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1. Introduction

In the past decade, nano-structured materials have gained significant importance from a technological point of view for
the wide range of engineering applications that require high levels of structural performance and multi-functionality.
Interest has been growing continuously towards carbon nanotubes (CNTs) which, by virtue of their mechanical, thermal
and electrical properties, have the potential to become the building blocks of a new generation of composite materials. The
hosting matrix of the composite materials can comprise elastomeric materials or resins (e.g., epoxy), or cementitious
materials as for high-performance fibre-reinforced cementitious composites. In [1] the addition of 1 phr (part per hundred
parts of resin) of multi-walled carbon nanotubes (MWCNTSs) in a styrene-butadiene copolymer resulted into a 45 percent
increase in the elastic modulus and a 70 percent increase in the tensile strength. All the gathered experimental data further
showed that the orientation of the nanotubes plays a major role in the mechanical reinforcement.

Here, the primary focus is on the free vibrational properties of these materials which allow to predict and interpret both
the equilibrium and dynamic response, also in the nonlinear regime.

It has been widely recognised that different methodologies must be concurrently integrated to model properly complex
nano-structured materials. This idea has mostly led to multi-scale approaches whereby a hierarchical combination of

* Corresponding author: Tel.: +39644585293; fax: +3964884852.
E-mail address: walter.lacarbonara@uniromal.it (W. Lacarbonara).

0022-460X/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j,jsv.2009.11.020


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.11.020
mailto:walter.lacarbonara@uniroma1.it

1876 G. Formica et al. / Journal of Sound and Vibration 329 (2010) 1875-1889

continuum mechanics and molecular dynamics simulations is exploited to investigate the interplay between the
macroscopic elastic features and the nano-structure. At the nano-structural level, the carbon nanotube constituents and
their interactions with the matrix are described by introducing the proper constitutive equations at the molecular level.
Most of the equivalent continuum approaches rely on the results of the Eshelby theory [2,3] complemented by several
attempts of generalisation to heterogeneous bodies. In all of these theories, the interface between the hosting material and
the embedded inhomogeneities (fibres, particles, carbon nanotubes, voids, and so on) plays a crucial role both on physical
and mathematical grounds [4,5].

The major step towards modelling materials with fully dispersed inhomogeneities was undertaken by Mori and
Tanaka [6]. In particular, they accounted for the presence of multiple inclusions and boundary conditions and their
interactions. In [7] the homogenisation procedure, based on the Eshelby theory, under small deformations and small
volume fractions of the embedded phases, has been used to determine the bulk and shear moduli and Landau coefficients
of the composite material. Previous studies had established the validity of the Eshelby-Mori-Tanaka approach
in determining the effective properties of composites reinforced with short, misaligned, carbon fibres, and with
carbon nanotubes [8-11]. In [12] an approximate closed-form micro-mechanics model was proposed for estimating the
effective elastic modulus. The model accounted for the nanotube curvature and length, and random dispersions of the
nanotubes.

A few studies have addressed some aspects of the vibratory behaviour of CNTs and their composites. Among
these aspects, it is worth mentioning modelling and simulation of vibrating nanotubes, studies of nano-mechanical
resonators and oscillators, the use of vibration measurements to characterise the nanotube mechanical properties, the
nanotube-induced enhancement of dynamic structural properties of composites, vibrations of nanotube-based sensors and
actuators [13].

In particular, the enhanced damping properties of CNT-reinforced polymer composites have attracted a great deal of
attention. The interfaces between nanotubes and polymer matrix, that turn out to be order of magnitude greater than those
of traditional composites, may exhibit interfacial slippage that can cause high mechanical damping [14]. In [15], free and
forced vibration tests were conducted on samples. They observed that the enhancement in damping ratio (up to 700
percent increase for MWCNT-epoxy beam as compared to the plain epoxy beam) is more important than enhancement in
stiffness. Multi-walled nanotubes were observed to be a better reinforcement than single-walled nanotubes (SWCNTSs).
Similar results were obtained in [16], where the enhanced performance in terms of Young’s modulus and wave
propagation velocity has been numerically tested on the basis of an equivalent Euler-Bernoulli beam model derived from
the Eshelby-Mori-Tanaka homogenisation procedure.

In this work, we present a theoretical and computational model for the elastodynamic response of CNT-reinforced
composites that is employed to investigate the elastic properties of the resulting nano-structured materials when the
hosting matrix is made of epoxy, rubber or concrete. By FE discretization of the constructed equivalent continuum model,
we carry out a study of the vibrational properties of the composite plates, both from a global and a local point of view. In a
global sense, we characterise the dependence of the frequencies on the volume fraction and on the alignment of the CNTSs.
From a local standpoint, we study the localisation patterns of the modal energy in terms of the distortional part of the
elastic modal energy associated with the von Mises stresses. This study aims to highlight the way the energy may be
optimally dissipated in the different vibration modes. At the same time, possible failure mechanisms under sustained
vibrations are outlined as a by-product of the study.

The paper is organised as follows. In Section 2, we present the equivalent continuum model; in Section 3, extensive
comparisons of the equivalent continuum model with the full three-dimensional theory are carried out for a reference
volume element; in Section 4, the effective Young moduli are compared with existing experimental results. Section 5
summarises the studies about the dependence of the elastic properties of the composites on the alignment of the CNTs.
Section 6 presents the most significant aspects of the modal properties of cantilevered CNT-reinforced plates made of
epoxy, rubber, and concrete. In Section 7, the conclusions are drawn.

2. Equivalent continuum model

The equivalent continuum model is based on a low volume-fraction of cylindrical inhomogeneities, representative of
the CNTs, embedded into a linearly elastic isotropic matrix.

There are different approaches to devising such a model, as shown in several works dealing with the general problem of
equivalent continuum characterisation of composite materials where the inhomogeneities can be fibres or particles or
defects [4]. Broadly speaking, there are two leading approaches. One approach formulates the configurational forces acting
at the interface between the two materials. The second approach, widely used in computational schemes, carries out
directly a characterisation of the continuum (macroscopic) elastic response on the basis of suitably assumed stress and
deformation patterns [4,10].

The nano-structured composite material is made of two domains, By, (hosting matrix) and B¢ (CNTs) such that B= By U
Bc is the reference configuration of the composite material. A representative quantity of the relative sizes of the two
domains is the volume fraction n¢ = V¢/V, where V¢ is the volume of CNTs, and V is the volume of the overall composite
material. Thus the volume fraction of the hosting matrix is ny =1-nc.
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The proposed model is framed within the Eshelby theory for elastic inclusions. The original theory of Eshelby [2,3] is
restricted to one single inclusion in a semi-infinite elastic, homogeneous and isotropic medium. The theory, generalised by
Mori and Tanaka [6], allows to extend the original approach to the practical case of multiple inhomogeneities embedded
into a finite domain [17]. In both cases there is an apparently similar but different definition of the Eshelby tensor,
which depends on how the stress distribution, caused by the eigenstrain due to the inclusion, is described in the hosting
matrix (see [18,19] for more details). When the equivalent elastic properties are considered to be independent on such
an eigenstrain field, the simplest way to account for the presence of the inhomogeneities is to consider averaged strains
and stresses.

Within this framework, let the elastic tensor for the matrix be Ly, and that for the CNTs be L¢. The constructed theory
leads to a macroscopic equivalent elastic constitutive equation for the composite material in the form

T(x)=T®E)=L:Ex), xecB (1)

where the stress tensor T and the infinitesimal strain tensor E are the tensor-valued quantities describing the equivalent
elastic continuum at position x € B. The Gibbs notation is adopted; (:) indicates the inner product between tensors, and (-)
here and henceforth denotes the dot product.

Various sophisticated methods can be devised by tuning differently the influence of the material phases through the
volume fraction (for a deeper insight see [20]). The Eshelby-Mori-Tanaka approach, based on the equivalent elastic
inclusion idea of Eshelby and the concept of average stress in the matrix due to Mori and Tanaka, is also known as the
equivalent inclusion-average stress method. According to Benveniste’s revisitation [10], the following expression of the
effective elastic tensor is obtained:

L=Ly+nc{(Lc—Ly)-A> - [nyl+nc (A (2a)

A=[+S Ly - Lc—Ly)] ! (2b)

where I represents the fourth-order unit tensor; S is the fourth-order Eshelby tensor that is specialised to the case of
cylindrical inclusions representative of the CNTs and depends on their orientation; A is a fourth-order tensor referred to as
concentration factor; the brackets denote an average over all possible orientations of the inclusions.

In the computational implementation, the orientation of the CNTs is accounted for by rotating the elastic tensor of the
inclusions. This is achieved by introducing a suitable rotation tensor that acts on the Eshelby tensor S and then on the
equivalent elastic tensor L [21]. In particular, one can prove that rotating S results into the rotation of A. To parametrise
correctly the rotations, we considered two Euler angles only, (¢, ), excluding the immaterial spin rotation of the CNTs
around their axes. The simplest configuration for the nano-structured material is obtained when the nanotubes are
collinear with a unit vector, whence the material behaviour becomes transversely isotropic. In this case, the rotation tensor
is uniform throughout the domain: (A =A and {(Lc—Ly)-A)> =(Lc—Ly) - A. The ensuing equivalent elastic tensor is
uniform and is given by the expression

L=Ly+ncLc—Ly) - A- [nyI+nA]™! (3)

On the contrary, when the nanotubes are randomly oriented in space, suitable statistical distribution functions must be
used in the averaging process over the ranges of variation of the Euler angles.

3. Comparison of the equivalent continuum model with the full three-dimensional theory

The reliability of the equivalent continuum model is assessed considering a description of the elastic interactions
between the CNTs and the elastic matrix within the context of the full three-dimensional theory. To this end, some
paradigmatic loading conditions are imposed on a reference cylindrical cell made of two coaxial cylinders: an individual
CNT-SWNT(10,10) embedded into a cylindrical matrix of epoxy resin, as shown in Fig. 1. The mechanical parameters of the
two materials, taken from those available in the literature, and the cell geometric characteristics are reported in Table 1.
The computed stresses are normalised with respect to the Lamé constant of the epoxy resin, 1 =4.7 GPa; the lengths and
displacements are normalised with respect to the value of 8.5 nm, nearly 10 times the CNT radius, which can be considered
a sufficiently low value of CNT aspect ratio (i.e., the ratio between the CNT length and its diameter). In fact, some
preliminary numerical investigations showed that the enhanced properties of the composite material at the scale of such a
specimen cannot be appreciated as the aspect ratio increases towards the upper bound (i.e., 102—10%). Furthermore, the
performance of the homogenised continuum model can be investigated more effectively considering low aspect ratios, for
which the different properties of the equivalent continuum model are better emphasised with respect to the three-
dimensional elasticity treatment of the two materials.

Note that the FE analyses are performed assuming a compatible continuity in the displacement field across the surface
interface between the matrix and nanotubes. This is a plausible assumption since we are interested in the linear elastic
response away from de-bonding phenomena.
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Fig. 1. The reference cell.

Table 1
Reference cell characteristics.

Epoxy resin SWNT(10,10)
E (Young’s modulus) (GPa) 33 970
v (Poisson’s ratio) 0.4 0.28
G (shear modulus) (GPa) 1.18 450
(Average radius) (nm) 4.675 0.4675
(Thickness) (nm) 7.65 0.765
(Height) (nm) 34 34

By employing Voigt’s notation, the stress and strain tensors are described by the following six-dimensional algebraic
vectors:

T =[Ti1 T2 Ts3 To3 T3 Ti2] .

(4)
E" =[E11 Ex E33 Ex3 E13 Ena)

The compliance tensor M (=L7!) takes the standard form of an orthotropic material which preserves symmetries
with respect to an axis collinear with the nanotubes. Hence, the compliance elastic coefficients are M, =
]/Ek (k =1,2,3), IVIjk = —ij/Ek (]7’5](= 1,2,3), My = 1/G23, Mss = ]/613, Mg = 1/G12. This is due to the fact that both
the hosting matrix and the nanotubes are assumed to be isotropic materials; moreover, the nanotubes are cylindrical
inclusions. In consonance with various works supported by micro-mechanical modelling and experimental observations,
the independent elastic coefficients are usually well approximated by five equivalent independent elastic coefficients
(see for instance [17,16,9]). Actually, the nature of the twisted array of a SWCNT as a helical array is not completely
transversely isotropic. Therefore, to develop a more general framework, which may handle also random distributions, we
chose to consider the more general case of six independent elastic coefficients for the inclusions. In particular, in the
treated case of uniformly aligned CNTs, the plane of the resulting transverse isotropy is orthogonal to the CNT axis.
Therefore, the generic form of the elastic compliance matrix is simplified into an orthotropic symmetric representation
with respect to the CNT axis.

In the present benchmark case, the CNT axis is collinear with the es3- axis, hence E; = E;, v23 = vq3 and Gy3 = G,3. From
Table 1 the elastic coefficients of the equivalent orthotropic continuum are listed below:

E1 =E,=3.74GPa, E3 =9.42GPa, Vi3 =Vy3 = 0.399, v1,=0.56

Eq
A tvy) — 1.19GPa

The comparisons between the inhomogeneous cell (henceforth denoted in-cell) and the equivalent continuum cell
(denoted eg-cell) are in terms of non-dimensional total stored energy (recall that the stresses have been taken in their
ratios to 1 =4.7 GPa). The results are reported in Table 2.

We observe that the equivalent continuum model is capable of representing accurately uniform tests, without
appreciable differences with respect to the reference model. Local effects arising in the boundary layers occur mainly in the
torsional and shear displacement-driven tests. Obviously, such boundary layers can not be described by the equivalent

613562321.20613&, 6125
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Table 2
Non-dimensional total stored energy: comparison between inhomogeneous cell (in-cell) and equivalent continuum cell (eq-cell).

Displacement driven in-cell eq-cell Error (%)
Longitudinal 7.97 x 1073 7.98 x 1073 0.0
Radial (longitudinally constrained) 0.175 0.227 22.9
Radial (longitudinally free) 0.310 0.317 27
Torsional 50x 1074 57 %1074 123
Shear 852x107* 9.69 x 1074 121
Max: 7.00e-3
5 Max: 0.130
x10
7
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Fig. 2. Torsional test with the reference model: non-dimensional tangential stress distribution along the z-axis in (a) the hosting matrix and (b) in
the CNT.

continuum model that yields recognisable bounded differences. This point is emphasised in Figs. 2 and 3. The same result is
pointed out by the comparisons in the shear test of Fig. 4.

4. Comparison of the equivalent continuum results with existing experimental results

The approach illustrated in Section 2 has been employed to predict the effective elastic modulus of CNT-reinforced
nano-composites for which experimental data are available. To make these comparisons meaningful, it is essential
that the synthesis of the nano-composites is carried out with accurate control of the micro-structure of the composites.
In particular, special attention has to be devoted to the following aspects: homogeneous dispersion, efficient interfacial
stress transfer, and good alignment. One of the few works where these requirements seem to be well fulfilled is [22].
The SWNTs, produced by catalytic chemical vapour deposition, had diameters of about 1-2 nm and lengths of about 5-15
pm. We did not consider the case of functionalised SWNTSs since the functionalisation typically alters the mechanical
properties of the carbon nanotubes. On the contrary, we focused on pristine SWNTs, with a weight fraction equal
to 0.5 percent, which were uniformly dispersed into epoxy and aligned by means of a reactive spinning process. The
composites were characterised by optical and electron microscopy and tensile tests. The tensile tests delivered a Young
modulus of 3.47 GPa.

To carry out the calculation of the effective elastic modulus within our theoretical framework, we had to compute the
CNT volume fraction nc, one of the input data. We assumed the specific weights of 1.20 x 10> kg/m3 for the epoxy resin
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Fig. 3. Torsional test: comparison of non-dimensional tangential stress distributions (7) along the z-axis obtained with (a) the reference model and (b)
the equivalent model. For the sake of clarity, in plot (a) the actual range of 7 € [107%,0.13] was restricted to T € [1076,7 x 1073].
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Fig. 4. Shear test: comparison of non-dimensional tangential stress distributions along the z-axis obtained with (a) the reference model and (b) the
equivalent model. For the sake of clarity, in plot (a) the actual range of T  [-0.01,0.07] was restricted to 7 < [0,1072].

and 7.85/6 x 10° kg/m3 for the CNTs, respectively. The resulting CNT volume fraction turns out to be nc = 0.46 percent.
In agreement with the experimentally measured characteristics, in the numerical computations we employed the
following mechanical parameters: (E, v, A) =(2.35GPa, 0.4, 3.357 GPa) for the epoxy resin and (E,v) = (970 GPa, 0.28) for
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the CNTs, respectively. The thus calculated elastic modulus is 3.27 GPa which is only 5 percent lower than the
experimentally measured value.

5. Influence of the carbon nanotube alignment on the effective elastic properties

In this section, we summarise the results of the studies about the influence of the CNT alignment on the elastic
properties of the nano-structured composites. Fig. 5 shows the scheme of the performed computational tests in terms
of geometry, constraints, and loading conditions. The reference body is a plate-like three-dimensional body, subject
to a uniform uniaxial pressure on two opposite edges. The other two edges as well as the top and bottom surfaces are
stress-free.

We evaluated the apparent stiffness coefficient expressed as

T11(¢)
Eny

K@) =P~ L@+ P2 L)+ 22 Lis)+ P2 Lis() (5)
11 11 11

where ¢ denotes the angle between the CNT axis and the assumed loading direction e;. Fig. 6 shows the variation of
K11(¢,x)/K11(0,x) with the angle ¢. When ¢ = 0 all CNTs are aligned transversally to the loading direction while ¢ = 7/2
represents the case of uniform alignment with the loading direction. The test was numerically conducted using the
following mechanical parameters: (E,v)=(970GPa, 0.28) for the CNTs and (E, v, A) = (3.3 GPa, 0.4,4.7 GPa) for the epoxy
resin, respectively. The results, normalised with respect to the epoxy’s Lamé constant, show the predictable increase of
stiffness as the CNTs tend to be aligned with the loading direction. However, this increase is not monotonic. When the CNTs
are slightly rotated from the transverse direction by small angles ¢, the coefficient K;; decreases mildly. This is due to the
dependence of the apparent longitudinal elastic coefficient K;; on both the longitudinal and transverse elastic properties.
K11 decreases up to about ¢ =m/8; at the same time, the coefficient L,, decreases with a higher rate than the rate of
increase of L11. As shown in Fig. 7, the remarkable influence of such a type of Poisson’s effect caused by the orientation of
the transverse CNTs prevails over the longitudinal elastic properties.

6. Vibrations of carbon nanotube-reinforced composites

The free vibration properties of carbon nanotube-reinforced composites are investigated with a twofold objective: (i) to
unfold the fundamental modal properties—that generally allow to study and interpret the equilibrium and dynamic
response—and (ii) to determine the way the vibrational energy may be optimally dissipated in the vibration modes of the
CNT-reinforced composite. Specific sets of experiments encouraged these investigations: in [14], to cite only one, it has
been shown that, by embedding oxidised SWNTs into polycarbonate with 2 percent weight fraction, the loss modulus
(hence, the damping coefficient) increased by more than an order of magnitude ( > 1000 percent) with respect to the
baseline polycarbonate. However, this aspect will be the subject of a forthcoming paper.

First we investigated the effects of the CNTs volume fraction and alignment on the natural frequencies of three different
hosting materials, namely, epoxy (Epx), rubber (Ru), and concrete (Be). These materials are massively used in various
engineering fields. In particular, epoxy is used in the laminated composites of aeronautical structures, concrete is the most
widely used material in the civil construction industry. Vulcanised rubber, due to its high elasticity and strength arising
from the vulcanisation process, is used as baseline material in several industrial applications, especially as damping or
vibration-isolation material or as sealing material.

=1
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Fig. 5. Tensile test varying the CNT alignment.



1882 G. Formica et al. / Journal of Sound and Vibration 329 (2010) 1875-1889

(S e — e—

_—— = //

3 . T . DL A

-------------- = ~ . R ___‘_/! Bl
-1 T LI B T T r T I

0 0.2 0.4 0.6 08 1 1.2 1.4 16
(b)

| / 7 —_
¢=0 ¢ =n/6 ¢ =n/4 ¢=n/2

Fig. 6. Variation of the stiffness coefficients with the angle ¢: the coefficients are normalised with respect to Ky (0, X).

¢=0 ¢=n/2

VWAV Y

g g

MMMAMMMM

Fig. 7. Effect of increasing K;; due to the lateral constrained contraction caused by the CNTs.

It is worth mentioning that some previous theoretical works investigated also the influence of the CNT aspect ratio on
the composite mechanical properties (see for instance [8]). However, we did not account for the CNT aspect ratio, relying
on the numerical results that showed the substantial independence of the effective Young modulus on the aspect ratio
when the latter ranges from 50 to 1000 [16].

The equations of motion for the free vibration problem, used in the employed (PDE-mode) FE discretization, are

V.T =pii, VxeB, te(0,00) ®

where V =e,0/0x; +e,0/0x, +e30/0x3 is the del vector, here expressed in the orthonormal basis {e;, e, e5}, the overdot
indicates differentiation with respect to time, u is the displacement field, p is the equivalent mass per unit volume of the
reference configuration. The effect on the mass density of small volume fractions of carbon nanotubes is neglected. The
constitutive equation of the equivalent continuum is given by Eq. (1) where L is expressed by Eq. (2a). We substitute
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the strain-displacement relationships E = [(Vu)" +Vu]/2 into (1) and the resulting stress, T=L: [(Vu)" +Vu]/2, into the
balance equations given by (6). The boundary conditions are T= 0 on the bottom and upper surfaces and on the two free
lateral surfaces. On one of the two edges, the displacement is inhibited in all directions, thus u =0.

The problem is suitably non-dimensionalised introducing a characteristic length (corresponding to the length of the
specimen) and a characteristic circular frequency w. = \/E11/(pa?) where a is a characteristic length, equal to the square of
the longitudinal length divided by the radius of inertia of the plate cross section of unitary width, and Eq; is the
longitudinal modulus of the hosting matrix in the e; —direction. This means that the characteristic stress with which the
stresses are rendered non-dimensional is the elastic modulus Eq;.

6.1. Variation of the frequencies

An eigenvalue analysis was conducted varying the CNTs alignment in the specimen of Fig. 5, where we removed the
tensile loads, and clamped the left edge. The mechanical properties of the composite plates are those employed in the tests
of Section 5. The frequencies of the lowest 10 modes of the specimen, made of the pure matrix only and of the composite
CNT-reinforced material, are compared in Table 3. We considered the ratios of the frequencies to the lowest frequency
of the equivalent homogeneous, isotropic, all-matrix, cantilevered plate. When we take the specimen made only of
the matrix material, this ratio becomes 1 in the first mode. Moreover, we normalised the mode shapes according to
fgtl)k ¢, dV=1, vk=1,2,..., where ¢,(x) denotes the kth mode shape of the plate.

The comparison in terms of the frequencies for the case of epoxy clearly emphasises the fact that the nano-structured
composite material exhibits improved mechanical properties. In particular, for the specific conducted tests, the lowest
frequency of the specimen with longitudinally oriented CNTs (¢ = t/2) is about 100 percent that of the specimen with the
homogeneous matrix material.

We thus studied the influence of the CNTs volume fraction on the frequencies and mode shapes in the case of optimal
CNT alignment, ¢ = /2 (see Table 4). The CNTs alignment, which is optimised for the considered specimen, results into

Table 3

Variation of the frequencies of the lowest 10 vibration modes with the CNTs orientation when n¢ = 1%.
Mode 1 2 3 4 5 6 7 8 9 10
Matrix 1.07 2.41 6.16 6.45 7.92 8.63 14.66 15.73 17.18 17.19
¢=0 0.30% 1.27% 3.32% 1.50% 11.08% 48.76% 9.66% 8.81% 1.57% 7.18%
¢=m/12 2.12% 4.83% 3.86% 6.06% 12.03% 44.13% 9.23% 8.67% 6.46% 12.83%
b=7/6 10.74% 11.17% 6.43% 17.50% 10.74% 36.22% 10.38% 3.68% 8.33% 14.61%
b=n/4 32.97% 16.36% 14.52% 28.51% 7.98% 36.11% 5.92% 14.17% 14.27% 18.51%
b=7/3 60.06% 22.87% 27.22% 27.46% 11.89% 42.94% 8.21% 26.42% 23.09% 31.08%
¢ =5m/12 81.83% 26.14% 28.54% 25.72% 31.51% 45.55% 14.55% 20.77% 36.60% 59.14%
b=7/2 92.03% 25.88% 27.19% 25.80% 44.31% 43.54% 18.28% 17.00% 37.98% 52.99%

The variations are given in % increments with respect to the frequencies of the all-matrix material.

Table 4
Variations of the frequencies of the lowest 10 vibration modes with the volume fraction when ¢ =7 /2.

Mode 1 2 3 4 5) 6 7 8 9 10
Matrix 1.07 241 6.16 6.45 7.92 8.63 14.66 15.73 17.18 17.19
nc=025% 28.04% 6.77% 17.34% 12.26% 6.79% 12.29% 3.46% 13.49% 15.15% 18.69%
nc=0.5% 52.03% 13.40% 22.68% 18.57% 19.78% 23.71% 8.15% 14.19% 25.58% 34.59%
nc=1.0% 92.03% 25.88% 27.19% 25.80% 44.31% 43.54% 18.28% 17.00% 37.98% 52.99%
nc=2.0% 150.90% 44.63% 31.06% 32.80% 75.26% 67.59% 27.49% 21.40% 48.78% 61.98%
nc=>5.0% 265.81% 85.15% 39.37% 42.90% 119.72% 104.71% 35.27% 41.73% 61.41% 79.49%
nc=10.0% 385.94% 131.64% 50.96% 54.42% 142.36% 143.06% 51.55% 62.81% 74.56% 100.41%

The variations are given in % increments with respect to the frequencies of the all-matrix material.

Table 5
Mechanical parameters of the different hosting matrix materials.

Rubber Concrete CNT
Young’s modulus (GPa) 0.1 30 970
Poisson’s ratio 0.48 0.2 0.28

Lamé’s constants (GPa) 0.81 8.34
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significant frequency increases for those modes whose associated modal stiffness is substantially affected by the
alignment, namely the first, second, fifth, and sixth modes. In particular, the frequency of the lowest mode increases by
nearly 400 percent when the volume fraction is increased from 0.25 to 10 percent. On the contrary, when the alignment

Table 6
Variations of the frequencies of the lowest 10 vibration modes with the CNTs orientation for CNT-reinforced rubber (Ru).

Mode 1 2 3 4 5 6 7 8 9 10

Ru 1.1 2.37 6.17 6.29 8.04 8.61 14.64 15.53 16.65 17.50
¢=0 4.98% 2.45% 8.24% 9.39% 13.07% 105.37% 22.23% 16.29% 21.01% 68.81%
¢=m/12 5.00% 17.92% 12.02% 15.58% 24.15% 96.97% 23.82% 31.99% 24.21% 63.64%
¢=m/6 20.96% 61.16% 18.73% 31.58% 42.19% 89.09% 19.13% 37.38% 41.27% 51.24%
¢=mn/4 69.80% 136.64% 38.85% 49.03% 53.21% 103.39% 20.24% 41.51% 53.66% 54.54%
¢=m/3 157.06% 186.09% 50.23% 84.66% 49.01% 123.07% 48.68% 41.14% 52.24% 64.97%
¢=>571/12 309.86% 202.10% 44.46% 75.25% 109.50% 135.02% 50.89% 59.99% 55.86% 74.09%
b=m/2 508.52% 187.85% 41.69% 58.63% 147.94% 155.74% 51.97% 54.48% 57.88% 73.75%

Table 7

Variations of the frequencies of the lowest 10 vibration modes with the CNTs orientation for CNT-reinforced concrete (Be).

Mode 1 2 3 4 5 6 7 8 9 10
Be 1.01 2.48 6.03 6.59 7.58 8.63 14.58 15.54 16.17 17.79
¢=0 0.77% 0.98% 1.07% 0.96% 9.71% 1.02% 3.25% 0.99% 0.82% 0.93%
¢=m/12 0.81% 2.18% 0.98% 1.65% 8.42% 2.34% 3.67% 0.85% 0.91% 1.79%
¢=m/6 1.52% 4.76% 1.33% 3.43% 6.23% 4.51% 4.52% 1.10% 1.65% 2.77%
b=m/4 3.93% 6.57% 3.33% 5.45% 4.33% 6.04% 5.09% 2.98% 3.73% 0.72%
¢=m/3 8.33% 7.16% 8.15% 6.94% 3.83% 8.14% 6.53% 6.98% 9.22% 0.51%
¢=5m/12 12.33% 4.94% 11.08% 7.59% 2.15% 6.86% 3.68% 11.85% 8.21% 0.46%
¢=m/2 14.19% 4.13% 12.74% 7.82% 1.84% 6.92% 3.13% 12.48% 9.98% 1.78%
(a) (b)
Max: 2.418e-3 Max: 7.30e—3
3 x10"
x10 7
2 6
5
1.5
4
i 3
2
0.5
1
Min: 4.877e-9 Min: 3.879e-8
(© (d)
_ Max: 5.008e-3 Max: 9.801e-3
x10" x1073
5
45 9
4 8
35 7
3 6
25 5
2 4
15 3
1 2
05 1
Min: 7.281e-8 Min: 1.528e-7

Fig. 8. Slices of the contour plots of the stored-energy function associated with the lowest mode: (a) pure matrix, aligned CNTs with (b) ¢ =m/4,
(c) ¢ =m/6, and (d) ¢ =m/2.
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does not influence significantly the mode shapes, the frequency variations are less appreciable. This is the case with the
third, fourth, seventh, and eighth modes. A CNT volume fraction of 10 percent leads, for these modes, to a frequency
increment of the order of 50 percent.

However, it is worth mentioning that previous experimental tests showed that high concentrations of CNTs do not lead
necessarily to improved mechanical properties. This is due to a complex phenomenon of CNTs agglomeration by which
micro-voids can be formed in the material, thus making the mechanical response weaker. SEM images of the CNT
composite with 4 percent weight fraction, reported in [23], furnish a good evidence of the mentioned phenomenon. These
situations cannot be captured by an equivalent continuum model which, by imposing a homogenisation procedure, can
describe only nano-structured materials with uniformly dispersed inclusions.

Thus we preferred to carry out similar investigations with different hosting materials, namely, silicone rubber and
concrete, keeping the CNT volume fraction to a reasonable value, namely, 1 percent. The adopted mechanical parameters
are given in Table 5. In the computations, such parameters are normalised with respect to the corresponding Lamé
constant of the hosting matrix materials.

The variations of the frequencies of the lowest 10 vibration modes with the orientation angle, for rubber and
concrete, respectively, are summarized in Tables 6 and 7, respectively. While we observe a remarkable increase of about
500 percent in the fundamental frequency of the CNT-reinforced rubber when the CNTs are longitudinally aligned, in the
case of concrete the increase is about 10 percent. This is not surprising since the ratio between the elastic modulus of CNTs
and that of rubber is of the order of 10 whereas this ratio is of the order of 30 for concrete. Thus the functionalisation of
soft polymeric materials with perfectly aligned CNTs has the potential of changing substantially their mechanical
properties.

6.2. Stored energy patterns of the vibration modes

The study of the fundamental properties of the vibration modes of nano-structured composites requires a more in-
depth analysis of the spatial patterns of the stored-energy distributions in each individual mode. In particular, the spatial
distribution of the distortional part of the stored energy allows to gain insight into potential failure mechanisms under
sustained vibrations as well as into the dissipation properties of each mode.

(a) (b)
Max: 0.115 Max: 0.168
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
Min: 3.128e-3 - Min: 1.179e-3
(C) Max: 0.168 (d) Max: 0.168
0.16 0.16
0.14 0.14
0.12 0.12
0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
Min: 1.145e-3 - Min: 3.29e-3

Fig. 9. Slices of the contour plots of the von Mises stress associated with modes possessing close frequencies in an epoxy-based (Epx) composite plate: (a)
5th mode of the all-matrix plate, (b) 4th mode of the CNT-reinforced (nano-composite) plate with ¢ = /6, (c) 4th mode of CNT-reinforced with ¢ = 7t/4,
and (d) 3rd mode of the nano-composite plate with ¢ = 7/2. For the sake of clarity, the ranges in plots (b) and (c) were bounded with respect to the actual
ranges of [1e~3, 1.153] and [5.5e~4, 0.5], respectively.
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It is known that the distortional stored energy is an effective tool for characterising the onset of yielding in ductile
linearly isotropic bodies; in this case, the distortional stored-energy function is a pure-shear stored energy which can be
written as VP = 3(19)% /4G, where G is the shear modulus and t° the von Mises stress (or octahedral shear stress). For a
general anisotropic material, the specific stored-energy function can be decomposed into a direct summation of two
contributions according to

V=1T"e" +11° . EP (7)

where TV : = (trT)/3 indicates the magnitude of the spherical part of the stress tensor TV =TVI; I = djje;e; represents the
second-order identity tensor, ¢ : = trE = 3E" denotes the volumetric (or dilatational) strain, EV = EVI is the spherical part
of the strain tensor, while the superscript D indicates the deviatoric part of the corresponding tensors. For isotropic
materials, there is a full elastic uncoupling between the spherical and deviatoric strain and stress components highlighted
by the constitutive equations in their uncoupled form: TV = 3(1+2/3wE" and TP = 2uEP. Thus, in isotropic materials, there
is a direct decomposition into a purely dilatational energy and a purely distortional energy. According to [24], the
distortional energy interpretation for the von Mises yield criterion can be effectively used to construct yield criteria for
particle-reinforced composites that bear isotropy properties. They indeed proposed a criterion that describes well the
initial yield of particle-reinforced composites.

The situation is more complex with anisotropic materials for which, as known, there is no elastic uncoupling between
spherical and deviatoric strain and stress components. Let us substitute the spherical part of the strain tensor,
E': = (trE)/3I, into constitutive Eq. (1), TV =L: E". The ensuing stress tensor TV =L: EY = EL : 1=E"Ljjnneie# TV 1 is
not spherical. This means that a purely dilatational/volumetric state of deformation does not induce a purely spherical
state of stress in an anisotropic material and the energy calculated through TV&" does not represent a purely dilatational
stored energy. The same applies to the deviatoric part of the stored energy, %TD : EP. However, we can legitimately refer to
these energies as quasi-dilatational and quasi-distortional stored energies. More generally speaking, the particular class of
materials represented by our equivalent orthotropic continuum does not exhibit a decomposition into spherical and
deviatoric parts in the constitutive equations. The calculated spherical part of the strain tensor

1 v vi3 1-vip Va3 1-v13—v23
trE=(——=2——=)T11+ — = |Typ+ ——F———T 8
E1 E2 E3 11 EZ E3 22 E3 33 ( )
(a) (b)
Max: 0.0150 Max: 0.0250
0.025
0.014
0.02
0.012 0.015
0.01 0.01
0.008 0.005
0
0.006
-0,005
0.004
001
0.002 ik
0 s -0.02
Min: -7.431e-5 Min: -0.0200
(c) (d)
Max: 0.0250 Max; 0.0250
0.025 0.025
0.02
G 0.02
0.01
0.015
0.005
o
0.01
-0.005
-0.01 0.005
-0.015
Min: -0.0200 M 99085

Fig. 10. Slices of the contour plots of the quasi-distortional stored-energy function associated with modes possessing closely spaced frequencies in an
epoxy-based composite plate: (a)-(d) refer to the same modes depicted in Fig. 9. For the sake of clarity, the ranges in plots (b) and (c) were bounded with
respect to the actual ranges of [-0.3,0.144] and [-0.259,0.22], respectively.
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shows that it is not proportional to the spherical part of the stress (average normal stress). Thus the uncoupled form of the
constitutive equations holds only for particular values of the elastic coefficients, even by incorporating all the expected
simplifications ensuing from orthotropic symmetries.

To overcome this problem and investigate some aspects of the purely deviatoric component associated with the modal
stresses, we calculated the von Mises stress of selected modes. We observe in Fig. 8 that the enhanced elastic properties of
the composite materials are emphasised by the fact that the stored energy of the composite with longitudinally aligned
CNTs is about five times larger than the energy in the pure matrix and the spatial pattern is similar. If we consider different
alignments, the energy can be more uniformly distributed or can be localised although at the price of higher local peaks.

The analysis of the contour plots of the von Mises stress, associated with modes possessing closely spaced frequencies
in epoxy-based CNT-reinforced composites, shows in Fig. 9 that, for longitudinally aligned CNTs, the third mode would
vibrate with the same frequency as that of the fifth mode of the all-matrix plate. The von Mises stress distribution would
not be very different in the CNT-reinforced case although it exhibits higher values due to the higher stiffness. The quasi-
distortional stored-energy function, calculated in the same conditions as above, shows in Fig. 10 a confirmation of a close
correlation between the deviatoric state of stress manifested through the von Mises stress states and the quasi-distortional
stored energy.

Similar considerations can be made when comparing the mode shapes and the associated von Mises stresses of the
composite plates made of different hosting matrices (see Figs. 11 and 12). In particular, an interesting result highlighted by
the computations related to concrete-based composite plates is that the low-order modes, possessing frequencies close to
that of the fourth mode of pure concrete, do exhibit lower modal von Mises stresses; in some configurations, these stresses
are even lower than 50 percent.

7. Summary and conclusions

In this work, we have investigated carbon nanotube-reinforced composites in terms of linear elastic and vibrational
properties, employing an equivalent continuum formulation based on the Eshelby-Mori-Tanaka approach. Such an
approach, also known as the equivalent inclusion-average stress method, consists of the combination of the equivalent
inclusion idea of Eshelby with the concept of average stress and strain in the isotropic elastic matrix of Mori and Tanaka.
The elastic inclusions are assumed to be bonded to the matrix through a perfect interface.
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Fig. 11. Slices of the contour plots of the von Mises stress associated with modes possessing closely spaced frequencies in a rubber (Ru) composite plate:
(a) 6th mode of the all-matrix plate, (b) 3rd mode of the nano-composite plate with ¢ =57/12, (c) 3rd mode of the nano-composite plate with ¢ = /4,
and (d) 3rd mode of the nano-composite plate with ¢ = 7/2.
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Fig. 12. Slices of the contour plots of the von Mises stress associated with modes possessing close frequencies in a concrete (Be) composite plate: (a) 4th
mode of the all-matrix plate, (b) 3rd mode of the nano-composite plate with ¢ = 57/12, (c) 4th mode of the nano-composite plate with ¢ = /6, and (d)
3rd mode of the nano-composite plate with ¢ =m/2. For the sake of clarity, the bounds in plot (c) were restricted from the actual range of
[4.869e-3,1.943].

The obtained elastic properties have proved to be very close to those registered through careful experimental
measurements reported in the literature. In agreement with previous theoretical studies, reinforcement with carbon
nanotubes is clearly capable of enhancing the longitudinal Young modulus of nano-composites. The improvement in
performance is a function of alignment, volume fraction of nanotubes, and the type of matrix material. With respect to the
pure uniform matrix, such an improvement achieves a maximum when the carbon nanotubes are uniformly aligned
with the loading direction and the difference between the elastic modulus of the matrix and that of the carbon nanotubes
is the highest.

The investigations into the modal properties, confined to the analysis of the lowest 10 modes of cantilevered composite
plates, have shown that the integration of carbon nanotubes into the hosting material is indeed a powerful mechanism for
tuning the vibrational properties of the composite plates. The fundamental frequency of CNT-reinforced plates can increase
by nearly 500 percent, without practically altering the mass density of the material. In particular, the plates can be
designed so as to respond with a dominant selected mode to certain given excitations. Further, the probability of failure in
the prevailing mode may be minimised since the distortional part of the vibrational modal energy can accordingly be
modified through the nano-structure of the material. This study is the first step towards a nonlinear equivalent continuum
modelling that can describe the dissipation at the interfaces between carbon nanotubes and the hosting matrix.
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