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Friction-induced vibration is still a cause for concern in a wide variety of mechanical

systems, because it can lead to structural damage if high vibration levels are reached.

Another effect is the noise produced that can be very unpleasant for end-users, thereby

making it a major problem in the field of terrestrial transport. In this work the case of an

in the contact between rotors and stators is considered.

Stability analysis is commonly used to evaluate the capacity of a nonlinear system to

generate friction-induced vibrations. With this approach, the effects of variations in the

system parameters on stability can be easily estimated. However, this technique does

not give the amplitude of the vibrations produced. The integration of the full set of

nonlinear dynamic equations allows computing the time-history response of the system

when vibration occurs. This technique, which can be time-consuming for a model with a

large number of degrees of freedom (dof), is nevertheless necessary in order to calculate

the transient-state behavior of the system. The use of a continuous wavelet transform

(CWT) is very suitable for the detailed analysis of the transient response. In this paper,

the possibilities of coexistence of several instabilities at the same time will be examined.

It will be shown that the behavior of the brake can be very complex and cannot be

predicted by stability analysis alone.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

By nature, brakes in the aeronautical, automotive and rail industries are systems that comprise rubbing interfaces. A
major concern in such systems is the emergence of vibrations induced by friction. Although it has been the subject of many
investigations over recent decades, friction-induced instabilities are still an active field of research in dynamics.
Manufacturers suffer from a lack of solutions allowing them to eliminate or reduce such vibrations.

Many mechanisms have been proposed to explain the emergence of friction-induced instabilities. First, Spurr [1]
proposed a sprag-slip phenomenon based on geometrically induced instability. With the works of Jarvis and Mills [2], his
theory was expanded into a more generic coupling of degrees of freedom. Most recent studies on friction-induced
instabilities have been performed on the basis of this theory. However, another approach was proposed at the same time
and is still under investigation: in 1938, Mills [3] and later Fosberry and Holubecki [4] and Ouyang et al. [5] considered the
decrease in the friction coefficient with relative sliding speed as a source of destabilization. Lastly, the mechanism known
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as stick-slip [6] can be used to explain the emergence of vibrations. This mechanism is caused by the static friction
coefficient becoming higher than the dynamic coefficient. This theory is adapted to low sliding velocities, which allow the
alternation of sliding and sticking states. Finally, the four mechanisms considered responsible for friction-induced
vibrations fall into two main categories. On the one hand, stick-slip and a decreasing friction coefficient with sliding speed
imply variations in the friction coefficient. Thus they are more specifically a question of tribological properties. With an
approach involving sprag-slip or a geometric coupling of degrees of freedom, instability can occur even if the friction
coefficient is constant.

In this paper an aircraft braking system is studied. Liu et al. [7,8] and Gordon [9] were among the first to present the
equations of motion and a model description to simulate the squeal phenomenon in aircraft braking systems. In their
approach, instability is the result of geometric coupling between lateral translation and the yaw of the rotors and stators.
The model predicts that instability can occur with a constant coefficient of friction and without the use of a negative
damping. Studies on whirl, another kind of friction-induced instability in aircraft brakes, were first performed by Travis [10]
and Hagler [11], and completed by the work of Sinou et al. [12,13] by using geometric coupling and sprag-slip approaches.
Finally, a complete nonlinear approach for whirl and squeal instabilities has been presented by Chevillot et al. [14].

A stability analysis is commonly performed to evaluate the stability of the system by calculating the complex
eigenvalues of the Jacobian matrix of the system of equations linearized at the equilibrium point. The study of the
eigenvalues allows determining whether a given configuration of the system can generate oscillations. The nature of the
instabilities can also be determined, their frequencies calculated and their analytical mode shape plotted. To stabilize
the system, work can be done during the design in order to identify a set of parameters for which stability analysis does not
reveal any instability. However, such a configuration is very hard to determine in practice. Consequently, other approaches
have to be envisaged in a context in which the system cannot be easily stabilized. The limits of the stability analysis are that
no information is provided about the amplitude of the oscillations that the mechanism will generate. Nevertheless, the real
design criterion concerns the amplitude of the vibration: an instability may lead to very small oscillations in the time-
history response just as it may lead to very large oscillations. Thus the dynamical behavior of the system has to be
determined to complete the preliminary results of the stability analysis. It can then be very useful to calculate the
amplitude of the limit-cycles. To achieve this, numerical methods have been proposed to compute the steady-state
oscillations without integrating the full nonlinear equations of motion, for example, the constrained harmonic balance
method [15]. However, experimental tests on an aircraft braking system (one example can be found in [12]) show that
determining the stationary regime alone can be misleading. Firstly, transient oscillations may occur with a much higher
amplitude than that of the steady-state oscillations; secondly, instabilities may develop in the transient response but only
for a short duration, though they are not present in the steady-sate response. Thus it is difficult to avoid full integration of
the nonlinear system in order to obtain the time-history response. Whereas the computation of stability and steady-state
oscillations is fast, temporal integration requires particular attention. Finite element models with a large number of
degrees of freedom can be used ([16,17] for instance), but in spite of numerical efforts, computation time is still an issue.
The use of analytical models with a minimum number of degrees of freedom could be a way of getting round this obstacle.

The first part of this paper presents an aircraft braking system and describes the analytical model built to simulate
friction-induced instabilities. After this a brief description is given of the methods employed for time–frequency analysis, in
particular the continuous wavelet transform. The stability analysis is then performed in order to determine the nature of
the instabilities and the evolution of the stability with respect to the coefficient of friction. In the last section, time-history
responses are computed and the nonlinear dynamical transient and steady-state behaviors are analyzed with the help of
CWT. Changes in the damping configuration are made without concern given to the physical evaluation of the real damping
of the structure, in order to produce complex responses involving several instabilities.
2. Description and nonlinear modeling of the brake system

2.1. Description of an aircraft braking system

Fig. 1 shows a schematic model of an aircraft braking system where the rotating parts are given in a three-quarter
section view. The brake is attached to the landing gear of the aircraft through a torque take-out rod. The core of the brake is
composed of a stack of rotating and stationary discs whose number depends on the size of the aircraft: the rotating
discs—the rotors—are engaged by the wheel, while the stationary discs—the stators—are linked to the torque tube which
is interdependent of the piston housing. During braking, the rotors and stators are squeezed together by pressure in the
hydraulic pistons. Torque is produced by friction forces generated at the rubbing interfaces between the discs. Aircraft
slowing and stopping is therefore the result of the conversion of the kinetic energy of the plane into heat in the brake.

The evaluation of the dynamical behavior of the brake under working conditions is performed with the help of dynamic
tests using a fully instrumented aircraft brake (for a more detailed view of the instrumentation see [12]). Two main
complex nonlinear vibrations are then identified: squeal and whirl. Both appear at low frequency (in the 0–1,000 Hz range)
with sometimes large amplitude oscillations that liable to damage the integrity of the brake. In reality, here is no single
squeal and whirl vibration, as these terms define more generic vibratory phenomena defined in [7], whose deformations
differ. On the one hand, squeal is defined as torsional vibrations of nonrotating brake parts around the axle; on the other
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Fig. 1. Schematic model of the brake system.

Fig. 2. The 70 degree-of-freedom analytical model.
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hand, whirl describes a motion of the end of the torque tube around the axle accompanied by unphased pumping of the
brake pistons. An example of two analytical mode shapes, one of each kind, is presented in Section 4.

2.2. Nonlinear modeling of the brake system

2.2.1. Description of the 70 degree-of-freedom model

The nonlinear analytical model built to reproduce whirl and squeal instabilities is represented in Fig. 2. The brake, with
the brake rod and attachment lug, is modeled by writing the equations of motion with MATLABTM. With 70 degrees of
freedom, good accuracy is expected in the simulation of instabilities in the 0–1000 Hz range. A reduced number of degrees
of freedom is a substantial advantage for the full temporal integration of the dynamical equations. This model has already
been used by Chevillot et al. [14] to study the effects of damping on stability.

2.2.2. Nonlinear contact stiffness

Experimental tests [12] are conducted in order to record the behavior of the disc stack in compression. As suggested by
Sinou et al. [12], the nonlinear load–compression relationship is introduced analytically by a third-order polynomial in the
relative displacement between the discs (for reasons of confidentiality the values of the Ki coefficients cannot be given):

P ¼
X3

i¼1

Kidxi (1)

with Ki (i ¼ 123) the coefficients of the third-order polynomial.

2.2.3. Friction modeling

The multistage brake is represented by a single rotor and stator with an effective brake friction coefficient meq ¼ 2Nrotorm
where Nrotor is the number of rotors (leading to 2Nrotors interfaces in contact between the stators and rotors). It is assumed



ARTICLE IN PRESS

Fig. 3. Friction modeling at the stator–rotor interface.
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that each rubbing interface (a ring of inner radius Ri and outer radius Re as illustrated in Fig. 3) is equivalent and that the
friction coefficient is uniform on the surface. Moreover, contact and sliding states are assumed to be permanent.

The friction forces are deduced from the contact forces by using the classical Coulomb law: the tangential stress T is
generated by the coefficient of friction:

Nðr; yÞ ¼ Pðr; yÞ (2)

Tðr; yÞ ¼ meqNðr;yÞ ¼ meqPðr; yÞ (3)

Considering the nonlinear behavior of the normal stress acting at the interface between the discs (Eq. (1)), and the
relationship between the normal stress and the tangential stress (Eqs. (2) and (3)), the global expression of the nonlinear
terms FNL can be expressed. The latter have been presented in a previous study [14] and are developed in Appendix A. After
calculation, the nonlinear equations of motions can be written in the following form [14]:

M €x þ C _x þ Kx ¼ FNLðxÞ þ Fpressure þ Ftyreload (4)

where €x, _x and x are, respectively, the 70-D vectors of acceleration, velocity and displacement. M, K and C are, respectively,
the structural mass, stiffness and damping matrices. Fpressure is the vector force due to brake hydraulic pressure, FNL

contains the linear and nonlinear contact force terms at the stator and rotor interface and Ftyreload is the bending load
applied on the tyre.

2.2.4. Damping modeling

The damping matrix C mentioned in Eq. (4) is built with a modal approach. An elementary modal damping matrix Di is
specified for the i-th mode of the structure, of angular frequency oi, by its modal damping coefficient Zi:

Di ¼ 2ZioiEi (5)

where Ei is the elementary matrix with only 1 on the i-th row and i-th column.
A global modal damping matrix is then expressed by

D ¼
X70

i¼1

Di (6)

The structural damping matrix C is then constructed by projecting the modal damping matrix D onto the undamped,
non-frictional inverse modal basis U�1:

C ¼ U�1T

DU�1 (7)

In comparison with proportional damping, often considered in numerical studies due to its simplicity, the great advantage
of this approach is the independence of each mode with regard to damping. This is especially helpful for the study because
each mode, and therefore each instability, can be controlled separately with the modification of its modal damping
coefficient.

3. Methods for time–frequency analysis

The frequency analysis is a key step in the investigation of the information contained in a given signal. For a stationary
signal, where time does not play a role, the calculation of the frequency components of the whole signal is sufficient. The
fast Fourier transform (FFT) is therefore a commonly used method for studying stationary signals: it transforms the signal
from a time-based domain to a frequency-based domain. In the case of a nonstationary signal, the time-dependence of the
frequency components can be an essential point to evaluate in order to obtain good understanding of the behavior. To
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achieve this, methods are employed to generate time–frequency representations of the signal. For a nonstationary signal
with sharp time-varying frequency components, the performance and precision of the method employed are determining
elements.

3.1. The short-time Fourier transform

The short-time Fourier transform (STFT), first proposed by Gabor in [18], is a commonly used method for
time–frequency analysis, since it is a direct extension of the Fourier transform. Only a small section of the signal is
analyzed at a time through a window function. The division of the signal into sections allows generating a time–frequency
representation of the signal.

In the case of a weak nonstationary signal sðtÞ, the section of the signal of duration T centered at time location t is
assumed to be stationary when seen through a window wðtÞ. The STFT at location t is the Fourier transform of the
windowed signal sðtÞwðt � tÞ:

STFTs
tðf Þ ¼

Z T=2

�T=2
sðtÞwðt � tÞ e�j2pft (8)

The drawback of STFT is that the information on time and frequency can be obtained with only limited precision
determined by the size T of the window. Thus the analysis suffers from the dilemma of resolution: with a narrow window,
only poor frequency resolution can be obtained but with good time localization; on the other hand, good frequency
resolution can be obtained with a wide window, but at the expense of time localization. Moreover, the choice of the
window function itself may have an effect on estimation accuracy. Consequently, the STFT method can be employed in the
case of signals with weak nonstationary characteristics that allow using a fairly large window size and obtaining
satisfactory accuracy.

3.2. The continuous wavelet transform

To accurately analyze a signal with pronounced nonstationary behavior, the continuous wavelet transform (CWT) can be
used. Wavelet transforms are based on time-scale methods that give better time–frequency resolution than the standard
STFT. They first appeared in the 1980s with the work of Morlet [19]. The theoretical background can be found in [20–22],
though only the main principles are stated in the following section.

A wavelet analysis starts by selecting an elementary wavelet function fðtÞwhose decay is very fast and which fulfills the
admissibility conditions [21,22]: the mother wavelet. A family of functions (the wavelets) are then obtained by translation
and dilatation of the mother wavelet:

fa;bðtÞ ¼
1ffiffiffi
a
p f

t � b

a

� �
(9)

where a is the dilatation or scale factor and b is the time translation factor. The term 1=
ffiffiffi
a
p

ensures the energy
normalization across the different scales.

The transform is then performed by projecting the signal sðtÞ onto the wavelets, producing the CWT coefficients:

CWTs
fða; bÞ ¼

Z 1
�1

sðtÞf�a;bðtÞdt ¼
1ffiffiffi
a
p

Z 1
�1

sðtÞf�
t � b

a

� �
dt (10)

where � denotes the complex conjugate.
The wavelet coefficients represent a measurement of the correlation of the dilated and shifted wavelet with the function

sðtÞ. CWTs
fða; bÞ also express the local information on sðtÞ at time t ¼ b and frequency f related to 1=a. A time–frequency

representation is obtained by plotting the wavelet coefficients over time and frequency. In practice, it is preferable to plot
the wavelet power spectrum, defined as jCWTs

fðf ;bÞj
2, because of its analogy with the Fourier power spectrum [23]. A 3-D

graph can be drawn, but the CWT of a signal is usually drawn in the form of a 2-D graph with the levels represented by a
log 2 color scale.

Many types of wavelets with their own features and performance in time and frequency domains have been developed.
One of the most widely used mother wavelets is the Morlet wavelet defined as

fðtÞ ¼ ejk0t e�ð1=2Þt2
�!

FT
f̂ðoÞ ¼

ffiffiffiffiffiffi
2p
p

e�ð1=2Þðo�k0Þ
2

(11)

In the case of the Morlet wavelet, the relation between scale and frequency is given by the expression of the central
frequency oc ¼ k0=a at which f̂ðaoÞ is maximal [24]. The factor k0 is called the wavenumber. Since f̂ð0Þa0, the Morlet
wavelet given here does not scrupulously respect the admissibility condition imposed on a wavelet, which is necessary to
obtain the inverse of the transform [22]. A correction factor can be applied, but for a wavenumber higher than 6 the error
may be considered negligible. Moreover, the inverse transform will not be used in this study. In practice, the wavenumber is
a useful parameter because it allows a trade-off between time and frequency resolutions: the higher the wavenumber the
better the frequency accuracy, but at the expense of temporal accuracy.
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The CWT uses a short window at high frequencies and a long window at low frequencies, in contrast to the FFT which
uses a single analysis window. This partially overcomes the time-resolution limitation of the STFT.
4. Stability analysis

The stability analysis is the first step for studying nonlinear systems subjected to instability phenomena. It allows
determining the nature of the instabilities possibly generated by the system: frequency, mode shape, stability area. The
stability analysis is conducted around the equilibrium point x0 computed for a given set of parameters when pressure is
applied. It is given by solving the nonlinear system defined by Eq. (4) in the static case:

Kx0 ¼ FNLðx0Þ þ Fpressure þ Ftyreload (12)

The stability is then investigated around the equilibrium point for a small perturbation x by linearizing the nonlinear
contact forces:

M €x þ C _x þ K�
qFNL

qx

����
x0

 !
x ¼ 0 (13)

The previous equation is written in the state-space ½x; _x �T that gives the Jacobian matrix:

J ¼

0 I

�M�1 K�
qFNL

qx

����
x0

 !
�M�1C

2
64

3
75 (14)

For l a complex eigenvalue of J expressed as l ¼ aþ io, the stability criterion is: if a is negative or zero, the system is stable
and no vibration occurs, and if a is positive then the system is unstable. The imaginary part o represents the angular
frequency of the vibration. In addition, a damping coefficient can be expressed by Z ¼ �a=jaþ ioj (if the system is unstable
then at least one of the damping coefficients is strictly negative). The plots of the frequencies (the angular frequencies
divided by 2p) and of the damping coefficients versus the brake friction coefficient are given respectively in Fig. 4(a) and
(b). No structural damping is added for this calculation (for more details about the effects of damping on stability see
[14,25–29]). Five instabilities are calculated between 0 and 800 Hz, corresponding to the frequency range in which the
analytical model is assumed to be efficient. They are plotted by bold red lines in the figures. Each instability is the result of
the coupling by the friction of two modes of the structure. The nature of the instabilities can be identified by plotting the
analytical mode shapes: three of them turn out to be whirl instabilities, while two have squeal characteristics. One mode
shape of each kind is given in Fig. 5 to illustrate the differences between the two kinds of instabilities. The shaded lines
define the static position of the brake.

Fig. 4(a) shows that increasing the friction coefficient causes the Squeal 1 instability to disappear. Indeed, the
coalescence of the two modes is not permanent: the two modes merge when reaching the first Hopf bifurcation point, but a
second Hopf bifurcation point exists for larger values of the driving parameter (in this case the coefficient of friction) above
which the modes are no longer merged. This means that if the stability graphs of Fig. 4(a) and (b) were given for larger
values of the coefficient of friction, all five instabilities could be seen to disappear. For example, for the Whirl 2 instability,
the decrease of the damping coefficient in Fig. 4(b) can be noted: when reaching zero, the second bifurcation Hopf is
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Fig. 5. Analytical mode shapes: (a) Whirl 1 instability and (b) Squeal 1 instability.
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reached and the instability disappears. More information about mode-coupling instabilities and Hopf bifurcation points
can be found, for instance, in [12,13].

The configuration for a brake friction coefficient of m0 marked in Fig. 4 appears very interesting because the five
instabilities are destabilized at the same time. Therefore the choice of this friction coefficient is perfectly suited for the
evaluation of multi-instability behaviors, even if it does not correspond exactly to a real value of the brake friction
coefficient. Thus, the stability analysis has allowed us to identify the instabilities possibly generated by the brake and
choose an interesting value of the friction coefficient. Time-history simulations are then computed in order to identify the
temporal behavior of the brake in vibration. They are presented in the following parts of this paper.
5. Nonlinear analysis with the use of CWT

Determining the stability of the brake is useful as a preliminary study but does not give the amplitude oscillations or the
transient behavior of the brake. To do this, the nonlinear equations of motion have to be integrated numerically to obtain
the time-history response. Several simulations are performed when one or more instabilities occur. The brake is first placed
under steady-state operating conditions, determined by the calculation of the equilibrium point of the system when
pressure is applied. The dynamical behavior is then investigated around the static position of the system. All the
parameters (pressure, coefficient of friction, damping) remain constant throughout the simulation. The continuous wavelet
transform (CWT) based on the Morlet mother wavelet as defined in Section 3.2 is used to study the time-history responses.
The analysis is performed for two specific degrees of freedom that may be located in Fig. 2: dof 21 which represents the
traction/compression of the torque take-out rod, and dof 49 which characterizes the axial displacement of the piston
housing.

The previous stability analysis allowed highlighting a set of parameters for which five coupling instabilities are
calculated. As specified no damping was used for this calculation. For the time-history simulations, the modal damping
defined in Section 2.2.4 is added in the equations of motion. The modal approach allows considering each instability
separately: for the friction coefficient m0 determined in the previous section, in order to obtain a configuration without a
specific instability, enough damping on the two modes producing this instability can be added to prevent it from
developing. In this way, all the configurations with 1, 2, 3, 4 or 5 instabilities can be obtained. The damping configuration
for each simulation performed is given in Appendix B.



ARTICLE IN PRESS

F. Chevillot et al. / Journal of Sound and Vibration 328 (2009) 555–574562
5.1. Single instability behavior

Simulations are conducted in order to study the behavior of the five coupling instabilities taken separately. They are
presented in ascending order of complexity.

5.1.1. Squeal 2

The first case presented is the time-history response of the brake when a Squeal 2 instability occurs. The temporal
integration between 0 and 3 s is given in Fig. 6 for dof 21 (a) and dof 49 (b). The dynamics of the response is simple and is
composed of two steps: in the first step, the amplitude oscillation increases exponentially, then in the second step the
oscillations stabilize and limit-cycle amplitude is reached. In particular, no overshoot in the transient regime is observed. It
should be noted that the instability develops quite slowly since the steady-state oscillations are reached after around 2.1 s.

An FFT is performed to calculate, with the approximation of stationary signals, the frequencies occurring in the
dynamical response. The power spectrum reveals that the response is made up of a single frequency calculated at around
724 Hz. This frequency may be compared with that of around 730 Hz obtained by the previous stability analysis. Although
the stability calculation was performed without damping, the addition of damping cannot be the cause for the gap in
frequency: if the stability analysis is conducted with damping, the frequency of the instability only decreases from 729.75
to 729.57 Hz. In fact, the stability analysis is performed with a linear approximation at the equilibrium point, while the
temporal response integrates the full nonlinear equations, giving rise to the slight difference in frequencies noticed.

5.1.2. Squeal 1

The response of the Squeal 1 instability is presented in Fig. 7. On dof 21, the shape of the temporal behavior is quite
similar to that of the Squeal 2 instability: no overshoot is obtained and the oscillation amplitudes remain constant after a
short transient state. The first difference is the speed of development of the instability: the Squeal 1 instability develops
faster than the Squeal 2 instability. However, it is known that the speed of increase depends directly on the real part of the
instable eigenvalue, and may then be modified by the damping introduced for the simulation. The FFT shows that the
response is made up of two components: the fundamental frequency at 320 Hz, and its second harmonic at 640 Hz. The
stability analysis with damping gives an instable frequency of 316 Hz. On dof 49, the time-plot reveals that the mean
dynamical position of the steady-state oscillations is slightly different of the initial static position of the system. The power
spectrum shows that the amplitude of the second harmonic is a lot larger than the amplitude of the fundamental
component, unlike dof 21. The presence and size of the harmonic components can be seen as an indicator of the complexity
of the nonlinear response.

5.1.3. Whirl 1

The Whirl 1 instability is the first whirl-type instability presented. Its time-history response is given in Fig. 8. The first
remark concerns the slowness of the development: at t ¼ 12 s, the stationary oscillations are not quite reached yet. This is
linked to the small amount of negative damping present on the unstable mode, as can be seen in Fig. 4b. The time-plots of
dofs 21 and 49 display fluctuations in oscillation amplitudes: they are more pronounced on dof 21. This observation can be
qualitatively correlated with the FFT power spectrum: as the response of dof 49 is almost monoharmonic at 48 Hz, the FFT
of dof 21 displays a second harmonic more than twice as large as the fundamental component. Moreover, the harmonics up
to order 8 appear slightly on the power spectrum, the seventh one (at 336 Hz) in particular is noticeable.
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Fig. 8. Whirl 1 time-history response and FFT: (a) dof 21 and (b) dof 49.
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5.1.4. Whirl 3

For the Whirl 3 instability, the time-plots of Fig. 9 show significantly different behaviors whether seen on dof 21 or dof
49. On the one hand, on dof 21 the vibration develops with a classically increase, quite similar to that observed for Squeal 1
or Squeal 2 instabilities: the fundamental frequency is given at 268 Hz, and the second harmonic is hardly visible. On the
other hand, the time-plot of dof 49 shows a low-frequency component of high amplitude measured by FFT at 16 Hz. This
vibration appears abruptly at around t ¼ 0:35 s with the simultaneous abrupt variation of the mean dynamical position.
This means that the brake is not vibrating around its initial static position (cf. Fig. 10(a)). Although the oscillations of the
low-frequency vibration decline fast (at t ¼ 1 s they have almost disappeared), the mean position remains modified. A CWT
is performed for the dof 49 time-history response for an in-depth study of what occurs. Thus Fig. 10(a) reveals that the
whirl vibration with its second harmonic and the 16 Hz vibration seem to occur at the same time. To go into the analysis in
greater depth, it appears that a mode of the structure is calculated by the stability analysis (cf. Fig. 4) at around 16 Hz. The
movement of this mode is highly axial, as shown by its analytical shape given in Fig. 11. Thus the following explanation is
proposed: when the whirl instability occurs, it causes a sudden variation of the position of the system. This jump mostly
affects the axial dofs, such as dof 49, and is then responsible for the excitation of an axial low-frequency mode of the
structure. Without the jump of position, which acts as a Dirac excitation for the low-frequency mode, this vibration could
not occur because it is not a coupling instability but an isolated structural mode. This clearly illustrates the complexity of
the transient nonlinear behavior in brake systems, with the appearance and disappearance of new fundamental frequencies
that cannot be foreseen by the stability analysis. Another interesting element is highlighted in Fig. 10(b). A CWT is
performed around the jump of position for the fundamental whirl frequency. Simultaneous to the variation of position, the
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Fig. 11. Analytical mode shape of the 16 Hz instability.
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Fig. 9. Whirl 3 time-history response and FFT: (a) dof 21 and (b) dof 49.
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frequency of the vibration is also subjected to a quick shift of 17 Hz: as the instability appears at the beginning at around
285 Hz (which corresponds exactly to the frequency obtained by the stability analysis), the stationary frequency is
measured at 268 Hz. The change in the frequency may be seen as an effect of the change of the position, resulting from the
modification of the equilibrium point.

5.1.5. Whirl 2

Regarding the Whirl 2 time-history response illustrated in Figs. 12 and 13, its behavior is very close to that of the Whirl 3
instability. However, there is greater involvement of overharmonics, in particular the contribution of the fourth harmonic
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Fig. 12. Whirl 2 time-history response and FFT: (a) dof 21 and (b) dof 49.
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(at 660 Hz) is significant for the dof 21. It is interesting to observe that the jump of position (the difference between the
mean dynamical position and the initial static position) is almost 8 times larger than that in the Whirl 3 case: 0.03 mm
against 0.004 mm. However, the effect on the frequency jump is the opposite: 3 Hz versus 17 Hz. Thus, although the jump of
position and the jump of frequency can be linked, the mechanisms are obviously not quite the same between these two
instabilities. Moreover, the same low-frequency component at 16 Hz appears here, but much more significantly.
5.1.6. Conclusions

The main observation that may be expressed regarding the study of the five instabilities taken separately is that
dynamical behavior can be rather complex, even in the case of single instability destabilization. Phenomena of variations in
position and in frequency were highlighted with the help of CWT. Although the examples presented only show a variation
in the frequency of less than 5%, simulations, not presented in this study, carried out with other system parameters
revealed variations in frequency up to about 20%. Thus the usefulness of time-history computation is asserted: stability
analysis can indeed be misleading with respect to the frequency of the instability. Transient nonlinear behavior also
revealed the sometimes significant contribution of overharmonics up to a high order. Moreover, a complex mechanism of
destabilization of a low-frequency vibration was studied: an unexpected mode of the structure can be excited
simultaneously with mode-coupling instability. In this case, the simulations have shown that the low-frequency vibration
yields oscillations with an amplitude higher than that of the mode-coupling instability itself. This destabilization
mechanism is very difficult to predict, making temporal integration necessary.
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5.2. Multi-instability behavior

Single instability simulations revealed the rather complex dynamics of the brake in vibration. In this section, multi-
instability simulations are performed. The aim is to examine how the system behaves when several instabilities due to
friction are involved. 5 instabilities can be obtained, in line with the previous stability analysis. At least

P5
i¼2 Ci

5 ¼ 26
simulations have to be performed in order to study all the combinations of 2, 3, 4 and 5 instabilities. The most interesting
ones are presented and analyzed in the following paragraphs.
5.2.1. Whirl 3þ Squeal 2
The combination of Whirl 3 and Squeal 2 instabilities is examined. The time-plot and CWT are given in Fig. 14. The time-

plot reveals slow growth: about 8 s are necessary to reach the steady-state oscillations. The behavior observed on dof 49 is
interesting. At around 0.35 s, oscillations appear and a jump in position is noticed. This behavior is similar to that of the
Whirl 3 instability in the stand-alone configuration. Between 1 and 4 s, steady-state oscillations seem to be obtained, but
from around t ¼ 4 s, the oscillations increase again. The CWT allows better understanding. The Whirl 3 vibration appears
very quickly, with its second harmonic. The low-frequency mode at 16 Hz is destabilized at the same time, but does not
appear on the figure because the CWT is only performed between 64 and 1024 Hz. From t ¼ 4 s, the extra oscillations are
due to the Squeal 2 instability. It may be noticed that the Whirl 3 vibration is not disrupted at all by the Squeal 2 vibration.
The only interferences between the two instabilities take the form of frequency combinations at osqueal2 �owhirl3 and
osqueal2 þowhirl3. However, their contribution is small.
5.2.2. Whirl 2þWhirl 3
A different behavior is obtained when Whirl 2 and Whirl 3 instabilities are blended. As seen in Fig. 15(a), there the

dynamics appear to comprise two steps: in the first one, a vibration develops, identified as the Whirl 3 vibration by using
CWT, while in the second step at t ¼ 0:45 s Whirl 2 oscillations appear. The novelty compared to the previous case is that
the two instabilities can not coexist at the same time: when the second vibration develops, it takes the place of the first
one. The detailed CWT of Fig. 15(b) gives a view of all the frequencies between 128 and 1024 Hz making up the signal. Are
present, in the first part of the time-plot, Whirl 3 with its overharmonics (2owhirl3 and 3owhirl3), and in the second part,
Whirl 2 with its overharmonics (2owhirl2, 3owhirl2, 4owhirl2 and 5owhirl2). In addition to this there are several frequency
combinations, which involve fundamental or overharmonics frequencies of the two instabilities: owhirl3 þowhirl2,
2owhirl3 þowhirl2, 2owhirl3 �owhirl2 and 3owhirl3 �owhirl2 can be identified. These combinations only exist in the short
temporal interval of the transition between the two instabilities. However, the contributions of the frequency components
are not equal: the main ones are owhirl2, owhirl3, 2owhirl2, owhirl3 þowhirl2 and 4owhirl2. This example is a good illustration
of the complexity of the nonlinear transient dynamics: given two frequencies corresponding to two instabilities expected,
the analysis of the time-history response highlights numerous frequencies that can be puzzling at first sight.

A further analysis is performed with a second simulation. The only different parameter is the damping introduced on
the Whirl 2 modes which is slightly increased (from 4.0% to 4.5%). In this case, the dynamics is quite similar but the
moment of the transition between the two instabilities is altered as observed in Fig. 16. Since Whirl 2 is slightly more
damped, it develops more slowly.
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5.2.3. Whirl 2þ Squeal 1
The Squeal 1 instability is very sensitive when combined with a Whirl 2 or Whirl 3 instability: either the whirl or squeal

develops predominantly. Fig. 17 illustrates this point: the time-history responses of three configurations with slightly
different damping introduced on the squeal instability (1.0%, 1.5% and 2.0%) are represented. In case (a), only the Whirl 2
instability appears (with its harmonics of order 2, 3 and 4), with low amplitude oscillations. The damping is reduced in case
(b) to allow the squeal vibration to develop. The squeal vibration destabilizes as expected, with high levels of oscillation.
The second harmonic also appears in the 64–1024 Hz range. What was not expected is the absence of whirl components in
the response. In case (c), an intermediate damping is introduced in an attempt to obtain the interference of squeal with
whirl. It is seen that squeal develops in the first part of the response in the form of a short burst, that then decreases when
whirl increases. As in the two previous simulations, overharmonics (2owhirl2, 3owhirl2, 4owhirl2 and 2osqueal1) are present,
but several combinations can also be observed at osqueal1 þowhirl2 and 2osqueal1 þowhirl2 only during the transition
between the two instabilities. In the steady-state oscillations, only the whirl components remain. Consequently, as with the
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Fig. 17. Mixing of Whirl 2 and Squeal 1 with different dampings on Squeal 1: (a) 2.0%, (b) 1.0% and (c) 1.5%.
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combination of Whirl 2 and Whirl 3, Whirl 2 and Squeal 1 cannot coexist together for long. It is interesting to note that the
two configurations (a) and (c) lead to the same steady-state oscillations, but have distinct transient behaviors.

5.2.4. Whirl 3þ Squeal 1
As seen in the previous paragraph, Squeal 1 coexists with difficulty with Whirl 2 instability. The same behavior is

obtained when Squeal 1 is mixed with Whirl 3. A configuration that allows destabilizing both instabilities is given in Fig. 18.
The squeal burst phenomenon is also obtained, but the overshoot is less definite: the Whirl 3 oscillations remain
predominant. The CWT computed between 32 and 1024 Hz allows identifying the overharmonics of the two instabilities:
2owhirl3, 3owhirl3 and 2osqueal1. The coexistence of the two instabilities seems to be somewhat easier than in the previous
case, as the combinations are observed during the temporal interval of coexistence: osqueal1 �owhirl3, osqueal1 þowhirl3 and
2owhirl3 �osqueal1.

5.2.5. Squeal 1þ Squeal 2
To complete the analysis of bi-instability behaviors, the two possible squeal instabilities are blended. Fig. 19 shows a

predominance of Squeal 1 oscillations through harmonics osqueal1 and 2osqueal1. Squeal 2 appears after the destabilization
of Squeal 1, but only lasts about 0.4 s. A small combination may be noticed at osqueal2 �osqueal1. A particularity about the
frequency of the Squeal 2 vibration can be noticed: although it develops at around 780 Hz, the steady-state frequency is
measured at 735 Hz.

5.2.6. Whirl 2þWhirl 3þ Squeal 2
Now that the mechanisms of the dynamical behavior of the brake when two instabilities are involved have been

analyzed, the configurations with at least three instabilities are studied. The first case considers the combination of Whirl
2, Whirl 3 and Squeal 2. The previous paragraphs highlighted the incompatibility between Whirl 2 and Whirl 3. Concerning
Squeal 2, it can react differently depending on whether it is combined with Whirl 2 or Whirl 3. It is not possible to predict
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behavior when combining these three instabilities. An initial simulation is performed, the time-plot and CWT-plot are
given in Fig. 20. Whirl 3 is the first instability to develop: its amplitude oscillations are small and the vibration only lasts
about 0.5 s. Then the Whirl 2 instability appears, but since it is incompatible with the Whirl 3 vibration, the latter
disappears. Whirl 2 continues while four very short bursts of Squeal 2 at very large amplitude emerge. The oscillations of
Whirl 2 grow abruptly consecutive to the disappearance of Squeal: this is visible in particular on dof 49, where the
destabilization of Whirl 2 is accompanied with a jump in the mean position and also with the 16 Hz vibration discussed in
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0 1 2 3 4 5
−2

−1

0

1

2
time plot − dof 21

time [s]

di
sp

la
ce

m
en

t [
m

m
]

time [s]

fre
qu

en
cy

 [H
z]

MORLET CWT − dof 21

0 1 2 3 4 5

1024

8
1/256
1/64
1/16
1/4
1
4
16
64
256

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5
time plot − dof 49

time [s]

di
sp

la
ce

m
en

t [
m

m
]

time [s]

fre
qu

en
cy

 [H
z]

MORLET CWT − dof 49

0 1 2 3 4 5

1024

16
8

1/256
1/64
1/16
1/4
1
4
16
64
256

Fig. 21. Mixing #2 of Whirl 2, Whirl 3 and Squeal 2: (a) dof 21 and (b) dof 49.
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Section 5.1.4. On the CWT plots only the fundamental frequencies are marked in view to improving visibility. However, the
overharmonics and combinations can be noticed, the most prominent of which are 2owhirl2, 3owhirl2, 4owhirl2, 2owhirl3 and
owhirl2 þowhirl3. In this example, the transient oscillations could be a lot more damaging for the system than the steady-
state oscillations, composed of only Whirl 2 harmonics.

A second simulation is performed with almost the same configuration: only a slight change in the damping is
introduced on the Squeal 2 modes (from 1.5% to 1.0%). The result represented in Fig. 21 is surprising: the squeal bursts
follow each another, with irregular intervals between two bursts. Unlike the previous simulation, no stationary regime
seems to emerge: the computation of the transient response is unavoidable.
5.2.7. Whirl 2þWhirl 3þ Squeal 1þ Squeal 2
A final configuration where all five instabilities are destabilized is considered. This configuration is used for two

simulations. The first one is presented in Fig. 22. Squeal 2 is the instability yielding the largest oscillations: it takes the form
of a burst at the beginning of the simulation. Squeal 1 also appears to be destabilized in the transient regime. Regarding
Whirl 2, its harmonics compose the stationary oscillations. Like Whirl 1, Whirl 3 does not appear. In fact, Whirl 1 hardly
undergoes any destabilization when another instability appears. In Section 5.1 it was shown that Whirl 1 develops very
slowly, and in most cases Whirl 1 disappears if another instability appears. The time-plot of dof 49 shows the presence of
the 16 Hz vibration, which appears with high amplitude oscillations simultaneously to the Whirl 2 vibration. The transition
from Squeal 2 to Whirl 2 seems to occur due to the proximity of the fundamental frequency of Squeal 2 with the fourth
harmonic of Whirl 2.

The second simulation (cf. Fig. 23) uses slightly different damping coefficients (cf. Appendix B). Although the differences
in the coefficients are small, the time-history responses are very dissimilar. In the first part, Whirl 3 and Squeal 1 are
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Fig. 22. Mixing #1 of Whirl 2, Whirl 3, Squeal 1 and Squeal 2: (a) dof 21 and (b) dof 49.
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Fig. 23. Mixing #2 of Whirl 2, Whirl 3, Squeal 1 and Squeal 2: (a) dof 21 and (b) dof 49.
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destabilized: the overharmonics of whirl ð2owhirl3Þ and squeal ð2osqueal1Þ are present and combinations also occur (mainly
osqueal1 �owhirl3). After the disappearance of the Squeal 1 vibration (which only lasts about 0.2 second), a transition occurs
from Whirl 3 to Whirl 2 (through the combination owhirl3 þowhirl2). Finally, Squeal 2 develops a little later, probably due to
the fourth harmonic of Whirl 2, as in the previous simulation. The two simulations are similar in that Squeal 2 is the most
critical in both cases. However, in one case it takes the form of a short burst with very high amplitude, while in the second
case stationary oscillations remain at a more moderate amplitude. It can also be seen that only small changes in the
damping configurations can lead to very different behaviors in both transient and steady-state regimes.
5.2.8. Conclusions

Time-history simulations with several types of mode-coupling instabilities have highlighted complicated dynamical
mechanisms. The complexity seems to increase with the number of instabilities considered. When several instabilities are
involved, only in very rare cases is the response of the system close to the sum of the responses obtained separately with
each instability. Interactions often occur between the instabilities so that when several instabilities appear with their
respective harmonics, along with interactions composed of combinations of frequencies, it can be difficult to interpret the
spectral analysis despite the considerable aid provided by CWT. The results presented are very interesting because they
make it possible to determine which instabilities can coexist with other instabilities, and which of the latter overwhelm
the others. Thus it appears that two kinds of whirl instabilities cannot be simultaneously destabilized: when Whirl 2 and
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Whirl 3 are involved, then Whirl 3 is the first to develop, but quickly gives way to the Whirl 2 oscillations. As for Whirl 1, in
most cases it is overwhelmed by any other instability. The combination of the two squeal instabilities leads to a
predominance of Squeal 2. The most interesting cases concern the combination of squeal instability with a Whirl 2 or Whirl
3 instability. The analysis of squeal shows that it tends to take the form of a very short burst at the beginning of braking,
with very large oscillations.

Secondly, the simulations performed illustrate the complexity of the nonlinear transient response of braking systems.
The same steady-state behavior can be obtained, but with a very different transient behavior, if an instability appears then
disappears in the transient regime, as was shown in the examples given. In addition, it appears that multi-instability
behaviors are very sensitive to the damping configuration. This sensitivity increases as a function of the number of
instabilities involved. Behaviors with 4 coupling instabilities are very sensitive because variations in the damping
coefficients can cause an instability to appear or disappear. However, for behavior with a single instability, variations in the
damping coefficients will only modify the speed of increase of the oscillations and their amplitude. The experimental tests
have only revealed behaviors with one and rarely two instabilities. Therefore the sensitivity of the responses observed by
simulating multi-instability cases is not very disturbing, because these behaviors are obtained in very specific numerical
cases that could hardly occur in reality.

6. Summary

In this paper, a nonlinear model for the simulation of mode-coupling instabilities induced by friction in aircraft braking
systems is presented and used to investigate the transient behavior of the brake when vibrations occur. The temporal
integration of the full set of nonlinear equations is computed with MATLABTM. The use of an analytical model with a small
number of degrees of freedom is especially useful as the computation of several seconds of braking takes less than one hour
on a desktop computer.

A stability analysis determines and identifies five mode-coupling instabilities. The time-history responses of single and
multi-instability behaviors are obtained by modifying the damping configuration. They reveal complicated and interesting
phenomena in the transient and stationary oscillations. Firstly, it appears that in a single instability configuration, stability
and time-history can be correlated: if the stability analysis calculates an instability, the latter develops more or less quickly
in the temporal response. However, the detailed analysis of the response with the help of CWT reveals complex
phenomena. These are the participation of harmonics up to a high order, or abrupt variations of the mean position, in which
case the system does not vibrate around its initial equilibrium point and the instable frequency can vary, or the sometimes
substantial difference between the frequency obtained by the temporal integration and that given by the stability analysis,
or else the destabilization mechanism of a stable single mode of the structure. Secondly, interactions between instabilities
are investigated. In this case, when referring to the stability result, an expected instability does not systematically provide
oscillations in the time-history response. Certain instabilities can overwhelm other instabilities. Complex mechanisms are
seen to occur in multi-instability configurations: high amplitude transient oscillations can develop for a short duration that
are potentially synonymous with damage caused to the mechanical system.

The study presented clearly demonstrates the need to compute the entire time-history response. It also highlights the
role of damping: for a given set of brake parameters, a single variation of the damping configuration can produce very
different system responses. In this context, an accurate estimation of the damping configuration is required to obtain good
prediction of the brake’s dynamical response. This is where the difficulty lies: measuring and simulating damping in real
structures are probably among the most difficult issues in mechanics.
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Appendix A. Nonlinear terms due to friction at the rotor–stator interface

For a point M of radial coordinates ðr; yÞ, the normal relative displacement dx is calculated by considering small
displacements of the rotor and the stator:

xrotorðr;yÞ ¼ xr þ r siny sinyr � r cosy sincr � xr þ r yr siny� rcr cosy (A.1)

xstatorðr; yÞ ¼ xs þ r siny sinys � r cosy sincs � xs þ rys siny� rcs cosy (A.2)

that gives

dxðr; yÞ ¼ xstatorðr; yÞ � xrotorðr; yÞ ¼ ðxs � xrÞ þ r sinyðys � yrÞ � r cosyðcs �crÞ (A.3)

where xs, xr , ys, yr , cs, cr are, respectively, the stator and the rotor lateral displacements and rotations.
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Considering the cubic polynomial nonlinear contact stress (Eq. (1)) and the Coulomb law (Eq. (3)), the normal force FX ,
the tangential forces FY , FZ , the brake torque MX and the yawing and pitching moments MY , MZ due to friction can then be
expressed:

FX ¼

Z 2p

0

Z Re

Ri

Nðr; yÞr dr dy ¼
Z 2p

0

Z Re

Ri

K1dxðr; yÞ þ K2dx2ðr; yÞ þ K3dx3ðr; yÞ
� �

r dr dy

¼ K1A2ðxs � xrÞ þ K2 A2ðxs � xrÞ
2
þ

A4

4
ðys � yrÞ

2
þ

A4

4
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2

� �
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3
þ

3A4

4
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2
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3A4

4
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2
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� �
(A.4)

FY ¼ �

Z 2p

0

Z Re

Ri

Tðr; yÞsinyr dr dy ¼ �
Z 2p

0

Z Re

Ri
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3
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(A.5)

FZ ¼

Z 2p
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MX ¼
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MY ¼

Z 2p

0

Z Re

Ri

Nðr; yÞsinyr2 dr dy

¼ K1
A4

4
ðys � yrÞ þ K2

A4

2
ðys � yrÞðxs � xrÞ
Table B1
Damping configurations.

Instabilities appearing Zwhirl1 (%) Zwhirl2 (%) Zwhirl3 (%) Zsqueal1 (%) Zsqueal2 (%) Zothermodes (%)

Squeal 2 5 10 35 5 0.9 5

Squeal 1 5 10 35 2.5 5 5

Whirl 1 0.01 10 35 5 5 5

Whirl 3 5 10 30 5 5 5

Whirl 2 5 4 35 5 5 5

Whirl 3 and Squeal 2 5 10 30 5 0.3 5

Whirl 2 and Whirl 3 (case #1) 5 4 30 5 5 5

Whirl 2 and Whirl 3 (case #2) 5 4.5 30 5 5 5

Whirl 2 and Squeal 1 (case #1) 5 4 35 2 5 5

Whirl 2 and Squeal 1 (case #2) 5 4 35 1 5 5

Whirl 2 and Squeal 1 (case #3) 5 4 35 1.5 5 5

Whirl 3 and Squeal 1 5 10 30 2 5 5

Squeal 1 and Squeal 2 5 10 35 1 0.6 5

Whirl 2, Whirl 3 and Squeal 2 (case #1) 5 4.5 30 5 1.5 5

Whirl 2, Whirl 3 and Squeal 2 (case #2) 5 4.5 30 5 1 5

Whirl 2, Whirl 3, Squeal 1 and Squeal 2 (case #1) 0.1 4.5 30 2 0.6 5

Whirl 2, Whirl 3, Squeal 1 and Squeal 2 (case #2) 0.1 6 30 2 1 5
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MZ ¼ �
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with Ak ¼ pðRk
e � Rk

i Þ for k ¼2–6 and Re and Ri, respectively, the outer and inner radius of the contact surface.

Appendix B. Damping configurations used for all simulations

See Table B1.
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