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We present a new formulation for the prediction of tyre belt vibrations in the frequency

range 0–500 Hz. Our representation includes the effects of belt width, curvature and

anisotropy, and also explicitly models the tyre sidewalls. Many of the associated

numerical parameters are fixed by physical considerations; the remainder require

illustrated for the specific example of a Goodyear Wrangler tyre. The resulting

predictions for the radial response to radial forcing show good correspondence with

experiment up to 300 Hz, and satisfactory agreement up to 1 kHz.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle road noise is generated by the high-frequency tyre vibrations that arise due to the unsteady contact of the tread
pattern with the textured road surface. It is transmitted to the cabin via two routes: structure-borne and air-borne.
These components are thought to be important in the frequency ranges up to 500 Hz, and from 500–2000 Hz, respectively
[1]. The work presented here is part of a project to improve prediction of the structure-borne component at the vehicle
design stage. More specifically, it aims to provide a set of tyre impulse responses to point forcing, to be used subsequently
in a time-domain, convolution-based simulation of the rolling tyre.

Finite-element calculations at these frequencies are still extremely expensive, if not prohibitive. This problem can be
ameliorated by employing the ‘waveguide FEA’ approach (e.g. [2]), in which case successful tyre vibration modelling is
possible [3]. Nonetheless, the computational requirements remain relatively high and the model is complex, both
undesirable features for a design tool. We therefore seek a simpler representation of the tyre structure.

Pioneering work in this area has been carried out by Kropp and his co-workers, who have modelled the tyre as a flat
plate on a spring bedding. Their most recent formulation [4] allows the plate to support in-plane, flexural and shear waves.
Although initially reported agreement with experiment was only fair, the subsequent development by Andersson and
Larsson [5] shows excellent fidelity above 100 Hz. Below this frequency, the absence of curvature from the representation
renders the model invalid.

Real tyres are strongly anisotropic, and this feature was included in a plate model by Graf [6]. She found it impossible to
specify a set of elastic parameters that would match both high- and low-frequency behaviour, but nonetheless achieved
accurate radiated noise predictions for 500–1000 Hz.

A satisfactory representation of curvature effects is clearly a pre-requisite at the lower frequencies. Campanac et al. [7]
have presented a one-dimensional, ‘ring’, model meeting this requirement, while Kim and Bolton [8] have applied Soedel’s
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).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.11.022
mailto:wrg@eng.cam.ac.uk


ARTICLE IN PRESS

C. Lecomte et al. / Journal of Sound and Vibration 329 (2010) 1717–17421718
equations for a cylindrical shell [9] to the same effect. However, neither of these approaches has been experimentally
validated.

In contrast, Pinnington has developed [10], and tested [11], a curved-plate tyre model. The plate admits flexural,
in-plane longitudinal and in-plane shear waves, and is coupled to an explicit sidewall representation. For a suitably chosen
set of material properties, good agreement with measured point and transfer mobility amplitudes was achieved, especially
for line excitation in the 100–400 Hz frequency range.

For our work, we require both low- and high-frequency fidelity (the former to ensure accurate simulation of the mean
tyre deflection in rolling), and an explicit sidewall representation (to extract the unsteady force on the wheel hub). Among
the models discussed here, the flat-plate idealisations are invalid at lower frequencies, while Kim and Bolton’s formulation
assumes isotropy and considers only simply-supported belt edges. The closest to fulfilling our requirements is
Pinnington’s, but we regard this as unsuited to our purposes, for two reasons. The first, and most important, is that
Pinnington does not properly represent the influence of the sidewalls on the belt vibration. Instead, he assumes a
restrictive form for the cross-belt displacement, in terms of a non-general Fourier series, and then assigns an additional
impedance, due to the sidewalls, to each Fourier mode. Even if one were to accept the arbitrarily imposed form for the belt
shape, we believe that the Fourier modes should be coupled by the sidewall impedance (we have been unable to reproduce
Pinnington’s uncoupled form, Eq. (21) of [10]). The second reason for not using the model is its inclusion of a shear wave
mode, which is not relevant until frequencies in excess of 2 kHz [4]. Our ultimate aim is to produce a tool that can be used
in preliminary design, and we therefore seek to minimise the number of parameters requiring experimental determination,
of which (in [10]) the shear stiffness is one.

The Pinnington model could, of course, be modified to eliminate the shear wave. Rectification of the sidewall coupling
formulation would be awkward though, requiring explicit expressions for the belt-edge stress resultants. These quantities
are notoriously difficult to obtain correctly from equilibrium considerations; they can, however, be found reliably via
energy-based methods. For this reason, we have chosen to develop our model—an orthotropic cylindrical shell
representation of the tyre belt, coupled to a membrane representation of the sidewalls—ab initio.

The paper is structured as follows. In Section 2 we derive the governing equations using a variational analysis and set
out the numerical approach used to solve them. Experiments carried out for validation and parameter identification
purposes are described in Section 3. Finally, in Section 4, we present a systematic parameter identification procedure,
and compare the resulting predictions with the measurements.

2. Theoretical analysis

Here we set out the theoretical basis of the paper. We start with the analysis leading to the equations governing belt
motions, and then proceed to the simpler case of the sidewall. Finally, we formulate the impulse response of the coupled
belt/sidewalls system.

2.1. The belt model

As the eventual aim of the calculation is to resolve forces at the tread-block level, the natural frame of reference is one
rotating with the tyre. This, then, precludes straightforward consideration of the belt vibrations as perturbations to the
loaded shape. Instead, they can be viewed as displacements from the original, cylindrical geometry, with these
displacements consisting of a repeatable, periodic component (associated with the loaded shape) and a stochastic element
(due to varying contact with the rough road surface). Once accepted, this approach has two advantages: the loaded tyre
shape need not be pre-calculated, as it is found implicitly in the rolling simulation (see, for example, [12]), and the
undeformed geometry takes a simpler form.

Nonetheless, the equations of motion and the boundary stress resultants for vibrations of an orthotropic cylindrical
shell subject to internal pressure and axial pre-stress do not appear to have been set out explicitly in the published
literature. Here, we shall derive them on the basis of a variational formulation. The main advantage of this method is that it
ensures consistency between the equations of motion and the boundary stress resultants, a feature that is not easily
achievable with a direct approach.

The starting point of the analysis is the definition of suitable coordinates, and of the deformed belt shape (Section 2.1.1).
The belt velocity and kinetic energy then follow straightforwardly (Section 2.1.2). The potential energy calculation is more
involved, involving not only extensional and bending stiffness terms, but also contributions from the pre-tensions and
internal pressure (Section 2.1.3). Finally, the kinetic and potential energy expressions are combined in the variational
analysis to yield the desired governing equations (Section 2.1.4). These are compared with previous authors’ formulations
in Section 2.1.5, and solved formally in Section 2.1.6.

2.1.1. Geometrical considerations

Fig. 1 shows the undeformed, cylindrical belt geometry and associated coordinate axis vectors. The Cartesian set
ðex; ey; ezÞ is fixed in the inertial reference frame moving with the axle, pointing, respectively, in the axial, downwards and
complementary directions. The rectangular polar set (er ; ey; ex) rotates with the belt. For a given material point on the tyre,
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Fig. 1. The assumed undeformed belt geometry, consisting of a circular cylinder of radius R and width b. A material point on the belt (rotating with

angular velocity O) is located by the coordinates l and y.
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at angle y relative to a reference radius,

er ¼ eycosðyþOtÞþezsinðyþOtÞ; (1)

ey ¼�eysinðyþOtÞþezcosðyþOtÞ; (2)

where O is the angular velocity of the tyre. The belt itself is modelled as a surface of infinitesimal thickness, so the position
vector of a material point before deformation is rð0Þðy; l; tÞ ¼ Rerþ lex, where R is the cylinder radius and l the local x

coordinate, measured relative to the belt centre. The belt width is b.
The belt deformation is specified by the vector uðy; l; tÞ ¼ uðy; l; tÞexþvðy; l; tÞeyþwðy; l; tÞer . Sanders [13] gives the

corresponding linear strain components as

e11 ¼
@u

@l
; e22 ¼

1

R

@v

@y
þ

w

R
; e12 ¼

@v

@l
þ

1

R

@u

@y
; (3)

and the curvatures as

w1 ¼�
@2w

@l2
; w2 ¼�

1

R2

@2w

@y2
þ

1

R2

@v

@y
; w12 ¼�

1

R

@2w

@y@l
þ

3

4R

@v

@l
�

1

4R2

@u

@y
: (4)

(In these expressions, direction 1 corresponds to the coordinate l, and 2 to y.)
We shall also require second-order accurate expressions for the elongation in the x and y directions. Consider, first, an

element of length dl in the x direction, with ends at rð0Þ ¼ Rerþ lex and rð0Þ þdlex. After deformation, these lie at,
respectively, rð0Þ þu and rð0Þ þdlexþuþð@u=@lÞdlþOðdl2Þ. The new length of the element is thus

dl0 ¼ dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@u

@l

� �2

þ
@v

@l

� �2

þ
@w

@l

� �2
s

þOðdl2Þ (5)

and the strain is

e11 ¼ lim
dl-0

dl0�dl

dl
¼
@u

@l
þ

1

2

@v

@l

� �2

þ
1

2

@w

@l

� �2

; (6)

correct to quadratic order in the displacement derivatives. The corresponding expression for the azimuthal direction is

e22 ¼
1

R

@v

@y
þw

� �
þ

1

2R2

@u

@y

� �2

þ
1

2R2
v�

@w

@y

� �2

: (7)

Finally, consider the volume swept by a surface element during the deformation (Fig. 2). The area of the element is
initially Rdydl, and it undergoes a displacement u. At a proportion s of this displacement, the sides of the element are
defined by the vectors Gy dy and Gl dl, where

Gy ¼
@

@y
ðrð0Þ þsuÞ ¼ s

@u

@y
exþ Rþs

@v

@y
þsw

� �
ey�s v�

@w

@y

� �
er ; (8)

Gl ¼
@

@l
ðrð0Þ þsuÞ ¼ 1þs

@u

@l

� �
exþs

@v

@l
eyþs

@w

@l
er : (9)
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Fig. 2. The volume swept out by a belt element due to the deformation field u. The variable s parameterises the deformation; at the intermediate stage su
the vectors Gl and Gy are parallel to the edges of the deformed element.
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For an increment ds in s, the volume swept out is ðGy � GlÞ � u ds dydl, and integrating from s¼ 0 to 1 yields the result

dV ¼ �
1

2
R
@w

@l
uþ

1

2
v�

@w

@y

� �
vþ R 1þ

1

2

@u

@l

� �
þ

1

2

@v

@y
þ

1

2
w

� �
w

� �
dl dy; (10)

again to quadratic order.
2.1.2. The kinetic energy

From Eqs. (1) and (2), we have @er=@t¼Oey and @ey=@t¼�Oer . Hence the velocity of the belt element with undeformed
location rð0Þ is

v¼
@

@t
ðrð0Þ þuÞ ¼

@u

@t
exþ

@v

@t
þOðRþwÞ

� �
eyþ

@w

@t
�Ov

� �
er : (11)

The kinetic energy of the belt is

T ¼
M

2

Z
S
jvj2R dl dy; (12)

where M is the belt mass per unit area, and S represents the belt surface.
2.1.3. The potential energy

The potential energy, U, is the sum of three terms: U ¼UsþUpþUa, in which Us is the standard expression for the strain
energy of the deformed belt, Up is the additional contribution due to pre-stress, and Ua is the air cavity component. For a
linear, orthotropic belt material, subject to small strains, the first term is (from the relations in Chapter 15 of [9])

Us ¼
1

2

Z
S
ða11e2

11þa22e2
22þ2a12e11e22þg12e2

12þb11w2
1þb22w2

2þ2b12w1w2þh12w2
12ÞR dl dy: (13)

In the more familiar case of an isotropic material, with thickness h, Young’s modulus E and Poisson’s ratio n, the extensional
stiffness terms are given by

a11 ¼ a22 ¼
Eh

1�n2
; a12 ¼ na11; g12 ¼

1�n
2

a11; (14)

and the bending stiffnesses by

b11 ¼ b22 ¼
Eh3

12ð1�n2Þ
; b12 ¼ nb11; h12 ¼ 2ð1�nÞb11: (15)
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The pre-stress contribution arises because of the mean belt tensions, which we take to be ti (per unit axial distance) in
the circumferential direction, and si (per unit circumferential distance) in the axial direction. Hence,

Up ¼

Z
S
ðsie11þtie22ÞR dl dy; (16)

and the quadratic expressions for e11 and e22, (6) and (7), thus provide Up to the same order in the strain components as Us.
(Note that Campanac et al. [7] use the ‘Cauchy strain’, e22þ

1
2 e

2
22 in place of e22, but then subsequently discard the tie2

22 term
as negligible.)

The air cavity potential arises from the work done by the internal pressure as the belt deforms. In a fully coupled
calculation, this pressure would itself be taken to be a function of the belt displacements, but here we shall assume the two
can be decoupled; i.e. the influence of the cavity pressure on the belt motions is confined to contributions from its mean
component, pi. (The acoustic pressure contribution to the hub force can then be calculated in a post-processing stage.
Support for this approach comes from the coupled calculations of Richards [14], whose tyre and cavity modes show little
modification from their uncoupled counterparts.) The potential associated with the element of Fig. 2 is �pi dV and, using
Eq. (10), we obtain

Ua ¼�pi

Z
S
�

1

2
R
@w

@l
uþ

1

2
v�

@w

@y

� �
vþ R 1þ

1

2
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� �
þ

1

2
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@y
þ

1

2
w

� �
w

� �
dl dy: (17)

2.1.4. The variational analysis

According to pp. 242–243 in Vol. 1 of Ref. [15], the equations of motion of a conservative system can be derived from the
principle that the (time) integral of the energy difference T�U is stationary. The procedure is standard and is set out in
detail for our problem in Ref. [16]. It yields

�M
@2

@t2
þ

g12

R2
þ

h12

16R4
þ
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R2

� �
@2
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þa11
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" #
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� �
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þ
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þ
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 @
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" #
w¼�sl; (18)
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� �
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þ
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� �
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þ
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�
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� �
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w¼�sy; (19)

�
h12
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@3
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þ
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R
�pi
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þ
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� �
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�

b22
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2b12þh12
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@4

@y2@l2
�b11

@4
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þ

ti
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þsi

@2

@l2
�

a22

R2
�

pi

R
�MO2

	 
" #
w¼�sr (20)

for applied force densities sl; sy and sr in the axial, circumferential and radial directions. We also obtain the auxiliary
relation ti ¼ piRþMO2R2, and the boundary stress resultants

fu ¼ a11
@u

@l
þ

a12

R

@v

@y
þ

a12

R
�

pi

2

	 

wþsi; (21)

fv ¼
g12

R
�

3h12

16R3

� �
@u

@y
þ g12þ

9h12

16R2
þsi

� �
@v

@l
�

3h12

4R2

@2w

@y@l
; (22)

fw ¼ �
h12

4R3

@2

@y2
þ

pi

2

 !
uþ

4b12þ3h12

4R2

@2v

@l@y
� b11

@3

@l3
þ

b12þh12

R2

@3

@l@y2
�si

@

@l

 !
w; (23)

rw ¼�
b12

R2

@v

@y
þ

b12

R2

@2

@y2
þb11

@2

@l2

 !
w: (24)

The sign conventions applicable here are shown in Fig. 3.

2.1.5. Comparison with prior formulations

Our analysis can be viewed as a generalisation of Campanac et al.’s variational derivation for a belt of negligible width
[7]. Thus, one would expect Eqs. (19) and (20) to reduce to their expressions if axial derivatives and terms in u are removed.
There are, however, some discrepancies, even after accounting for the difference in reference frame (which is not rotating
in Ref. [7]). Specifically, the terms in pi=R multiplying @w=@y in Eq. (19), and @v=@y and @2w=@y2 in Eq. (20), are absent in [7],
because quadratic order terms in the air cavity potential have been omitted. This omission also augments Eq. (19) with a
term in v. In our application the difference to the equations is numerically trivial, but the additional contribution
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Fig. 3. Nomenclature and sign conventions for the forces (fu , fv , fw) and moments (rw) acting at the belt edges.
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proportional to v in Eq. (19) leads to Campanac et al. predicting an unphysical restoring force when the belt undergoes a
rigid-body azimuthal rotation.

On substituting the isotropic forms, (14) and (15), for the elastic constants, we can also compare our equations with
those of Kim and Bolton [8]. Here a number of differences are apparent. Most of these can be traced back to conflicts in the
strain expressions presented by Sanders [13] and Soedel [9] (Kim and Bolton’s source). Such discrepancies are a feature of
alternative shell theories, and usually have insignificant accuracy implications in practice. Note, however, that the
coefficient symmetry evident in Eqs. (18)–(20) is not present in the Soedel formulation. Also, calculations using the
isotropic forms of (18)–(20) have been compared with a number of established shell theories [17], and have shown
excellent agreement. Finally, there are additional differences in the pre-stress and pressurisation terms, as Kim and Bolton
only consider their contributions in the radial direction. These, too, are expected to be negligible (for example, the factor
ðti�piRÞ=R2 multiplying @v=@y in (20) is absent from Kim and Bolton’s formulation, but for typical parameter values it is
dwarfed by the other coefficient of @v=@y, a22=R2).

A similarly detailed comparison with Pinnington’s belt equations [10] is not possible, due to the more fundamental
differences in his formulation. Some general observations can, however, be made. Pinnington only gives circumferential
and radial equations and, in these, there are no terms in the axial displacement, u. Derivatives of v in his equivalent of (19)
appear at the same order; likewise those of w in (20). The coupling terms, however, involve derivatives at different orders,
for reasons that are not immediately obvious.

Finally, our expressions for the boundary stress resultants, (21)–(24), do not appear to have been given before. They are,
however, essential to a rigorous treatment of the coupling between the belt and the sidewalls.
2.1.6. The unforced solutions

Our ultimate aim is to find the impulse response of the belt. Since this implies localised forcing, it will be expressible
elsewhere in terms of the solutions to Eqs. (18)–(20) when sr ¼ sy ¼ sl ¼ 0.

The first step is to take a double Fourier transform. We define

ûðn; l;oÞ ¼
Z 1
�1

Z p

�p
uðy; l; tÞe�inye�iot dydt (25)

and v̂ðn; l;oÞ, ŵðn; l;oÞ similarly. Then the Fourier transform of (18)–(20) can be expressed in a canonical form suitable for
numerical analysis, viz.

AĝþB
dĝ

dl
¼ 0; (26)
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where

ĝ ¼ û
dû

dl
v̂

dv̂

dl
ŵ

dŵ

dl

d2ŵ

dl2
d3w

dl3

" #T

(27)

and

A¼

A11 0 0 A14 0 A16 0 0

0 1 0 0 0 0 0 0

0 A14 A33 0 A35 0 A37 0

0 0 0 1 0 0 0 0

0 �A16 �A35 0 A55 0 A57 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775
; (28)

with

A11 ¼Mo2�
n2

R2
g12þ

h12

16R2
þti

� �
; A14 ¼

in

R
a12þg12�

3h12

16R2

� �
; (29)

A16 ¼
a12

R
�pi�n2 h12

4R3
; A33 ¼Mo2�

n2

R2
a22þ

b22

R2

� �
; (30)

A35 ¼�2iMOoþ in

R2
a22þti�piRð Þþ

in3

R4
b22; A37 ¼�

in

R2
b12þ

3h12

4

� �
; (31)

A55 ¼Mo2�
a22

R2
þ

pi

R
þMO2

�
n2

R2
ti�

n4

R4
b22; A57 ¼

n2

R2
ð2b12þh12Þþsi; (32)

B¼

0 a11 0 0 0 0 0 0

�1 0 0 0 0 0 0 0

0 0 0 g12þ
9h12

16R2
þsi 0 0 0 0

0 0 �1 0 0 0 0 0

0 0 0 in
4b12þ3h12

4R2
0 0 0 �b11

0 0 0 0 �1 0 0 0

0 0 0 0 0 �1 0 0

0 0 0 0 0 0 �1 0

2
66666666666666664

3
77777777777777775

: (33)

The next step is to express ĝ in terms of the eigenvectors of A and B. These are the vectors /j that satisfy

ðA�ljBÞ/j ¼ 0: (34)

There are eight such vectors, and each has an associated, unique eigenvalue lj. We write

ĝ ¼
X8

j ¼ 1

yj/j (35)

and substitute this expression into (26). Since each eigenvector obeys (34), we obtain

X8

j ¼ 1

ljyjþ
dyj

dl

� �
B/j ¼ 0: (36)

Now, as long as the vectors B/j are independent, this implies that

ljyjþ
dyj

dl
¼ 0 (37)

for each j, i.e.

yj ¼ cje
�lj l; (38)

where the cjs are unknown constants. They are determined by the applicable boundary conditions which, in our case,
depend on the sidewall. Their evaluation is thus considered after the description of the sidewall model.
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2.2. The sidewall model

In principle, the tyre sidewall can be analysed similarly to the belt. Such an approach would, however, lead to a set of
equations of motion with variable, rather than constant, coefficients. This feature arises because the sidewalls, fully
modelled, differ from the belt in two ways: they have curvature about two axes and they experience a spatially varying
centripetal acceleration. There are, however, good reasons to neglect these aspects. First, the secondary curvature is small,
and the sidewall is (as will be seen later) rather compliant in the circumferential direction, suggesting that a one-
dimensional representation, neglecting circumferential variations, may be sufficient. Second, the non-uniform tension and
Coriolis acceleration due to the varying radial position are likely to be small, due (respectively) to the dominance of
internal pressurisation and the low sidewall mass in comparison to the belt. (Also, a previous study of the importance of
the Coriolis terms in the belt context [17] concluded that they have little influence.) We therefore model the sidewall as a
distribution of radial elements, decoupled in the circumferential direction. Additionally, as the thickness is small compared
to the belt (at least for conventional tyres), we neglect bending stiffness.

This sidewall representation differs from Pinnington’s [11] in two important respects. First, it does not support bending
or shear waves, which become important at frequencies above our region of interest [11,18]. Second, we have not adopted
Pinnington’s heuristic method for handling the sidewall response to circumferentially varying forcing. This approach
implies an isotropic dispersion relation, which cannot easily be justified, especially at frequencies where the restoring
forces are dominated by the membrane tension contribution (which is vastly greater in the radial direction). We therefore
claim that the neglect of circumferential stiffness is preferable at this stage. (We return to this issue when we consider how
to link the belt and sidewall formulations, in Section 2.3.2.)
2.2.1. Sidewall governing equations

In the absence of bending stiffness and inertia forces due to centripetal acceleration, the pressurised sidewall takes up a
circular arc shape (Fig. 4). The radius of this arc is taken to be Rs, and material points along it are specified by the angle f.
The rim end of the sidewall is at f¼�fr , and the belt end at f¼fb. Perturbations from this undeformed state are
characterised by the azimuthal and radial components vs and ws.

The equations of motion for this representation follow straightforwardly from a variational analysis based on the
simplified equivalents of Eqs. (12), (11), (13), (3), (16), (7) and (17). We obtain

�Ms
@2

@t2
þ

as

R2
s

@2

@f2

" #
vsþ

as

R2
s

@ws

@f
¼ 0; (39)
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R2
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þ
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" #
ws ¼ 0; (40)

with the supplementary condition that ts ¼ piRs. The boundary forces (Fig. 5) are given by

fvs ¼
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Rs

@vs

@f
þws

� �
þts�pi

ws

2
; (41)

fws ¼
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@ws
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�vs

� �
þpi

vs

2
: (42)
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2.2.2. The sidewall static stiffness

At low enough frequencies, the sidewalls will present a spring-like impedance to the belt edges. Analytical expressions
for its components follow from the steady solutions of Eqs. (39) and (40), with vs ¼ws ¼ 0 at the rim junction ðf¼�frÞ.
As the purpose of these solutions is to provide insight, we make the further assumption of a symmetric sidewall,
i.e. fr ¼fb ¼fs. The steady displacements satisfying (39), (40) and the rim boundary condition are then

vs ¼ v0½1�cosðfþfsÞ�þw0sinðfþfsÞ�w0 1�
piRs

as

� �
ðfþfsÞ; (43)

ws ¼w0½1�cosðfþfsÞ��v0sinðfþfsÞ; (44)

where v0 and w0 are unknown constants.
We now consider a constrained vertical displacement of the belt junction, by a distance d, i.e. vs ¼ dcosfs;ws ¼ dsinfs.

In this case, we have

v0 ¼
d
2

1�
piRs

as

� �
fs

sinfs� 1�
piRs

as

� �
fscosfs

; (45)

w0 ¼
d
2

1

sinfs� 1�
piRs

as

� �
fscosfs

: (46)

The perturbation force in the same direction, F, is ðfvs�tsÞcosfsþ fwssinfs and, using Eqs. (41)–(46), we find the stiffness

F

d
¼

pi

2

cosfsþ 1�
piRs

as

� �
fssinfs

sinfs� 1�
piRs

as

� �
fscosfs

: (47)

This expression represents a generalisation of the inextensible ðas-1Þ result derived by Pinnington [18]. The modifying
factor ð1�piRs=asÞ will be very close to one (since piRs=as ¼ ts=as is the mean sidewall strain, which must be small by
design), but its presence in the denominator is potentially important nonetheless, because the terms sinfs and fscosfs

(almost) cancel for small fs, leaving a significant relative contribution from ðpiRs=asÞfscosfs. The inextensible result is thus
useful for indicative purposes, without being totally reliable.

If, instead, we consider the horizontal force associated with a displacement constrained to be in the horizontal direction,
i.e. with vs ¼�dsinfs, ws ¼ dcosfs and F ¼�ðfvs�tsÞsinfsþ fwscosfs, then the constants in (43) and (44) are given by
v0 ¼�d=2sinfs;w0 ¼ 0, so the stiffness is

F

d
¼

pi

2

cosfs

sinfs

: (48)
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For the representative values pi ¼ 2:2� 105 Pa, fs ¼ 303, this is 1:9� 105 Pa. The corresponding radial stiffness (with piRs=as

neglected) is 2:7� 106 Pa. Thus, at least for low frequencies, we expect the sidewall’s radial impedance to dominate.

2.2.3. General solution of the sidewall equations

For non-zero frequencies, the solution of Eqs. (39) and (40) can be obtained in a similar way to that for the belt.
The Fourier-transformed variables are now v̂sðn;f;oÞ and ŵsðn;f;oÞ, where the dependence on tyre azimuthal angle
implied by n is introduced in anticipation of linking the belt and sidewall representations. The equations of motion become

AsĝsþBs
dĝs

df
¼ 0; (49)

where

ĝs ¼ v̂s
dv̂s

df
ŵs

dŵs

df

� �T

; (50)
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þ
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2
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3
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: (51)

The eigenvalues, mj, and eigenvectors, wj, of As and Bs satisfy ðAs�mjBsÞwj ¼ 0, and we again expand the vector of
unknowns in terms of the eigenvectors:

ĝs ¼
X4

j ¼ 1

zjwj: (52)

The same substitutions and manipulations as previously then yield the result that

zj ¼ dje
�mjf (53)

with the unknown constants dj to be determined by the boundary conditions.

2.3. The response to an impulsive force

Although the ultimate aim of this model is to provide the response of the force at the wheel hub to an impulse at the
belt, the corresponding belt response is also of interest, particularly for validation purposes. Here we show how the
previous results may be coupled to provide this information.

2.3.1. The general solution to impulsive forcing

Without loss of generality, we can take the impulse to be applied at y¼ 0 and l¼ ld. Away from this point, the solution
obeys the unforced equations considered in Section 2.1.6. It can thus be similarly expressed as a superposition of Fourier
components, specifically:

ĝ
�
¼Ue�Klc�; lo ld; (54)

ĝ
þ
¼Ue�Klcþ ; l4 ld: (55)

These expressions are the matrix–vector equivalents of Eqs. (35) and (38) combined. The column vectors cþ , c� contain
the unknown coefficients; U¼ ½/1 /2 . . . /8� is the eigenvector matrix and K is the diagonal matrix whose entries are the
eigenvalues. The coefficient sets c�j and cþj differ due to the impulse at l¼ ld, but are not fully independent of one another;
they are related by integrating the equations of motion across the impulse location.

First, we specify the impulse explicitly, i.e. one of the surface stresses (depending on the impulse direction) is taken
equal to R�1dðyÞdðl�ldÞdðtÞ, where dðÞ is the Dirac delta function. On now Fourier transforming Eqs. (18)–(21) as before,
we have

AĝþB
dĝ

dl
¼�

ek

R
dðl�ldÞ; (56)

where ek is the k-th unit vector (e.g. e1 ¼ ½1 0 0 0 0 0 0 0�T) and k can take the values 1, 3 or 5, for axial, azimuthal or
radial impulses, respectively. The form of this equation implies that ĝ can contain discontinuities, but no singularities,
so integrating it over the infinitesimal interval either side of l¼ ld gives

BUe�Kld ðcþ�c�Þ ¼�
ek

R
: (57)
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This represents eight linear equations in the 16 unknown elements of cþ , c�. The additional relations that we require must
be found from the belt boundary conditions.

2.3.2. Coupling the belt and sidewalls

The belt boundary conditions are determined by the sidewall dynamics, so that additional unknowns as well as
additional conditions will be introduced. For the sidewall joining the tyre at l¼ þb=2, we write the Fourier-transformed
response vector as

ĝ
þ

s ¼We�Mfdþ ; (58)

where W and M are, respectively, the sidewall eigenvector and eigenvalue matrices. The expression for the response vector
on the other side of the belt (l¼�b=2) takes the same form, but with Fourier components

ĝ
�

s ¼We�Mfd�: (59)

Fig. 6 shows an exploded view of the combined belt/sidewalls geometry. The conditions we wish to impose at the
junctions are continuity of displacement, force and moment. We also need to specify the circumferential boundary force,
which is not provided by our model.

Continuity of displacements gives

�vssinfbþwscosfb ¼ 7u; (60)

vscosfbþwssinfb ¼w; (61)

where the alternative signs apply for l¼ 7b=2, respectively. After Fourier transformation, these equations can be
expressed in the matrix form:

�sinfb 0 cosfb 0

cosfb 0 sinfb 0

" #
ĝ

7
s ¼

7eT
1

eT
5

" #
ĝ

7
; f¼fb; l¼ 7b=2: (62)

Continuity of the perturbation forces implies that

�ðfvs�piRsÞsinfbþ fwscosfbþðfu�siÞ ¼ 0; (63)

ðfvs�piRsÞcosfbþ fwssinfb7 fw ¼ 0; (64)

with the sign of the final term depending on whether l¼ þb=2 or �b=2. (The issue of steady force continuity is deferred
until Section 4.) On using Eqs. (21), (23), (41), (42) and Fourier transforming, the resulting conditions are

�sinfb cosfb
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" # 0
as

Rs
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�

pi

2
0
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þ
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2
0 0
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2
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3
775ĝ

7
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7Fw

" #
ĝ

7
¼ 0; f¼fb; l¼ 7b=2; (65)

where

Fu ¼ 0 a11 in
a12

R
0

a12

R
�

pi

2
0 0 0

h i
; (66)
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Fw ¼ n2 h12

4R3
þ

pi

2
0 0 in

4b12þ3h12

4R2
0 n2 b12þh12

R2
þsi 0 �b11

� �
: (67)

For the circumferential boundary forces, we represent the (unmodelled) sidewall stiffness by a spring constant, ky, i.e.

fv ¼ 8kyv; (68)

where the opposing signs again refer to l¼ þb=2 and �b=2, respectively. The force component is given by Eq. (22), and the
Fourier-transformed conditions are

in
g12

R
�

3h12

16R3

� �
0 7ky g12þ

9h12

16R2
þsi 0 �in

3h12

4R2
0 0

� �
ĝ

7
¼ 0; l¼ 7b=2: (69)

Finally, the sidewall carries no bending moment, so the moment resultant rw is zero on both sides of the belt. This leads,
via Eq. (24) and the usual Fourier transformation, to

0 0 �in
b12

R2
0 �n2 b12

R2
0 b11 0

� �
Ue8Kb=2c7 ¼ 0: (70)

2.3.3. The rim condition

We assume that the wheel rim is effectively rigid as far as the belt and sidewall vibrations are concerned, i.e. vs ¼ws ¼ 0
for f¼�fr . This implies

1 0 0 0

0 0 1 0

� �
g7

s ¼ 0; f¼�fr : (71)

2.3.4. Solution for the impulse response

Taken together, Eqs. (57), (62), (65) and (69)–(71) give 24 conditions on the 24 unknowns contained in c�, cþ , d� and
dþ . The resulting matrix equation is straightforward to solve for the coefficient vectors, and hence the Fourier-transformed
response. The impulse response is then obtainable from the inverse Fourier transform in time and azimuthal angle.

3. Tyre measurements

The model presented in the previous section makes the assumption that the belt and sidewalls can legitimately be
represented by simplified theoretical forms, whose defining parameters must be supplied. The purpose of the
measurements described here was thus twofold: to investigate the fidelity of the model and to find appropriate values
of the unknown elastic parameters. Since these are independent of rotation effects, and apply to displacements about an
inflated, but unloaded, state, the experiments were carried out on a pressurised, stationary tyre. The following sections
describe the apparatus used, the experimental method and the subsequent data analysis. Finally, some sample results are
presented.

3.1. Apparatus

The test tyre was a Goodyear ‘Wrangler’ 235/65/R17. It was mounted horizontally on a fixed, solid hub. Vibration
excitation was provided by a Ling Dynamic Systems electro-dynamic shaker, model V101. For excitation in the radial
direction, the shaker was attached to the tyre via a 15 mm diameter brass button glued to the tread rubber. Tangential
(i.e. axial or azimuthal) excitation was applied through a push-rod with an end plate, the latter again being glued to the
tread. The input level was determined using a Bruel and Kjaer force transducer, type 8200.

The tyre response in the radial direction was measured with a Polytec Laser Doppler Vibrometer. At some locations, the
response in all three translational directions was found, using an Endevco ISOTRON tri-axial accelerometer, model 35A.
All data were logged on an LMS SCADAS III system, connected to an HP-UX workstation.

3.2. Experimental method

To ensure that the tyre was representative of an in-service example, it was first ‘run in’ for approximately 320 km at
driving speeds in the range 50–110 km/h. (Note, however, that sample measurements taken before this process showed no
significant differences from the main data set.) The inflation pressure was, in general, set to its nominal value: 2.2 bar;
some measurements were also performed at higher and lower pressures. The temperature was ambient in all cases.

The shaker was driven with white noise, band-limited to 6400 Hz. The signals were anti-alias filtered to ensure cut-off
by 4096 Hz, and logged at a sampling rate of 8192 Hz, for 20 s.

Radial response measurements were made around half the tyre circumference from the forcing location, at 53 intervals,
and at five axial locations. The latter consisted of the belt centre, 3 cm either side and 6 cm either side. Tri-axial responses
were taken over a subset of these points.
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Fig. 7. Frequency–wavenumber map for central radial response to central radial forcing. The quantity plotted is log10jioŵðn;0;oÞj. Labelled features: A,

bending wave branches; B, extensional wave ‘wedge’; C, ‘breathing’ resonance; D, ‘bounce’ resonance. Also shown superposed is the one-dimensional flat-

plate bending wave dispersion relation, (75), for parameter values R¼ 0:346 m, M¼ 19:2 kg m�2, ti ¼ 76 100 N m�1, b22 ¼ 16 N m.
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3.3. Data analysis

Transfer functions were obtained by averaging 20 ratios of Fourier transforms of the output velocity response and input
force. Each Fourier transform was estimated by application of the fast Fourier transform to an 8192 point data record,
multiplied by the associated Hanning window, giving a frequency resolution of 1 Hz. There was no overlap between
adjacent records. These transfer functions are also commonly referred to in the literature as ‘mobilities’; they correspond to
io½ ~u ~v ~w�, where ð ~u; ~v; ~wÞ are the single Fourier transforms (with respect to time) of the impulse response components
ðu;v;wÞ.

Bolton et al. [19] have shown that a wavenumber decomposition of the spatial response variation yields valuable
insight. In our case, it is also useful because it provides a direct comparison with the Fourier-transformed quantities
calculated from the theoretical model. For a given set of transfer functions io ~wðy; l;oÞ say, the Fourier series coefficients
ioŵðn; l;oÞ were estimated by mirroring the transfer functions in azimuthal angle (preliminary checks having confirmed
the validity of this symmetry assumption) and then applying a discrete Fourier transform to the complete set.

3.4. Sample results

The general form of transfer functions between radial forcing and response is already well established (see, for example,
[4,5,11,19]). Thus, here, we restrict attention to the frequency-wavenumber map for central forcing and response (Fig. 7).
The features identified by Bolton et al. [19] are clearly evident: a number of bending-wave branches (A) and an
extensional-wave ‘wedge’ (B). Also visible are the ‘breathing’ resonance (C), and the ‘bounce’ mode (D), the latter
corresponding to near-rigid-body motion of the tyre belt, with restoring force provided by the sidewalls. Finally, the sharp
local peaks at frequencies 195m Hz (for m¼ 123) correspond to acoustic cavity modes. (Note that their presence casts
some doubt on our neglect of cavity/belt coupling. This issue is deferred to future studies of force transmissibility to the
hub.) The interpretative value of the frequency-wavenumber map is clear; in the following section we shall see that it is
also helpful for parameter estimation.

4. Parameter estimation

The long-term aim of this work is to develop an entirely predictive model. We therefore seek to minimise the number of
parameters that are adjusted in order to match calculations and experiment. The following section thus considers which
variables can be determined a priori, either from basic measurements on an existing tyre (as in the current example) or
from early design information. We then move on to consider the adjustable parameters. These are sufficiently numerous to
prohibit a numerical search of all possible combinations for a best fit, and preliminary investigations with more advanced
optimisation algorithms gave discouraging results. A directed approach, which concentrates on setting small groups of
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parameters to match specific features of the frequency-wavenumber map, was therefore developed. The nature of this
method makes it probably generalisable across different tyres and, for this reason, it is described in detail. Finally,
we conclude with a comparison of model predictions and experiment for excitation/response combinations not used in the
fitting process.

4.1. Fixed parameters

4.1.1. Geometrical parameters

The geometrical parameters required by the model are the belt width and radius, b and R, and the sidewall radius, rim
angle and belt angle, Rs, fr and fb. The belt/sidewall junction on a real tyre is not unambiguously identifiable; we define it
as the edge of the steel reinforcing elements. Measurements on the inflated tyre and on cut elements then give
b¼ 201 mm, R¼ 346 mm. (Note that, due to cross-belt curvature, the distance of the steel from the axis increases to
352 mm at the belt centre.)

The sidewall geometry is less straightforward to measure. The first consideration is the location of the rim ‘end’ which,
due to the constraining effect of the rim cannot simply be taken as the bead. Instead, we define it to be at the intersection
of the radial plies and the top of the rim protector, or ‘chafer’, region. This sets the sidewall height, Hs, and rim inwards
displacement, dr , where (see Fig. 4)

Hs ¼ Rs½sinfbþsinfr�; dr ¼ Rs½cosfb�cosfr �: (72)

The angles fb and fr are now determined once Rs is known. This parameter is left adjustable. The measured values of Hs

and dr are given in Table 1.

4.1.2. Mass parameters

The belt mass density, M, can be found by weighing a cut piece. The corresponding sidewall parameter, Ms, is less easily
accessible, because the sidewall arc length ls ¼ RsðfbþfrÞ is hard to determine with accuracy. We therefore specify the
product Msls, the sidewall mass per unit belt circumference, which is estimated using a sidewall piece obtained from two
radial cuts. The values found for M and Msls are given in Table 1.

4.1.3. Mean tensions

The circumferential tensions in both belt and sidewall have already been defined in terms of the inflation pressure, pi,
and the respective radii of curvature. The axial belt tension, si, however, remains undetermined. At this point, we recall the
deferred issue of steady force continuity at the belt/sidewall junction. This condition implies that

si ¼ tssinfb ¼ piRssinfb; (73)

i.e. the axial tension is the inflation pressure multiplied by approximately half the sidewall height. The exact value will
thus depend on the adjustable parameter Rs but, for the test inflation pressure of 2.2 bar, it is approximately 11 kN m�1.
This is markedly lower than estimated by Andersson and Larsson [5], who use 42 kN m�1 (a value taken equal to the
circumferential tension, which itself is tuned to fit their data, and hence is lower than expected for their tyre radius) for the
first bending branch, 88 kN m�1 for the second and 63 kN m�1 for the third.

There remains an unbalanced steady radial component tscosfb. We view the associated belt stress and strain fields as
perturbations to the mean state defined in Section 2. The linearity of our formulation then implies that this steady solution
is independent of the vibrations, i.e. the two are simply superposed. Our unsteady measurements thus pick out solely the
vibrational solution developed in Section 2.3.

4.2. Adjustable parameters

One geometrical parameter, the sidewall radius, was left variable in the preceding section; once set, its value
determines the axial belt tension, si, and the sidewall angles (fr ;fb), mass per unit area ðMsÞ and tension (ts). This leaves
the elastic constants for the belt and sidewall as the other parameters to be found on the basis of comparison with
experiment.
Table 1
Parameters fixed by physical considerations.

Belt width, b (m) 0.201

Belt radius, R (m) 0.346

Sidewall height, Hs (m) 0.104

Sidewall rim displacement, dr (m) 0.002

Belt mass density, M (kg m�2Þ 19.2

Sidewall mass density, Msls ðkg m�1) 0.788

Inflation pressure, pi (N m�2) 2:2� 105

Belt mean circumferential tension, ti ðN m�1Þ 76 100
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First, we must address the hitherto-neglected issue of damping. Damping is represented by adding an imaginary loss
factor to the elastic constants, e.g.

aðcÞ22 ¼ a22ð1þ iZaÞ: (74)

In order to allow for different damping mechanisms in extensional and bending motions, we also introduce Zb, which
applies to the elastic constants b11, b22, b12, h12, and to the belt tensions, ti and si. Similarly, Zas and Zbs apply to the
corresponding sidewall parameters, as and ts. Lastly, the sidewall circumferential stiffness, ky, has loss factor Zy.

We now describe a systematic approach to estimating the variable parameters. This starts with the sidewall
circumferential stiffness, then considers the loss factors, then derives a workable set of elastic parameters assuming
isotropy, next sets the sidewall radius, and finally introduces anisotropy. Note that our formulation, in principle, admits
frequency dependence in these parameters, a phenomenon that is known to be important in rubber. Nonetheless, to fulfil
our aim of minimising the number of empirical variables, we choose to keep them constant. This approach may be partially
justified on the basis that the frequency dependence in the stiffer belt elements (steel and cords) is likely to be less
significant. However, it must finally stand or fall by the success of the model’s predictions.

4.2.1. Sidewall circumferential stiffness

Fig. 8 shows the transfer function between circumferential forcing and circumferential response at the same location.
The resonance peaks for the first three Fourier orders have been identified by reference to the relative phases of this, the
903 and the 1803 transfer functions. The n¼ 0 peak corresponds to the (almost) rigid-body rotation mode analysed in
Appendix A. Its frequency is 53.5 Hz. Although the associated value for ky depends on g12, h12 and si, the values that we
subsequently find for these parameters imply that it is close to the rigid-body limit given by Eq. (86), i.e.
ky ¼ 2:2� 105 Nm�2. This is a factor of 10 smaller than the typical static radial stiffness found in Section 2.2.2,
confirming our earlier assertion to this effect.

4.2.2. Loss factors

A standard characterisation of damping is via the ‘half-power bandwidth’, Df=f0, where f0 is the frequency of a
resonance peak, and Df is its half-power width; i.e. the frequency range over which its amplitude is greater than 1=

ffiffiffi
2
p

times the peak height. It is straightforward to show that this characterisation is linked to the loss-factor representation,
Eq. (74), by Df=f0 ¼ Za. Approximate estimates of the loss factors are thus straightforward to obtain from the measured
transfer functions. For example, the ‘rigid-body rotation’ peak identified in Fig. 8 yields a damping factor Zy ¼ 0:04. The
other damping factors are not as unambiguously associated with specific resonances so, at this stage, they are all assigned
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Fig. 8. Central circumferential response to circumferential forcing at the same location. Fourier orders associated with resonance peaks have been

identified from phases of the corresponding response at 903 and 1803 separation. (Note expanded frequency scale.)
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the same value. Since our measured half-power bandwidths typically lie in the region 0.06–0.09, we set Za ¼ Zb ¼

Zas ¼ Zbs ¼ 0:075.

4.2.3. Circumferential bending stiffness

Perhaps the most salient feature of the experimental frequency-wavenumber plot (Fig. 7) is the first bending branch.
At higher values of n, one would expect this to be dominated by stiffnesses associated with circumferential variations, and
to be independent of curvature. In this case, Eq. (20) reduces to the flat-plate result

Mo2 ¼ b22
n

R

	 
4

þti
n

R

	 
2

: (75)

As the only unknown parameter here is b22, it is possible to seek the value that most closely matches the measurements.
Fig. 7 shows the resulting curve, overlaid on the experimental map, for b22 ¼ 16 Nm. Once the stiffening effect of curvature
is no longer evident (from about n¼ 9 upwards), the match is excellent. (One could argue that the frequencies are slightly
overpredicted for nZ20. Since, however, this is a region where rotational inertia might be expected to bring measured
values below the theory, this discrepancy was tolerated for the sake of optimum agreement in the n¼ 10215 range.)

4.2.4. Extensional stiffnesses

In Appendix A, it is shown that the ‘breathing’ frequency is approximately determined by the extensional stiffness
parameters a22, a12 and a11. Since the analysis is not exact, we choose their values by matching the calculated and
measured breathing peaks. This approach necessitates a provisional complete parameter set. It is provided by assuming
that the isotropic relations (14), (15) between the elastic constants apply, and that the effective Poisson’s ratio is 0.4
(a value taken from experiments on uniaxial composites with components representative of those in a tyre belt [20]).
The sidewall extensional stiffness is set equal to a11, with Zas ¼ Za. Finally the sidewall radius is set equal to the sidewall
height, 0.104 m (implying that fr and fb are about 303). This leaves two free variables for the matching: a22 and Za.

Fig. 9 shows the experimental and (matched) numerical results for n¼ 0, the latter with a22 ¼ 15� 106 Nm�1 and
Za ¼ 0:1. It has proved possible to reproduce the height, location and breadth of the breathing peak with remarkable
fidelity. The higher peaks, on the other hand, are currently not well predicted.

At this stage, we can consider the accuracy of the breathing frequency estimates of Section A.3. Neglecting the sidewall
impedance in Eq. (93) gives 373 Hz, while representing it with the full sidewall mass gives 314 Hz. One would expect these
estimates to bound the observed value. In fact, the latter is 376 Hz. This is because the experimental peak is a merger of the
‘true’ breathing resonance with the next n¼ 0 resonance. (We assert this for two reasons: first, numerical simulations for
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Fig. 9. n¼ 0 component of frequency-wavenumber map: —, measured; – –, calculated. Variable parameter values: as ¼ a11 ¼ a22 ¼ 15� 106 N m�1,

a12 ¼ 6� 106 N m�1, g12 ¼ 4:5� 106 N m�1, b11 ¼ b22 ¼ 16 N m, b12 ¼ 6:4 N m, h12 ¼ 19:2 N m, Za ¼ Zas ¼ 0:1, Zb ¼ Zbs ¼ 0:075, Zy ¼ 0:04, Rs ¼ 0:104 m.
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Fig. 10. n¼ 1 component of frequency-wavenumber map: —, measured; – –, calculated ðRs ¼ 0:095 mÞ; – � –, calculated ðRs ¼ 0:104 mÞ. Other variable

parameters as Fig. 9.

Fig. 11. Comparison of measured (left) and calculated (right) frequency-wavenumber maps, for isotropic parameter set. Variable parameters as Fig. 9

except for Rs ¼ 0:095 m. Greyscale levels correspond to Fig. 7.
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Fig. 12. Comparison of measured (left) and calculated (right) frequency-wavenumber maps for isotropic parameter set and reduced sidewall mass.

Variable parameter values: as ¼ a11 ¼ a22 ¼ 14:8� 106 N m�1, a12 ¼ 5:9� 106 N m�1, g12 ¼ 4:4� 106 N m�1, b11 ¼ b22 ¼ 16 N m, b12 ¼ 6:4 N m,

h12 ¼ 19:2 N m, Za ¼ Zas ¼ 0:1, Zb ¼ Zbs ¼ 0:075, Zy ¼ 0:04, Rs ¼ 0:095 m. Sidewall mass scaled by 0.66. Greyscale levels correspond to Fig. 7.

Fig. 13. Comparison of measured (left) and calculated (right) frequency-wavenumber maps for anisotropic parameter set. Variable parameter values:

as ¼ a11 ¼ 2:9� 106 N m�1, a22 ¼ 20� 106 N m�1, a12 ¼ 4:7� 106 N m�1, g12 ¼ 8:8� 106 N m�1, b11 ¼ 13:5 N m, b22 ¼ 16 N m, b12 ¼ 6:4 N m, h12 ¼ 19:2 N m,

Za ¼ Zas ¼ 0:1, Zb ¼ Zbs ¼ 0:075, Zy ¼ 0:04, Rs ¼ 0:095 m. Sidewall mass scaled by 0.66. Greyscale levels correspond to Fig. 7.
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Fig. 14. Radial/radial transfer functions for central response to central forcing at varying azimuthal separations (labelled): —, measured; – –, calculated

from map of Fig. 13.
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lower a22 values show two peaks; second, there is only one n¼ 0 peak associated with the first two bending branches
visible in Fig. 7.) This feature may well be specific to our particular tyre. In any case, the predicted resonance frequencies
are sufficiently accurate to justify the use of Eq. (93) in obtaining an initial estimate of a22 for the fitting process.
4.2.5. Sidewall radius

The main influence of the sidewall radius is on the static sidewall stiffness, which was shown in Section 2.2.2 to be
highly sensitive to the sidewall angle. In turn, we expect the sidewall stiffness to be most significant for (almost) rigid-body
belt motions. The particular instance that is visible in measurements of belt radial velocity is the ‘bounce’ mode, with n¼ 1.
This mode is visible in the experimental map at 87 Hz, and the sidewall radius is set so that the calculated location is
identical. The predominance of sidewall flexure in this motion implies that its damping is determined by Zbs, which is thus
also set at this stage.

Fig. 10 shows the measured and calculated map components for n¼ 1. Two calculated curves are plotted, the first for
the original choices of Rs and Zbs (0.104 m and 0.075) and the second for the matched values (0.095 m and 0.075). Again,
excellent agreement with the target peak is achieved, but higher peaks are not well reproduced. In particular, the second
resonance frequency is under-predicted. This discrepancy is not confined to the n¼ 1 component, as can be seen from
Fig. 11, which compares the experimental and predicted maps for the parameter set at this stage (using the same greyscale
levels as Fig. 7); the second symmetric bending branch sits between 300 and 400 Hz for n up to about 8, while its predicted
location is at 300 Hz or slightly below.

While it is tempting to ascribe the error to the assumption of isotropy in determining the elastic constants, numerical
investigations suggest that this is not the case; with a22�a2

12=a11 held fixed (to maintain the breathing frequency match) it
has been found impossible to shift the branch up significantly. It is, however, sensitive to the value of the sidewall mass;
Fig. 12 shows the comparison with experiment when Ms is reduced by a factor of 0.66 (chosen so that experimental and
calculated peaks match at n¼ 1 and 2) and a22 is reduced from 15� 106 to 14:8� 106N m�1 to preserve the breathing peak
location. Although there remain differences for n¼ 3 and above, the agreement is much better. Justification for reducing
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Fig. 15. Comparison of measured (left) and calculated (right) frequency-wavenumber maps; radial response 6 cm off centre to radial forcing at centre.

Parameters as Fig. 13. Greyscale levels correspond to Fig. 7.
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the sidewall mass may be provided by the observation that it is non-uniformly distributed, with maximum thicknesses
near the ends, which will be less involved in the relevant motions. An estimate of the effective mass reduction expected on
the basis of the static displacement shape found in Section 2.2.2 is made in Appendix B. The value found is 0.92. Although
imperfect, this calculation is an improvement on the original assumption, and might thus be of use for purely predictive
application of the model.

The calculated map of Fig. 12 represents the best agreement found under the isotropic assumption. Up to 500 Hz, it is
generally good and, indeed, might well be satisfactory for modelling purposes without further refinement. However, it is
clearly deficient in two important respects: the frequencies of the higher bending branches are grossly over-predicted, and
the in-plane ‘wedge’ is effectively absent. We therefore now consider whether better agreement is possible if a12, a11, g12,
b11, b12 and h12 are no longer linked to a22 and b22 by the isotropic relations.
4.2.6. Anisotropic elastic constants

The starting point for this stage is the (empirical) observation that the n¼ 0 peak at 540 Hz is essentially unaffected by
the values of a11, a12 and a22 as long as a22�a2

12=a11 is maintained constant. The only remaining elastic parameter in the
n¼ 0 equations is b11, which is accordingly set so that the experimental peak location (at 520 Hz) is matched. This leads to
a reduction in b11 from 16 to 13.5 N m.

On the other hand, a11, a12 and a22 are found to have a significant effect on the n¼ 1 peak between 400 and 500 Hz. It is
thus possible to find a series of ða22; a11; a12Þ sets that satisfy the breathing frequency matching condition,
a22�a2

12=a11 ¼ 12:4� 106N m�1, and also place this peak at its experimental location (450 Hz). Furthermore, with any of
these sets the calculation now reproduces the in-plane wedge. However, at lower values of a22, the dip in the second
symmetrical bending branch around n¼ 5 becomes more pronounced, while at higher values the third symmetrical
bending branch is overly stiffened. The set a22 ¼ 20� 106 Nm�1, a11 ¼ 2:9� 106 Nm�1, a12 ¼ 4:7� 106 Nm�1 was found to
provide a reasonable compromise.

The remaining in-plane elastic parameter, g12, was now found to have little influence. Doubling it from its original value
of 4:4� 106 Nm�1 did, however, slightly mitigate the second branch dip; a further doubling had no effect. It was thus set to
8:8� 106 Nm�1.

Finally, the dependence of the map on the bending stiffnesses b12 and h12 was found to be imperceptible when they
were increased or decreased by a factor of 2. They were therefore left at their original values, b12 ¼ 6:4 Nm and
h12 ¼ 19:2 Nm.
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Fig. 16. Radial/radial transfer functions for off-central response to central forcing at varying azimuthal separations (labelled): —, measured;

– –, calculated from map of Fig. 15.

C. Lecomte et al. / Journal of Sound and Vibration 329 (2010) 1717–1742 1737
Fig. 13 shows the new comparison with experiment. The most successful development is the emergence of the in-plane
wedge. The drop in the third branch due to the reduction of b11 is offset by a rise due to the increase in a22, so it is still
somewhat high for nZ4. Meanwhile, the increased second branch dip makes its agreement slightly worse than in the
isotropic case.

In summary, although the anisotropic parameter set clearly reproduces the overall topology better, one would
still question its accuracy above 500 Hz, while below 500 Hz it is not obviously superior to the isotropic set. Nevertheless,
in this region, the agreement with experiment is good, particularly bearing in mind the correspondence in absolute
levels.
4.2.7. Individual transfer functions

To assess the quality of the final fit more carefully, it is useful to compare specific transfer functions. Fig. 14 shows
measured transfer functions for a range of angular separations between forcing and response, along with the predictions
from the calculation (obtained from an inverse discrete Fourier transform over orders n¼ 0236).

At 03 separation (i.e. the point mobility) the agreement is good up to about 300 Hz, after which discrepancies are evident
in both magnitude and phase, with the experimental results showing more lag. In comparison, Andersson and Larsson’s
model [5] exhibits better fidelity in this region, but significant errors around their first resonance peak. Meanwhile
Pinnington [11] finds agreement similar to ours, though still with some discrepancy at the first resonance.

Similar divergences above 300 Hz are found for responses away from the excitation point, and these can amount to
much larger percentage differences in magnitude. In absolute terms, however, the errors are lower than the 03 case. Phase
lags are consistently under-predicted for the 453 and 903 separations, but not at 1803. There is also some evidence of
systematic over-prediction in magnitude at the higher frequencies. Both Andersson and Larsson and Pinnington give only
one example of such a response; each of these similarly shows much greater percentage errors than its respective point
mobility.
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Fig. 17. Comparison of measured (left) and calculated (right) frequency-wavenumber maps; radial response 6 cm off-centre to radial forcing at same

offset. Parameters as Fig. 13. Greyscale levels correspond to Fig. 7.
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4.3. Other excitation/response combinations

Having specified a parameter set to match the case of central excitation and response, we now consider how well this
set predicts two cases not used in the fitting. Fig. 15 shows the measured and predicted frequency-wavenumber maps for
off-centre response to central forcing; samples of the corresponding transfer functions are given in Fig. 16. Figs. 17 and 18
present the same results for both forcing and response off centre.

The first noteworthy point is that overall levels, judged on the basis of the region to the right of the first bending branch,
are again well predicted. Qualitative changes in the topology of the maps—specifically the near-absence of the second
symmetric bending branch in both cases, and the appearance of two asymmetric bending branches for off-centre
forcing—are also well reproduced. The discrepancies that can be observed in the maps correspond to those in Fig. 13, i.e.
under-predicted resonance frequencies in the region 300–400 Hz, n¼ 5210, and fewer bending branches than measured
above 600 Hz. Finally, the magnitude over-prediction seen at high frequencies in the transfer mobilities of Fig. 14 is evident
in Figs. 16 and 18 as well.
4.4. Discussion

In the light of the frequency-wavenumber map comparisons, it is clear that our model captures the main physical
features of the tyre vibration in this frequency range. Of the two discrepancies identified above, the over-prediction of
bending resonance frequencies above 600 Hz is probably due to the neglect of belt thickness. A third wave type is unlikely
yet to be cut on, but rotational inertia may well be important, and its inclusion would tend to lower the predicted bending
branches in this region. In contrast, accounting for the frequency dependence of rubber stiffness would have the opposite
effect.

The other discrepancy is the under-prediction of resonance frequencies between 300 and 400 Hz, for n¼ 5210. Given
the observed influence of the sidewall mass correction, we suggest that the sidewall model may be insufficiently stiff in
this region. If so, a two-dimensional model, including circumferential curvature, may be called for. The addition of bending
stiffness is less likely to be beneficial, as it would affect lower wavenumbers too. Further investigation of this area is clearly
necessary.

Likewise, the high-frequency transfer-mobility magnitude errors could, perhaps, be reduced by further model
development. Here, we regard the introduction of frequency dependence into the loss factors as a promising approach.
This, however, will only be attempted if we find that these errors have a significant effect on tyre rolling simulations.
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Fig. 18. Radial/radial transfer functions for off-central response to off-central forcing at varying azimuthal separations (labelled): —, measured;

– –, calculated from map of Fig. 17.
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Compared to the Kropp group’s formulation [4,5], the improved low-frequency fidelity is a clear advantage in the
context of our project. Both models require comparison with experiment in order to set their adjustable parameters
properly; for design studies, however, ours has the advantage that several key parameters—circumferential tension,
sidewall radius, sidewall tension, axial tension—can be set a priori. Depending on the application, this benefit might
outweigh its poorer accuracy at the higher frequencies.

Less clear performance differences are evident when comparing the predictions of our model and Pinnington’s [11].
Although we would hope that our more rigorous treatment of belt/sidewall coupling would lead to better accuracy when
using elastic parameters derived a priori, rather than empirically, we have not yet reached the stage where this is possible.
(Preliminary calculations, using laminar composite theory [21], showed significant differences from the values found here.)
Thus, at present, the practical benefits are restricted to the reduction in adjustable parameters, due to the simpler belt and
sidewall representations.

Finally, our model must also be assessed in the light of the excellent results attainable at the same frequencies by
waveguide FEA [3]. These, however, require calculations on the order of an hour [3], as opposed to minutes. They also
require detailed geometric and elastic parameter information that may not be available at the early stages of vehicle
design. Even if it is, the use of a simpler model can provide a designer with valuable physical insight. Thus, although our
approach cannot compete in detail accuracy, we believe that it represents a useful complement to FEA analyses.

5. Conclusions

In this paper, we have presented a new theoretical model for tyre vibrations, intended mainly for the 0–500 Hz range.
The new model represents the tyre geometry and material properties more realistically than previous, similar
contributions to the literature, while attempting to maintain their useful simplifying assumptions. As a result, many of
the important model parameters can be calculated a priori, given knowledge of the tyre’s basic geometry, mass distribution
and inflation pressure.
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Nonetheless, there remain some parameters that can only be identified via comparison with experimental data.
(Of these, the most important are the belt in-plane and bending stiffnesses, and the associated damping factors.) We have
therefore developed a systematic approach to their estimation, based on frequency-wavenumber decomposition of the
radial response to radial point forcing.

The results show good correspondence between theory and experiment up to about 300 Hz, and fair agreement up to
1 kHz. The main discrepancies can be classified under two headings: (i) under-predicted higher-mode resonance
frequencies between 300 and 400 Hz; and (ii) over-predicted resonance frequencies for all flexural modes above 600 Hz.
The former may be due to the neglect of circumferential curvature in the sidewall representation, while the latter
is probably associated with the influence of rotational inertia in the real belt motions. Overall, though, the fidelity
of the model is sufficient to encourage its use in tyre rolling simulations, and this will be the immediate focus of our future
work.
Acknowledgements

It is a pleasure to recognise the help and support of our co-workers on this project: Andy Bridgwater, Edwin
Deerenberg, Malcolm Hardy, Jan Leyssens, Feiyang Liu, Dave Marshall, Nigel Taylor, Michael Sutcliffe and Frederic Wullens.
We have also had useful discussions on shell theory with Paul Barbone, Ann Dowling, Greg McDaniel and Jim Woodhouse.
The work is funded by the UK Engineering and Physical Sciences Research Council (Grant EP/D011035/1) and by Jaguar
Cars Ltd.

Appendix A. The axisymmetric modes of motion

A.1. Introduction

Although the belt governing equations presented in this paper do not admit a general analytical solution, useful
progress can be made when there is no rotation and the motions are axisymmetric. In this case, unforced vibrations
correspond to solutions of the form ½u v w� ¼ ½ûðlÞ v̂ðlÞ ŵðlÞ�eiot . The equations of motion, (18)–(20), become

Mo2þa11
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" #
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a12
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dŵ
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and the boundary stress resultants, (21)–(24), are now given by
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þ
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 !
ô

" #
eiot ; (81)

rw ¼ b11
d2ŵ

dl2
eiot : (82)

(Here, as for the general case, the constant contribution to fu has been omitted on the basis that it is associated with the
equilibrium boundary loading.) These equations exhibit the unique feature of the axisymmetric motions: azimuthal
displacements are decoupled from radial and axial. We start by considering the former.

A.2. Azimuthal motions

The mode of interest for the parameter identification procedure is the lowest, which will be symmetric about l¼ 0.
The solution to Eq. (77) that has this form is

v̂ðlÞ ¼ V̂ coskvl; (83)
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where V̂ is an arbitrary constant, and

k2
v ¼

Mo2

g12þ
9h12

16R2
þsi

: (84)

The sidewall boundary condition is fv ¼ 8kyv at l¼ 7b=2, so

g12þ
9h12

16R2
þsi

� �
kvtan

kvb

2

� �
¼ ky; (85)

which (implicitly) specifies the resonance frequencies of the symmetric azimuthal modes. If kvb=251, this equation
approximates to

Mo2 ¼
2ky
b
; (86)

which corresponds to pure rigid-body oscillations. Alternatively, given an observed first resonance frequency, kv follows
from Eq. (84), and Eq. (85) then provides the value of ky that is needed.

A.3. Radial and axial motions

We are again concerned with the lowest resonance frequency, and thus make the assumption that the variation in ûðlÞ

and ŵðlÞ across the belt is small. They can then be expressed as series in ascending powers of l. For the symmetrical
response that we seek, these take the form

ûðlÞ ¼
X1
n ¼ 0

û2nþ1l2nþ1; ŵðlÞ ¼
X1
n ¼ 0

ŵ2nl2n: (87)

An approximate solution follows by solving the system of equations to leading order. For Eq. (76) the OðlÞ terms give

Mo2û1þ6a11û3þ2
a12

R
�pi

	 

ŵ2 ¼ 0; (88)

while for Eq. (78), the Oð1Þ contribution is
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We represent the sidewall as a complex stiffness, approximated as zero in the axial direction, i.e. at l¼ b=2 we have
fu ¼ 0, fw ¼�zrw and rw ¼ 0. To leading order, these conditions become

a11û1þ
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ŵ2 ¼ 0: (92)

These three equations allow us to express û1 and ŵ4 in terms of ŵ0, and the resonance frequency then follows directly
from Eq. (89):
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2
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b
: (93)

If zr is set to zero, the (negligible) inflation pressure terms neglected, and the isotropic forms for the stiffnesses substituted,
this expression corresponds to that given by Calladine [22] for the ‘ring frequency’ of a narrow, isotropic cylinder.
For non-zero zr , the sidewalls represent an additional, distributed stiffness 2zr=b, corresponding to ‘smearing’ their
contributions over the belt width.

In our example, the breathing resonance is above the first sidewall resonance frequency (calculated, from extension to
dynamic motions of the analysis in Section 2.2.2, at 255 Hz), so zr will be negative, representing additional mass. As an
upper limit, one could assume all the sidewall mass to be added, in which case 2zr=b¼�2Mslso2=b. For the parameters
in Table 1, 2Msls=b is 7:8 kg m�2, while M is 19:2 kg m�2. The accuracy of our approximation with these values is discussed
in Section 4.2.4.

Appendix B. Estimation of the effective sidewall mass

In Section 4.2.5, better agreement with experiment was found when the sidewall mass density was reduced from its
measured value. It was argued that non-uniformity in the sidewall thickness was responsible for this effect.

To define an effective mass density for the sidewall, we require the kinetic energy of the equivalent, uniform-thickness
sidewall to match that of the true, non-uniform sidewall in a given motion. At a given frequency, this condition implies a
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Table 2

Measured sidewall thickness, hs , as a function of arc length, l.

l (mm) 0 5 15 25 35 45 55 65 75 85 95 105 110

hs (mm) 15 13 10 8 7 6.5 6 6.5 6.5 7 7 9 10
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ratio of equivalent to actual mass density of

ðfbþfrÞ
Rfb

�fr
hsðfÞrsðfÞd2

s ðfÞdfRfb

�fr
hsðfÞrsðfÞdf

Rfb

�fr
d2

s ðfÞdf
; (94)

where hsðfÞ is the sidewall thickness and dsðfÞ its displacement. The variable rsðfÞ is the distance of the sidewall from the
tyre axis; it arises because the volume of sidewall per unit belt circumferential distance decreases towards the rim, and is
given by

rs ¼ R�Rsðsinfb�sinfÞ: (95)

The measured sidewall thickness, as a function of arc length l (from rim to belt) is given in Table 2. Note that the total
measured arc length, ls, is 110 mm; if this condition were added to the constraints in Section 4.1.1, Rs would no longer be an
adjustable parameter, and would be 95.5 mm (with fr ¼ 34:13, fb ¼ 31:93), remarkably close to the fitted value. However,
small variations in ls correspond to much larger changes in Rs and f, so it was decided not to rely on this measurement for
parameter estimation. For the current calculation, we set Rs ¼ 95 mm and fr ¼fb ¼ 33:23. The displacement is approxi-
mated by the static results for a symmetrical sidewall, Eqs. (43)–(46), with the small term piRs=as neglected. The integrals
in Eq. (94) were estimated via Simpson’s rule, with discretisation corresponding to the measurements, giving a value
of 0.92.
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