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The problem of a string vibrating against a smooth obstacle is investigated in this paper.

The obstacle is located at one of the boundaries and the string is assumed to wrap and

unwrap around the obstacle during vibration. The wrapping of the obstacle is modeled

by a series of perfectly inelastic collisions between the obstacle and adjacent segments

string is determined iteratively starting from an initial configuration where the string is

vibrating in a single mode and is not in contact with the obstacle. The obstacle can be

regarded as a passive mechanism for vibration suppression in which the energy lost

during each cycle of oscillation depends on the energy content of the string at the

beginning of the cycle. Numerical simulation results are provided for the string

vibrating in different modes for circular- and elliptic-shaped obstacles. The loss of

energy is found to be greater for higher modes of oscillation and for obstacles that

induce greater length of wrapping.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of vibrating strings has been a subject of study for a very long time but the motion of strings vibrating
against obstacles appeared in the technical literature relatively recently. Early work on this problem can be credited to
Citrini [1] who considered point-shaped obstacles. The element of string that comes in contact with point-shaped obstacles
can be assumed to be massless and hence the energy of the string, in the absence of damping, was assumed to remain
conserved. Amerio [2] investigated the motion of a string vibrating against a rigid wall, parallel to the position of the string
at rest. The motion of the string in the presence of the unilateral constraint was posed as a problem in impact. The nature of
the impact was assumed to be elastic and the problem was formulated based on conservation of energy of the string.
A number of other researchers have also based their work on the premise of energy conservation of the string. These
include Schatzman [3], who investigated the existence and uniqueness of solutions for concave obstacles and Haraux and
Cabannes [4], who established almost-periodic nature of solutions for straight and fixed obstacles.

In 1982, Burridge et al. [5] investigated the vibration of the sitar, an Indian stringed instrument. The sitar differs from
the Western stringed instruments in that the bridge across which the strings pass form a broad support, rather than a well-
defined edge. During vibration, the sitar string wraps and unwraps around the gentle slope of the bridge and the length of
the vibrating part of the string varies during oscillation [5]. Burridge et al. [5] modeled the impact of the string with the
bridge as perfectly inelastic, discarding the assumption of energy conservation of the string. Subsequently, Bamberger and
Schatzman [6] proved the existence of solutions which do not conserve energy with arbitrary obstacles and Ahn [7]
claimed energy loss of the string vibrating against flat obstacles. In conformity with earlier work by Citrini [1], Ahn [7] also
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showed that energy remains conserved for highly peaked obstacles. Other work on string vibration against obstacles
includes discretization [8] and finite difference methods [9] for numerical simulation, and study of nonlinear effects of
varying amplitude and gravity [10] on extensible and non-extensible cables.

In this paper we investigate the vibration of a string against an obstacle located at its boundary. Similar to the work by
Burridge et al. [5], we assume the string to wrap and unwrap around the obstacle during each oscillation. The impact of the
string during wrapping is assumed to be perfectly inelastic and the obstacle is implicitly assumed to be convex.
The assumption of convexity of the obstacle is both convenient and practical. Assuming that the string vibrates in a single
mode at all times, it is shown that energy loss is higher for higher modes of oscillation. Although oscillation in a higher
mode results in less wrapping, higher energy loss results from higher kinetic energy of the string during impact.
The obstacle constrains the motion of the string and in this regard the mechanism for energy loss is a continuous-system
version of the energy dissipation methodology proposed for finite degree-of-freedom systems by Issa et al. [11]. Since the
energy of the string decreases even in the absence of damping, the obstacle can be regarded as a passive mechanism for
vibration suppression and control. It should be noted that vibration control is not the focus of this paper and efficient
methods can be developed using optimal control and/or feedback control methods, such as those proposed by Liu [12]
and Shahruz and Narasimha [13].

This paper is organized as follows. A formal problem statement and a list of the assumptions made in our analysis is
provided in Section 2. In Section 3 we present our analytical model for computing the geometry of the string as it wraps
and unwraps around the obstacle during oscillation. In Section 4 we provide simulation results for percentage energy loss
and length of wrapping during each cycle of oscillation for different modes with circular- and elliptic-shaped obstacles.
Using numerical simulations, we show in Section 5 that percentage energy loss can be increased significantly by changing
the orientation of the obstacle. Section 6 provides concluding remarks.
2. Problem statement and assumptions

Consider a string vibrating against an obstacle placed at one of its boundaries, as shown in Fig. 1. We investigate energy
dissipation in the string under the following assumptions:
A1.
Fig.
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The obstacle is rigid and has the following geometry:
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1. A string vibrating against an obstacle is shown in three configurations: (a) the string has both potential and kinetic energy and is not in contact

the obstacle, (b) the string has kinetic energy but no potential energy and is not in contact with the obstacle, (c) the string has both potential and

ic energy and has wrapped around the obstacle. In a wrapped configuration, ðx; yÞ denotes the coordinate where the string breaks contact with the

cle.
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The string is homogenous and has a constant mass per unit length denoted by r. The tension in the string is equal to T
A2.

and remains constant at all times. The string undergoes transverse vibration in the xy plane and is not affected by
gravity.
A3.
 The amplitude of oscillation of the string is small and therefore the equation of motion of the string can be expressed
by the standard relation [14]

@2y

@x2

 !
¼

1

c2

@2y

@t2

 !
; c9

ffiffiffiffiffiffiffiffiffi
T=r

p
(2)

where yðx; tÞ is the displacement of the string at a distance x from the origin at time t.

A4.
 The string wraps around the obstacle during vibration. Over each time step during wrapping, a small element of the

string comes to rest on the obstacle through perfectly inelastic collisions. The wrapping process continues till the
freely vibrating portion of the string has no more kinetic energy.
A5.
 The surface of the obstacle is not sticky and the string unwraps from the obstacle without any loss of energy.

A6.
 At the initial time t¼ 0, the string has no contact with the obstacle. It is in its mean position with zero potential energy

and kinetic energy equal to E0.

A7.
 The string continues to vibrate in the mode in which it started its vibration at the initial time. This implies that each

point of the string, not in contact with the obstacle, has the same frequency of vibration1 at any instant of time, and the
number of nodes2 in the vibrating string remains constant.
A8.
 The string has no internal damping, i.e., the energy of the string will remain conserved during free vibration.
3. Analytical model

3.1. Boundary conditions and general solution

A general solution to the partial differential equation in Eq. (2) can be written as [14]

yðx; tÞ ¼ ða1sinlxþa2coslxÞða3sinotþa4cosotÞ (3)

where ai, i=1, 2, 3, 4 are constants, o is the circular frequency and l is related to o by the relation

o9cl (4)

At time t=0, the string is at the mean position, i.e., yðx;0Þ � 0, per assumption A6. This implies a4 ¼ 0. The solution in Eq. (3)
can now be written as

yðx; tÞ ¼ ðAsinlxþBcoslxÞsinot; A¼ a1a3; B¼ a2a3 (5)

At the right boundary, the string satisfies the relation yðl; tÞ ¼ 0 for all t. Using Eq. (5) we get

AsinllþBcosll¼ 0 ¼) B¼�Atanll (6)

Substitution of Eq. (6) into Eq. (5) gives the solution

yðx; tÞ ¼ Aðsinlx�tanllcoslxÞsinot (7)

We now consider the boundary conditions at the contact break point. From Fig. 1 we have

f ðxÞ ¼ yðx; tÞ ¼) f ðxÞ ¼ Aðsinlx�tanllcoslxÞsinot (8)

Also, the string is tangential to the obstacle at the contact break point x¼ x, i.e.,

f 0ðxÞ ¼
@y

@x
ðx; tÞ ¼) f 0ðxÞ ¼ lAðcoslxþtanllsinlxÞsinot (9)

From Eqs. (8) and (9) we get

tanlðl�xÞ ¼�l
f ðxÞ

f 0ðxÞ
(10)

which indicates that l can be computed from the value of x. The solution of Eq. (10) is, however, not unique—each
non-trivial value of l corresponds to a mode of vibration of the string. Since l is an implicit function of x, we can rewrite
Eq. (9) as follows:

Asinot¼ gðxÞ; gðxÞ9
f 0ðxÞ

lðcoslxþtanllsinlxÞ
(11)
The frequency of the string is not constant; it varies with time and amplitude when the string wraps and unwraps around the obstacle.

A node is a point with zero displacement. As the string wraps or unwraps around the obstacle, the location of the node(s) change and therefore

(s) have non-zero horizontal velocity.
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Eq. (11) can be used to compute t from the value of x. The existence of the solution, however, depends on the magnitude of
A. We now discuss the procedure for computing A.

Let the total energy of the string at any time t be denoted by E. Then,

E¼ EpeþEke ¼ Eobs
pe þEvib

pe þEke (12)

where Eobs
pe is the potential energy of the string wrapped around the obstacle, Evib

pe is the potential energy of the freely
vibrating string, Epe is the total potential energy, and Eke is the kinetic energy of the string. The total potential energy of the
string is computed as the product of the tension T (which is assumed constant) and elongation of the string [15].
The elongation of the string is computed by integrating the strain of the string along the length wrapped around the
obstacle and along the length of string vibrating freely. Thus, the total potential energy can be written as

Epe ¼ T

Z
dl¼ T

Z
ðds�dxÞ ¼ T

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2þdy2

q
�dx

� �
¼ T

Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdy=dxÞ2

q
�1

� �
dx

and Eobs
pe and Evib

pe can be written as

Eobs
pe ¼ T

Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdy=dxÞ2

q
�1

� �
dx; Evib

pe ¼ T

Z l

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdy=dxÞ2

q
�1

� �
dx

Since the string conforms to the shape of the obstacle, ðdy=dxÞ ¼ f 0ðxÞ for x 2 ½0; x�. By expressing ðdy=dxÞ ¼ y0ðx; tÞ for x 2 ½x; l�

and simplifying using Eqs. (7) and (11), we get

Eobs
pe ¼ T

Z x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½f 0ðxÞ�2

q
�1

� �
dx (13)

Evib
pe ¼ T

Z l

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½y0ðx; tÞ�2

q
�1

� �
dx�

T

2

Z l

x
½y0ðx; tÞ�2 dx¼

T

2
l2A2 sin2 ot

Z l

x
½coslxþtanllsinlx�2 dx

¼
1

8
TlA2 sin2 ot sec2 llf2lðl�xÞþsin½2lðl�xÞ�g ¼

1

8
Tl sec2 llf2lðl�xÞþsin½2lðl�xÞ�g½gðxÞ�2 (14)

An element of string of length dx has a mass of rdx and velocity is _yðx; tÞ. Thus, the kinetic energy of the freely vibrating
string can be written and simplified as follows:

Eke ¼
1

2

Z l

x
r½ _yðx; tÞ�2 dx¼

r
2
o2A2 cos2 ot

Z l

x
½sinlx�tanllcoslx�2 dx

¼
1

8l
ro2A2 cos2 ot sec2llf2lðl�xÞ�sin½2lðl�xÞ�g ¼

1

8l
ro2 sec2 llf2lðl�xÞ�sin½2lðl�xÞ�gfA2�½gðxÞ�2g (15)

From Eqs. (12) to (15) it is easy to verify that the energy expression has the form

E¼ hðx;AÞ (16)

For a configuration in which the string is wrapped around the obstacle, the complete solution can be determined from the
values of x and E using the four-step algorithm below:
1.
 Use Eq. (10) to determine the value of l. Since Eq. (10) provides multiple non-trivial solutions that correspond to
different modes of vibration, the solution corresponding to the initial mode of vibration should be chosen—see
assumption A7.
2.
 Use Eq. (4) to compute o.

3.
 Compute A from Eq. (16) using the values of x, E, l and o.

4.
 Compute the time t from Eq. (11) by substituting in the values of x, A and l.

The complete solution can now be described using Eqs. (1) and (7) as follows:

yðx; tÞ ¼
f ðxÞ; x 2 ½0; x�

Aðsinlx�tanllcoslxÞsinot; x 2 ½x; l�

(
(17)

3.2. Wrapping of the string

From our discussion in the last section we know that the geometry of the string can be determined from the values of x

and E. In this section we discuss the method for computing these values at regular intervals of time. Let fxi; Eig denote the
values of x and E at time t¼ ti, i¼ 0;1;2; . . . ; k. We assume t0 ¼ 0. Then, from assumption A6, x0 ¼ 0 and the value of E0 is
known. We will discuss the method for determining the value of tk which denotes the time after which the string begins to
unwrap.

Let us assume that for some i= j, fxj; Ejg is known. We outline the method for computing fxjþ1; Ejþ1g from the values of
fxj; Ejg. Choose a small segment of the vibrating string that is expected to wrap around the obstacle over a small interval of
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Fig. 2. Small string segment Dx wraps around obstacle after perfectly inelastic collision. In the magnified image, AB denotes the small string segment of

length Dx that wraps around the obstacle over the region AC.
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time. Let the projection of this string segment AB on the x-axis be Dx as shown in Fig. 2. The kinetic energy of this string
segment, which will be lost due to inelastic collision, can be computed from Eq. (7) as follows:

Elost ¼
r
2

Z xjþDx

xj

½ _yðx; tÞ�2 dx¼
r
2
o2

j A2
j cos2 ojtj

Z xjþDx

xj

sinljx�tanljlcosljx
� �2

dx (18)

where Aj, oj, lj and tj denote values of A, o, l and t, respectively, derived for the pair fxj; Ejg. Using Eq. (18), Ejþ1 can be
computed as follows:

Ejþ1 ¼ Ej�Elost; j¼ 1;2; . . . ; k�1 (19)

To compute xjþ1, j¼ 1;2; . . . ; k�1, we make the following general assumption:
A9.
 With reference to Fig. 2, the potential energy of the vibrating string segment AB at time tj is equal to the potential
energy of the string segment AC wrapped on the obstacle at time tjþ1.
Using Eqs. (13) and (14) assumption A9 can be mathematically expressed as follows:Z xjþ 1

xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½f 0ðxÞ�2

q
�1

� �
dx¼

Z xjþDx

xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½y0ðx; tÞ�2

q
�1

� �
dx�

1

2

Z xjþDx

xj

½y0ðx; tÞ�2 dx

¼
1

2
l2

j A2
j sin2ojtj

Z xjþDx

xj

½cosljxþtanljlsinljx�
2 dx (20)

Eq. (20) can be used to determine xjþ1. The values of Ajþ1, ojþ1, ljþ1 and tjþ1 are computed from the values of xjþ1 and
Ejþ1. The iterative process is terminated when the kinetic energy of the vibrating string segment becomes approximately
equal to zero. At this time, which is denoted as tk, the string stops wrapping and begins to unwrap.

3.3. Unwrapping of the string

Similar to wrapping, the geometry of the string during unwrapping is computed from the values of x and E. The string
begins to unwrap at t=tk; at this time the values of x ¼ xk and E=Ek are known. Let fxi; Eig denote the values of x and E at
time t=ti, i¼ k; kþ1; kþ2; . . . ; l, where tl denotes the time when the string has unwrapped completely. We outline the
method for computing fxjþ1; Ejþ1g from the values of fxj; Ejg for kr jr l�1. One chooses a small segment of the string that
is expected to unwrap over a small interval of time. Then we let the projection of this string segment on the x-axis be Dx.
Then,

xjþ1 ¼ xj�Dx; j¼ k; kþ1; . . . ; l�1 (21)

Since there is no loss of kinetic energy during unwrapping (see assumption A5), we have

Ejþ1 ¼ Ej; j¼ k; kþ1; . . . ; l�1 (22)

The values of Ajþ1, ojþ1, ljþ1 and tjþ1 are computed iteratively from the values of xjþ1 and Ejþ1. The iterative process is
terminated at t=tl when the potential energy of the string is equal to its value at the mean position.

4. Numerical simulations

Consider a string with

T ¼ 1 N; r¼ 0:025 kg=m; l¼ 4 m (23)

The obstacle is assumed to be a circle of radius R and center coordinates ðx; yÞ � ð0;RÞ, i.e.,

y¼ f ðxÞ ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2

p
; 0rxrR (24)
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Table 1
Percentage energy loss over one cycle of oscillation and xk for different values of E0 and three modes of oscillation, all with R=1 m.

Mode 1 Mode 2 Mode 3

E0=1.00 J 0.491%, 0.729 m 1.598%, 0.696 m 2.752%, 0.654 m

E0= 0.50 J 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m

E0=0.25 J 0.113%, 0.461 m 0.402%, 0.445 m 0.766%, 0.424 m
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Fig. 3. Plot of percentage energy content of the string over three consecutive cycles of vibration in (a) Mode 1, and (b) Mode 2. For both cases, the initial

energy of the string was E0=0.5 J.
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Fig. 4. Exponential decay in the energy of a string wrapping and unwrapping around an obstacle. The plots show energy decay for single-mode vibration

in the first four modes with E0=0.5 J.
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It can be verified that f(x) in Eq. (24) satisfies the boundary conditions in Eq. (1). For R=1 m and Dx¼ 0:001 m, we compute
the percentage loss of energy over one cycle of string oscillation for three different values of initial energy E0 and for
oscillation in the first, second, and third modes, respectively. These values are shown in Table 1 together with the values of
xk, which is a measure of the length of wrapping around the obstacle. For the special case of E0=0.5 J, we plot the
percentage loss of energy for three consecutive cycles of string vibration in the first two modes. These plots are shown in
Fig. 3. Fig. 4 plots the decay in energy as a function of time for vibration in the first four modes with E0=0.5 J. The following
observations can be made from the plots in Figs. 3 and 4, and the data in Table 1:
�
 For any mode of oscillation, it can be seen that the percentage energy loss is higher for higher values of E0. This is not
surprising since higher values of E0 results in higher kinetic energy and greater length of wrapping, as evident from the
values of xk in Table 1, and consequently more energy loss through inelastic collision. The same argument can explain
the reduction in the percentage loss of energy over consecutive cycles of vibration in Fig. 3.

�
 The percentage energy loss is higher for higher modes of oscillation for the same value of E0. This is true for the same

number of cycles (see Fig. 3) as well as for the same length of time (see Fig. 4) and is due to the fact that the velocities of
the string associated with higher frequencies are higher in higher modes, and as a consequence the loss upon impact is
higher. The value of xk is less for the higher modes but this does not have a significant effect on the percentage of
energy loss.
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Fig. 5. A string vibrating against a circular obstacle in (a) Mode 1, and (b) Mode 2.

Table 2
Percentage energy loss over one cycle of oscillation and xk for obstacles of different shapes and sizes, all with E0=0.50 J.

Mode 1 Mode 2 Mode 3

Case (a) 0.029%, 0.295 m 0.113%, 0.291 m 0.237%, 0.286 m

Case (b) 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m

Case (c) 0.915%, 0.897 m 2.549%, 0.815 m 3.887%, 0.737 m

Case (d) 0.665%, 0.803 m 2.021%, 0.750 m 3.278%, 0.692 m
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The geometry of the string at different points in time during one cycle of oscillation is shown in Fig. 5 for Mode 1 and
Mode 2 with initial energy E0=0.5 J. It can be seen from these plots that a fixed point on the string moves in the y direction
only when the string is not in contact with the obstacle but moves in both the x and y directions during wrapping and
unwrapping. From the plot for Mode 2, it is also clear that a node is not a fixed point on the string. It is a point of zero
displacement but has non-zero velocity during wrapping and unwrapping.

To study the effect of the shape of the obstacle on percentage energy loss, we fix the value of the initial energy to
E0=0.5 J and study the following four cases where the obstacle is:
(a)
 a circle with R=0.5 m;

(b)
 a circle with R=1.0 m;

(c)
 a circle with R=1.5 m;

(d)
 an ellipse with semi-major and semi-minor axes lengths of 1.2 and 1.0 m, respectively, and with the major axis aligned

with the x-axis;
and satisfy the boundary conditions in Eq. (1). The results are shown in Table 2. It is clear from the results that for circular
obstacles the percentage energy loss increases with increase in radius and vice versa. This is in agreement with the results
expected for the limiting cases, namely, percentage energy loss is zero when the radius of the circle is zero and is equal to
100 percent when the radius is infinity. The ellipse in case (d) circumscribes the circle in case (b) and provides a lower
slope for the wrapping curve. A comparison of the data for cases (b) and (d) indicates that a slight decrease in slope of the
obstacle results in significantly higher percentage of energy loss.

5. Effect of change in slope of obstacle

We consider the obstacle in Fig. 6 where the curve y=g(x) is obtained by rotating the curve y= f(x) in Fig. 1 clockwise by
angle y about point O. To deal with this problem, we modify assumptions A1 and A6 as follows:
A1.
 The obstacle is rigid and has the following geometry:

y¼ f ðxÞ; yð0Þ ¼ 0;
dy

dx

� �
x ¼ 0

¼�tany (25)

At the initial time t=0, the string has no contact with the obstacle. It has zero kinetic energy and potential energy equal
A6.

to E0. The displacement of the string at the initial time corresponds to a single mode of free vibration as shown in Fig. 6.
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Fig. 6. A string vibrating against an obstacle. The obstacle is identical to the one in Fig. 1 but rotated clockwise by angle y about point O.

Table 3

Percentage energy loss over one cycle of oscillation and xk for two modes of oscillation with different values of y.

y (deg) Mode 1 Mode 2

0 0.256%, 0.596 m 0.113%, 0.291 m

15 1.486%, 0.866 m 3.478%, 0.841 m

30 9.233%, 1.095 m 13.72%, 1.080 m

A. Alsahlani, R. Mukherjee / Journal of Sound and Vibration 329 (2010) 2707–27152714
The remaining assumptions, A2–A5 and A6–A9, are not changed. In Table 3 we present simulation results for a string with

T ¼ 1 N; r¼ 0:025 kg=m; l¼ 4 m; E0 ¼ 0:50 J (26)

and a circular obstacle of radius R=1 m. A comparison of the results indicates that percentage energy loss is significantly
higher for higher values of y.

In our analysis, the string was assumed to have no damping. In reality, the string will have damping and this will
enhance the rate of energy decay. The rate of energy decay will, however, not be constant even if the damping ratio of the
string is constant. As the string wraps around the obstacle, its effective length decreases and frequency of vibration
increases—this will increase the rate of energy decay which depends on the product of damping ratio and natural
frequency.

6. Conclusion

The vibration of a string wrapping and unwrapping around a smooth obstacle was investigated in this paper. Assuming
linear behavior of the string, an analytical model was developed for computing its geometry at each time step by
bookkeeping the energy. The energy of the string is assumed to dissipate during wrapping through inelastic collision
between the string and the obstacle but remain conserved during unwrapping. The obstacle serves as a passive mechanism
for damping and its effectiveness can be increased by changing its orientation in a manner that results in greater wrapping.
This leads to the possibility of rapid dissipation of vibration energy through active control of the orientation of the obstacle
and extension of the methodology for active vibration control of soft structures such as thin plates and membranes. Such
work, however, lies in the scope of our future research.
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