ¼ Tmin. The onset of stationary dynamic behavior is characterized by the requirement:

astat ¼ minfk j yðkÞ 2 ½ylim1;1�g: ð17Þ

5.1.2. Detecting the decay of stationarity

Of course, it is equally important to detect the decay of stationary dynamic system behavior. For this, we simply change
the intervals of the covariance matrices: Matrix CQ

yy stays constant and is evaluated over fixed interval IQ ¼ ½astat �Dk�
1
2 Tmin; astat � Dkþ 1

2Tmin� at the beginning of stationary behavior astat, while variable matrix CP
yy is based on moving interval

IP ¼ ½k� Tmin; k�. We calculate

CQ
yyðkÞ ¼

1

Tmin

Xastat�Dkþð1=2ÞTmin

k¼astat�Dk�ð1=2ÞTmin

yðkÞyTðkÞ ð18Þ

and

CP
yyðkÞ ¼

1

Tmin

Xk

k¼k�Tmin

yðkÞyTðkÞ: ð19Þ

The interval of stationary system behavior ends at

bstat ¼maxfk j yðkÞ 2 ½ylim2;1�g: ð20Þ

Note that, in order to avoid switching effects of y, due to the change of calculation method for CQ
yy from (15) to (18) we use

different tolerances ylim2oylim1 for determining the onset and the decay of stationarity. Thus, for chosen tolerances ylim1

and ylim2 dates astat and bstat describe the limits of time interval Istat ¼ ½astat; bstat�where covariance matrices CQ
yy and Cstat

yy are
sufficiently similar. Thus, reduced basis ~C

Q
representing YQ can be used to simulate yðkÞ while k 2 Istat. We will show the

benefit of this method in the following section.
6. Exemplary studies

Coupled oscillators can exhibit various different types of dynamic behavior: traveling waves, intermediate transient
dynamics and stationary motion in the form of standing waves. They are suitable systems to study the performance of the
stationarity measure y, Eq. (14), to detect the onset and decay of stationary dynamics. In parallel we apply the stationarity
measure y to analyze a triple pendulum as an example of highly nonlinear systems.



ARTICLE IN PRESS

Fig. 1. Schematics of coupled oscillator.
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Fig. 2. Simulated dynamics of coupled oscillator: begin of oscillation.
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6.1. Transient dynamics of the coupled oscillator

We study the effect of changing system dynamics on KLT-basis C using simulation of the coupled oscillator as shown in
Fig. 1, exemplarily. The oscillator consists of 10 point masses m ¼ 1 with coordinates: y1; y2; . . . ; y10, suspended by linear
springs c ¼ 1, subject to viscose damping d ¼ 1. The masses are connected by springs c ¼ 1. The system is driven by a
sinusoidal force f ðkÞ ¼ f0ðkÞ ¼ 2sinð0:9

ffiffiffiffiffiffi
3c
p

kÞ acting at mass y1.

6.1.1. Initiation of stationary oscillations

With initial conditions fy0 ¼ 0; _y0 ¼ 0g the coupled oscillator undergoes three different stages of dynamic behavior: At
the beginning, a group of waves travels from y1 to y10 for k ¼ ½0;190�, followed by intermediate transient behavior for
k ¼ ½190;310�. Finally, after k ¼ 310, the system settles for stationary dynamics and forms a standing wave, see Fig. 2.

We analyze the dynamics of the coupled oscillator by calculating KLT-bases C for consecutive intervals I, Tmin ¼ 80. Due
to the case-sensitivity of KLT, we find different sets of characteristic functions wi and corresponding eigenvalues li,
i ¼ 1;2;10 for each interval I during the period of transient system dynamics. We require a level of similarity of 98 percent
in two consecutive KLT-bases CQ and CP to call process yðkÞ stationary across IQ \ IP . Thus, we define limits ylim1 ¼ 0:98
and ylim2 ¼ 0:982

� 0:96.
We measure the similarity of bases CQ and CP of any two consecutive intervals IQ and IP by (1) correlation coefficient

rfwQ
i ;w

P
i g

5 and by (2) measure y, applying Eqs. (15), (16), (17) and Eqs. (18), (19) and (20), respectively. The correlation
coefficients rfwQ

i ;w
P
i g of the first three characteristic functions are shown in Fig. 4 for the beginning oscillations. Fig. 5

shows the relative energy (li=
P

li) represented by the first three characteristic functions wP
i vs. time and the stationary

measure y is displayed in Fig. 3. Vertical dashed lines describe the detected beginning whereas, vertical solid lines
thedetected end of stationarity.

Comparing y with rfwQ
i ;w

P
i gwe can find a reasonable correlation between the stationarity measure y and the correlation

coefficients rfwQ
i ;w

P
i g of those characteristic functions representing significant portions of the system’s energy: In Figs. 3

and 4 we can observe that both the stationarity measure y as well as the correlation coefficients rfwQ
1 ;w

P
1g and rfwQ

2 ;w
P
2g
5 For this analysis, the order of consecutive characteristic functions wQ
i and wP

i was rearranged for the best match of corresponding characteristic

functions.
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Fig. 3. Stationarity measure y vs. time of the beginning oscillations.
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converge to 1 as the system dynamics evolve from transient motion to stationary movements. Let us note as well that the
characteristic functions of larger energy content w1 and w2 appear to be more stable, than those characteristic functions of
less energy content. Applying Eqs. (15)–(17), stationarity measure y gives astat ¼ 310 for the beginning of stationary
oscillations. We can verify this result by regarding the set of Figs. 4 and 5. Thus, we find that until around k ¼ 300 dynamics
(energy) of the coupled oscillator transfer to a single standing wave of the form of the first characteristic function w1.
During the same period, the first characteristic function w1stabilizes, as well.

6.1.2. Disturbed oscillations

In order to analyze the decay of stationary motion, in a second setting, we simulate the oscillator’s behavior, subject to a
varying excitation amplitude: f ðkÞ ¼ f0ðkÞcosð�0:01 kÞ. The simulation results are shown in Fig. 6. It is easy to observe
stationary motion of yðkÞ vanish, but it is difficult to give an exact time for the end of stationary behavior.

With the previous settings of Tmin ¼ 80 and limits ylim1 ¼ 0:98 and ylim2 ¼ 0:96, we again calculate one KLT-basis for
each time interval and analyze the dynamics of disturbed oscillations by stationary measure y and by correlations of the
characteristic functions rfwQ

i ;w
P
i g, in parallel. The correlation coefficients rfwQ

i ;w
P
i g of the first three characteristic functions
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Fig. 6. Simulated dynamics of coupled oscillator: disturbed oscillation.
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and the corresponding normalized of the first three eigenvalues li=
P

li are shown in Figs. 8 and 9, respectively. The
stationarity measure y is displayed in Fig. 7 for Tmin ¼ 80.

It can be seen in Fig. 7 that the stationarity measure y has larger values at the beginning k 2 ½80;110� and at the end
k 2 ½780;900� of the simulation time, and thus detects three short intervals of stationary oscillation. This observation
corresponds only partly to the correlation coefficients rfwP

i ;w
Q
i g in Fig. 8. While at the beginning, characteristic functions

w1, w2 and w3 share values close to one and thus support the findings of y, at the end of the simulation characteristic
function w1 show values even below 0:8.

This finding seems to be contradictory to our hypothesis that covariance matrices Cyy and thus y can be taken as
measures of the stability of KLT-bases C in the presence of changing boundary conditions. Nevertheless, we can explain
this observation by regarding the corresponding eigenvalues li, Fig. 9: We can find that at the beginning of the simulation,
w1 contributes most to the system dynamics, w2 has little contribution and w3 is irrelevant, while at the end of the
simulation the system dynamics are governed by w2, solely. The stationary measure y correctly detects the phases of
stationary motion at the end of the simulation period, despite smaller values of rfwP

2;w
Q
2 g and rfwP

3;w
Q
3 g, because
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Fig. 7. Stationarity measure y vs. time of the disturbed oscillations.
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characteristic functions w1 and w2 change in importance at k ¼ 280. This is exactly the time at which y shows its first
significant minimum peak.
6.2. Intermittent behavior of the ‘policeman’ triple pendulum

In a third analysis, we simulated the highly nonlinear dynamics of the policeman-pendulum that is sketched in Fig. 10.
The simulation results in Fig. 11 show that the pendulum undergoes different states of dynamic behavior: While the

larger pendulum oscillates rather irregularly b1, the arms b2 and b3 oscillate almost harmonically with varying amplitudes.
The most interesting sections of dynamical behavior are around k � 400, k � 900, when pendulum 2 shows full rotation
and around k 2 ½2250;2700�, k 2 ½2950;3050� and k 2 ½3100;3300�, when the oscillation amplitude of pendulum 3 exceeds
that of pendulum 2.

In order to determine the performance of stationarity measure y, we compare the results of y with the correlation
coefficients of the most important characteristic functions of the corresponding data sets YQ and YP . We determine begin
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Fig. 9. Normalized first three li vs. time of the disturbed oscillations.
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astat and end bstat of stationary motion using Eqs. (15) to (17) and Eqs. (18) to (20), respectively, with limits ylim1 ¼ 0:98,
ylim2 ¼ 0:97 and Tmin ¼ 260.

The correlation coefficients rfwQ
i ;w

P
i g of the characteristic functions are shown in Fig. 13, the corresponding normalized

eigenvalues in Fig. 14 and the stationarity measure y is displayed in Fig. 12. We can observe in Fig. 12 that the stationarity
measure y is close to 1 for a larger time period k 2 ½260;1700� at the beginning of the simulation. Then, y falls below 0:96
and rises above 0:98 during shorter periods of intermittent dynamics. The changes in the direction of rotation of pendulum
2 at k � 400, k � 900 cannot be detected by the stationarity measure y. However, as far as the performance of a given KLT-
basis ~C is concerned, y remains a reliable indicator for changes in stationarity, since directions of motion are not relevant,
but amplitudes that correspond to the individual energy of the pendulum. During periods k 2 ½2250;2700�, k 2 ½3100;3300�
the amplitudes of the oscillations of pendulums 2 and 3 vary continuously. During these intervals, y correctly shows values
of transient dynamics. Only for k 2 ½2950;3050� y reaches values above the limit 0:98 thus detecting stationary motion.

We can check the results of y by looking at the correlation coefficients rfwQ
i ;w

P
i g, Fig. 13, in combination with the

corresponding eigenvalues li, Fig. 14: For k 2 ½260;1700�, the first characteristic function is close to 1, while the correlations
of the second and third characteristic functions vary widely. The corresponding eigenvalues li, Fig. 14, reveal that during



ARTICLE IN PRESS

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ei
ge

nv
al

ue
 re

le
va

nc
e

time

λ1

λ2

λ3

Begin
End

Fig. 14. Eigenvalues li vs. time of the pendulum dynamics.
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this period the first characteristic function is paramount. Thus, verifying the results of y. For k 2 ½2250;2700� and k 2

½3100;3300� correlation coefficients rfwQ
1 ;w

P
1g and rfwQ

3 ;w
P
3g vary extensively. Moreover, the importance of the characteristic

functions w1 and w2 change as well (l2 becomes larger than l1). These results also support the findings of y. For k 2

½2950;3050� the correlation coefficients rfwQ
1 ;w

P
1g and rfwQ

2 ;w
P
2g are close to 1. Eigenvalues l1, l2 show that the

corresponding characteristic functions w1 and w2 are equally important. Thus, correlation functions show that reduced KLT-
bases ~C of consecutive intervals I are equivalent and that process yðkÞ is stationary.

The analyses of all three examples show that the results of the stationarity measure y agree with the correlation
coefficients of the governing characteristic functions rfwQ

i ;w
P
i g of system dynamics. Thus, stationarity measure y correctly

indicates the stationarity of the major statistical properties of process yðkÞ, and can thus be used to monitor the
performance of a given reduced KLT-basis ~C.

7. Conclusion

The KLT is a favorable tool for model order reduction, since the reduced KLT-basis ~C is the optimum approximation of
yðkÞ in the least square sense. However, the KLT is highly sensitivity to changes in the boundary conditions that alter the
statistical properties of the dynamics of the system under investigation. Therefore, careful attention has to be paid to the
performance of a given reduced KLT-basis ~C

Q
when applied in a model–order–reduction scheme to systems with different

settings yPðkÞ. In these cases, the given ~C
Q

may not represent the current system dynamics yPðkÞ correctly.
To our knowledge, up to now this effect could neither be calculated a priori nor monitored, efficiently. The performance

of the given reduced KLT-basis could only be evaluated by numerically costly secondary calculations of the same problem
setting using the original full set of equations. Of course such a procedure would jeopardize the KLT-ansatz itself. Therefore,
recent publications either justify the use of one given reduced KLT-basis by arguing with minor changes to the reference
setup, or ignore the case sensitivity entirely.

In this paper, we addressed problems of multidimensional oscillating dynamic systems with changing boundary
conditions or intermittent dynamic behavior. We introduced a new a priori measure to evaluate the performance of the
given reduced KLT-basis ~C

Q
in representing the current behavior of yPðkÞ. We define the stationarity measure y that

represents changes in any two consecutive covariance matrices CyyðkÞ, k 2 ½a1; b1� and CyyðkÞ, k 2 ½a2; b2� with a1pa2 and
b1pb2. Moreover, we could show that stationarity measure y is correlated to the system dynamics and provides a
reasonable measure for the stationarity of the system dynamics.

Thus, we introduced a method to detect necessary updates of given reduced bases ~C
Q

that can be embedded in adaptive
model reduction schemes. The only information necessary to calculate the proposed stationarity measure y is the
maximum periodic time.
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