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a b s t r a c t

Resonant vibrations of a fluid-conveying pipe are investigated, with special considera-

tion to axial shifts in vibration phase accompanying fluid flow and various imperfec-

tions. This is relevant for understanding elastic wave propagation in general, and for the

design and trouble-shooting of phase-shift measuring devices such as Coriolis mass

conditions are specifically addressed, but the suggested approach is readily applicable

to other kinds of imperfection, e.g. non-uniform stiffness or mass, non-proportional

damping, weak nonlinearity, and flow pulsation. A multiple time scaling perturbation

analysis is employed for a simple model of an imperfect fluid-conveying pipe. This leads

to simple analytical expressions for the approximate prediction of phase shift, providing

direct insight into which imperfections affect phase shift, and in which manner. The

analytical predictions are tested against results obtained by pure numerical analysis

using a Galerkin expansion, showing very good agreement. For small imperfections the

analytical predictions are thus comparable in accuracy to numerical simulation, but

provide much more insight. This may aid in creating practically useful hypotheses that

hold more generally for real systems of complex geometry, e.g. that asymmetry or non-

proportionality in axial distribution of damping will induce phase shifts in a manner

similar to that of fluid flow, while the symmetric part of damping as well as non-

uniformity in mass or stiffness do not affect phase shift. The validity of such hypotheses

can be tested using detailed fluid-structure interaction computer models or laboratory

experiments.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An important quantity characterizing elastic wave propagation is the phase shift in oscillation between any two points
of the medium. We present a systematic perturbation approach for deriving analytical expressions that relate phase shift to
parameters characterizing vibrating pipes conveying fluid flow and possible imperfections. This is relevant to gain further
insight into which factors influence phase shift and how, and for applications such as the design and troubleshooting of
Coriolis mass flowmeters, where the primary quantity measured is phase shift.

Fluid flowing in a vibrating pipe prevents standing flexural waves, and thus there will be a shift in vibration phase
(different from 0, p) between the transverse vibrations of any two pipe points, with a corresponding shift in zero-crossing
times. Under certain conditions the phase shift is approximately proportional to mass flow, a property utilized with
ll rights reserved.
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Coriolis mass flowmeters. But phase shifts could be influenced by a number of factors other than mass flow, e.g. non-
proportional damping (which includes asymetric or nonlinear damping), nonlinearity (e.g. in pipe restraints and excitation
coils), and various imperfections such as non-ideal boundary supports, rapid or resonant flow pulsation, and non-uniform
flow profile or density. Some imperfections may be stationary in time, and can be compensated for by calibration. Other
may fluctuate unobserved in time or space, impossible or impractical to control; they will reflect as apparent changes in
mass flow, i.e. as erroneous flowmeter readings.

Using finite element methods [1–3], detailed computational models of real flowmeters can be set up that could possibly
simulate any thinkable system specification and operating condition, and thus predict phase shifts. Simulation of detailed
models may provide much data, but typically very little useful insight into basic dependencies. It is difficult to generalize
the results beyond the particular parameters and conditions simulated; in this respect computer simulation parallels
laboratory experiments. Furthermore, with 2D or 3D models, nonlinearity, nonstationarity, or full fluid–structure
interaction taken into account, computational times may prohibit parameter-dependencies to be explored in any depth.
Thus greatly simplified models, and approximate analysis that allows for more general conclusions, may provide direct
insight, and help increasing the benefit of costly simulation and laboratory experiments.

We suggest using greatly simplified mathematical models of Coriolis flowmeters, along with systematic perturbation
analysis, to asses how various factors could possibly influence phase shift and thus flowmeter output. We show how
simple analytical expressions can be derived that relates phase shift to fluid mass flow, and to imperfections like non-ideal
boundary supports and non-uniform distribution of stiffness (or mass) and damping. This is done for a simple model of
straight single-tube pipe flowmeter, on the assumption that the effects are basically similar for more complicated
geometries, and that results based on simple models are either directly transferable, or can be used for creating hypotheses
that can be tested against full computational models or laboratory experiments. The model used in this study includes just
of few imperfections, but effects of other kinds of perturbation could be analyzed along similar tracks. For example,
we present a simple analytical prediction showing that any asymmetry in the structural damping of rotational motions
at the flowmeter supports changes the measured phase shift in a manner indistinguishable from that caused be fluid
flow. This means that any departure from perfect damping symmetry—perhaps fluctuating in time with other factors such
as temperature or vibration—could be erroneously interpreted as a change in mass flow. Also, a small flexibility at a
support ideally supposed to be rigid is predicted to increase the phase shift in linear proportion to the total support
flexibility.

The vibrations of fluid-conveying pipes have been actively investigated for more than six decades [4,5], and some of this
work is motivated by Coriolis flowmetering applications. Of the latter, many publications provide valuable analyses on
how mass flow and also imperfections influence phase shift, see, e.g. the rather recent overview by Anklin et al. [6]. Any
kind of imperfection has the potential to violate the assumed simple proportionality between mass flow and phase shift, or
the independent determination of mass flow (from time shift) and fluid density (from change in resonance frequency).
Imperfections can be features not accounted for in typical modeling (e.g. flow compressibility [7], damping [3,8,9], external
vibrations [10], flexible supports, or nonlinearity), or features in a range not accounted for (e.g. large flow rates [11]), or
features calling for higher modeling dimensionality (e.g. non-uniform flow profile [12]). Some works examine the effects of
flexible supports on vibrations, but without consideration to fluid flow [13], or with consideration to fluid flow but not to
phase shift [14–16]. Raszillier and Durst [17] used a perturbation-like approach to derive analytical expressions for the
phase shift for fluid-conveying pipes, but did not consider imperfect supports. Effects of imperfect supports on phase shift
have been studied using numerical solutions for a simple model [18,19]. The results of [19] suggest that any asymmetry in
rotational damping at supports implies a phase shift similar to that of fluid flow; a similar effect of non-proportional
damping was reported for a simple FEM model of a curved tube flowmeter [8]. Several studies derive analytical or semi-
analytical predictions for phase shifts in the context relevant here. Typically the analytical expressions are for the ideal
case [17], or are given not directly in terms of physical parameters but in terms of pipe motions or mode shapes (may
depend non-trivially on physical parameters), or in terms of parameters determined only by numerical solutions of
eigenvalue problems [20,21], or the results are not tested against numerical simulation or laboratory experiments. Kutin
and Bajsić [9] derive analytical phase shift expressions taking into account imperfections in the form of small damping
(though only uniformly distributed), axial force, and added mass, and show the predictions to agree with numerical
solutions. The approximations are made by linearizing the effects of imperfections near the ‘‘perfect’’ case. This approach is
appealing, appears simpler than the one described in the present work, and may be used for other imperfections as well.
However, it assumes the pipe response to be simply time-harmonic in the drive frequency, and thus cannot be generalized
to incorporate, e.g. nonlinearity, flow pulsations, or external disturbances at frequencies other than the drive frequency.
Also, it does not provide a systematic and generalizable way of handling imperfections, such as the standard perturbation
approach used here.

With the present work we present, exemplify, and test a systematic approach for the derivation of simple approximate
analytical expression for phase shifts of pipe vibrations caused by fluid flow and various imperfections, using simplified
models of real flowmeters. A summary of the model and the main results was presented in [22], while here we intend to
provide sufficient detail for the analysis to appear self-contained. Section 2 presents the mathematical model of a fluid-
conveying pipe, with small imperfections related to boundary supports and pipe uniformity. Section 3 presents a multiple
scales perturbation analysis, employed directly to the partial differential equation of pipe motion, for calculating the
response at primary resonance. This leads to simple analytical expressions for features that are important for applications,
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such as changes in natural frequency and phase shifts between transverse vibrations at two points of the pipe axis.
Section 4 describes how a standard Galerkin expansion was employed to calculate ‘‘exact’’ numerical solutions, for testing
the accuracy of approximate analytical predictions. Section 5 demonstrates, by four examples, how the rather general
analytical expression for phase shift derived in Section 3 can be used to investigate specific effects, and also tests
the quality of the predictions against numerical analysis. Section 6 resumes the main results and their possible
applicability.
2. Mathematical model

Fig. 1(a) shows a simple model of what will be referred to as the ideal fluid-conveying pipe. This pipe is straight,
uniform, undamped, and perfectly hinged at the two supports, and the fluid flows uniformly at constant velocity and
density. Fig. 1(b) shows the same pipe with some minor modifications, which we consider as imperfections of the ideal
pipe: finitely small distributed transverse and rotational stiffness and damping, and finitely small support flexibility
(i.e. finitely large support stiffness). Many other kinds of imperfections could be relevant, but to highlight the approach for
examining effects of imperfections, we focus here on just a few. Also, the particular support conditions are chosen for
convenience of illustrating the approach and interpretation of results, rather than for their relevance for applications; any
other kind of supports could be chosen, as long as their ‘‘imperfection’’ with respect to an ideal support is small, i.e. the
supporting reaction force to translation or rotation should be either very small or very large, corresponding to small or
vanishing stiffness or flexibility, respectively.

The equation of motion governing transverse vibrations of the pipe can be derived using Newton’s second and third law
for, respectively, the external and internal forces on a differential pipe and fluid element, or by using Hamilton’s principle,
starting from expressions for the total energy and the work performed by non-conservative forces; see, e.g. [1,3,5,17]
for details of derivation. The result can be written in the following nondimensional form (similar to what can be found,
e.g. in [3,9]):

€uþu
0000

þe½að2v _u 0 þv2u00 þ _vu0ÞþLkuþLb _u� ¼ epdðx�xpÞcosðOtÞ; (1)

where u=u(x,t) is the transverse deflection from the static equilibrium u=0, xA[0;1] is the axial coordinate, Lk and Lb are
linear spatial differential operators for describing arbitrarily distributed damping and (additional) stiffness:

Lk ¼ kuðxÞ�
d

dx
kyðxÞ

d

dx

� �
; Lb ¼ buðxÞ�

d

dx
byðxÞ

d

dx

� �
; (2)

the boundary conditions are

uþep�3ku0u
000

¼ u00 ¼ 0 for x¼ 0;

u�ep�3kulu
000

¼ u00 ¼ 0 for x¼ 1; (3)
cos( )p t
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Fig. 1. Simple model of a transversly vibrating fluid-conveying pipe. (a) Ideal system; (b) with some imperfections: finitely small distributed transverse

and rotational stiffness and damping, and finitely small support flexibility (i.e. finitely large support stiffness).
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and all parameters, variables, and functions are nondimensional.

x¼ ~x=l; u¼ ~u=l; t¼ ~o ~t ; ~o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAl4

q
; v¼ ~v= ~ol; rA¼ rpApþrf Af ;

a¼ rf Af =rA; ku0;l ¼ 48p3EI= ~ku0;ll
3; p¼ ~p=rAl ~o2; O¼ ~O= ~o;

ku ¼
~ku=rA ~o2; ky ¼

~ky=rAl2 ~o2; bu ¼
~bu=rA ~o; by ¼ ~by=rAl2 ~o: (4)

In (1)–(4) a tilde denotes a corresponding physical variable or parameter, time t is nondimensionalized by the character-
istic frequency ~o, the axial coordinate x and transverse deflection u by the pipe length l, flow speed v by the characteristic
wave speed ~ol, rA denotes mass per unit length (subscript p/f indicating pipe/fluid), EI is the flexural pipe stiffness per unit
length, aA[0;1[ is the ratio of fluid mass to total mass, the functions ku,y(x) and bu,y(x) for xA[0;1] describe the (possibly
non-uniform or discontinuous) axial distribution of, respectively, stiffness (additional to that of the ideal pipe), and viscous
damping per unit pipe length (subscript u/y indicating transverse/rotational), p is the amplitude of the time-harmonic
excitation force at x=xp having normalized frequency O, ku0 and kul are the normalized transverse flexibilities of the
boundary supports at x=0 and l, d(x) is Dirac’s delta function, dots and primes denote differentiation wrt. t and x, respec-
tively, and e is a bookkeeping parameter used for marking terms that are assumed to be small compared to other terms.

In (1)–(4) all terms multiplied by e are assumed to be small, compared to the other terms. The parameter e has no
physical interpretation, but serves the purpose of ‘‘magnitude bookkeeping’’ through the different stages of analysis,
explicitly quantifying the assumed order of magnitude of terms. In the final application of analysis results, we just
substitute an e-marked quantity (e.g. ep or eav) by its specific value (e.g. p or av), knowing that this value should be small
in magnitude compared to unity for the results to be accurate, or at least that the corresponding term in the equation of
motion should be small compared to terms not multiplied by e. Thus the magnitude ordering in (1)–(4) implies the system
to be basically a simply supported uniform pipe, with some minor additions or ‘‘imperfections’’ which are detailed further
below. This implies considerable computational convenience, and is physically realistic for applications such as Coriolis
flowmetering: The excitation p is weak (being resonant, not much is needed), the flow speed v is much smaller than what
could cause buckling of the pipe, and changes only little over each period of pipe oscillation, the slopes u0 are small, as is
the non-uniformity in pipe stiffness Lk, the damping Lb, and the flexibility of supports ku0,l.

The detailed assumptions for (1)–(4) are the following: The pipe is considered a slender beam of uniform cross section
and near-uniformly distributed flexural stiffness and mass, only transverse deflections in the plane of the excitation force
are important, and the deflection slopes during vibrations are small, ðu0Þ251 The fluid inside the pipe is incompressible,
and flows towards x=1 with a flat (‘‘plug flow’’) velocity profile, i.e. (vrf Af)0=0 so that v0=0, and v40. For the following
analysis of (1)–(4) it assumed that the damping coefficients bu and by are small, as are the coefficients ku and ky defining
additional non-uniform stiffness, the transverse support flexibilities ku0 and kul, and the external forcing amplitude
p (since the pipe is supposed to be driven at resonance). The flow speed is ‘‘small’’ in the sense that j ~vj5 ~ol, i.e. a fluid
particle travels only a small fraction of pipe length during each (characteristic) oscillation period 2p= ~o, so that 0ov51.
All these assumptions hold approximately for applications such as Coriolis flowmetering under normal operating
conditions. In this study we assume further that the flow speed changes only little during each transverse oscillation of the
pipe, i.e. v=v(et). For Coriolis flowmetering this assumption is adequate under typical operating conditions, but can be
violated by the presence of flow pulsations in resonance with the pipe or rapid flow transients [23,24]; such cases are
investigated separately [25]. For the boundary conditions (3), all terms proportional to products of small quantities (such
as, e.g. kyku0u0) are considered O(e2) and are consequently ignored compared to terms of order e0 and e1.

The first two terms in (1) represent, respectively, transverse inertia of the pipe and fluid, and flexural stiffness of the
pipe. The third and fourth terms represent inertia forces of the Coriolis ðe2av _u 0Þ and centrifugal ðeav2u00Þ type; they are due
to the fluid flowing at speed v through pipe segments of instantaneous curvature radius 1=u00, rotating at angular velocity
_u 0. Terms similar to these occur in numerous pipe-flow studies (e.g. [5,17]). The fifth term ðea _vu0Þ represents the effect of
time-varying flow speed, as is relevant, e.g. with pulsating flow or flow transients. The three terms depending on flow
velocity v arise when calculating the transverse fluid acceleration €uf at axial coordinate x: On the assumptions made, any
fluid particle moves inside the pipe in a trajectory (xf,yf)=(xf(t), u(xf(t),t), where dxf/dt=v. At pipe axial coordinate x the
transverse fluid velocity is then _uf ¼ ðqu=qxÞðdxf =dtÞþqu=qt¼ vu0 þ _u, i.e. given by the material derivative vq=qxþq=qt of u.
The transverse acceleration of the fluid particle is similarly given by the material derivative of _uf , giving
€uf ¼ €uþ2v _u 0 þv2u00 þð _vþvv0Þu0, where the term with v0 vanishes due to the assumption of flow incompressibility and
uniform cross section. Multiplying €uf by the mass of the fluid element gives the resulting transverse force at the fluid
element, which in turn must equal the reaction force from the pipe.

The functions ku,y(x) and bu,y(x) can be used to include any kind of small non-uniformity in linear stiffness and
dissipation. These functions do not have to be continuous in x, and can thus model also stiffness or damping distributions
confined to only finite parts of pipe length, or (using Dirac delta functions d(x�xj)) at certain isolated points x=xj, which
can even be at the pipe supports (i.e. xj-f0þ ;1�g). Small support flexibility—i.e. large but finite support stiffness—is
instead represented by the flexibility coefficients ku0 and kul in the boundary condition (3); this allows the imperfectly
rigid supports to be described in terms of small perturbations to the ideal supports. The scaling of flexibility coefficients in
(4) implies that when the pipe vibrates harmonically in a fundamental mode, then ku0 or kul roughly equals the vibration
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amplitude at a flexible support in ratio to the midpipe transverse vibration amplitude; for example, ku0=0.1 means that the
flexibility of the left pipe support allows it to vibrate at an amplitude about 10 percent of the midpipe vibration amplitude
in the fundamental mode.

To illustrate the smallness of the third term in (1) for applications such as Coriolis flowmetering, we note that in that
case the dominating motion of the pipe model can be roughly estimated as u(x,t)=A sin(p2t)sin(px), where A is the
(controlled) vibration amplitude, and p2 is the natural frequency corresponding to the fundamental symmetric vibration
mode sin(px). It then follows that the ratio of the Coriolis acceleration 2av _u 0 in (1) to the transverse acceleration €u has
magnitude 2p�1av, while the similar ratio for the centripetal acceleration av2u00 is p�2av2. For an example industrial
Coriolis flowmeter (Siemens SITRANS FC300 DN4) measuring water flow, one finds a=0.29 while at full nominal rate
(350 kg/h) v=0.65; this gives Coriolis and centripetal acceleration ratios of, respectively, 0.12 and 0.012, which would be
even smaller at non-maximal flow rates.

Recapping that in this study an ideal pipe has no transverse or rotational damping (bu=by=0), no inhomogeneity in
transverse or flexural stiffness (ku=ky=0), and no transverse flexibility at either support end (ku0=kul=0), we next calculate
the dynamic response of the imperfect pipe, considering this as a slight perturbation of the response of the ideal pipe.

3. Primary resonant response I: analytical prediction using perturbation analysis

3.1. Method

The equation of motion (1)–(3) is a linear partial differential equation with homogeneous boundary conditions.
A solution u(x,t) is sought that is approximately valid under the assumptions stated above, and which can be used for
setting up a simple analytical prediction for the difference Dc in vibration phase measured between two symmetric pipe
points x1;2 ¼

1
28Dx, Dx 2�0; 1

2½. This phase shift, or the corresponding time shift in velocity zero-crossing, is the quantity
actually measured in Coriolis flowmetering. For manufacturers, it is of interest to be able to predict how the phase shift
depends on physical parameters such as flow speed and system imperfections, and to know the accuracy of the prediction.

The aim is here at transparent analytical expressions, allowing for direct insight into the effects of primary physical
parameters on phase shift. Thus semi-analytical methods which give the phase shift in terms of quantities requiring
numerical solutions, such as, e.g. the exact natural frequencies and mode shapes of the imperfect pipe, will not suffice.
Neither will methods that do not consider the forced response, but instead calculate the free vibration modes of the
imperfect pipe, and then assume the forced response to be in a particular mode, uninfluenced by other modes; such an
assumption does not hold generally, e.g. when nonlinearity, flow pulsation, or external vibrations are involved.

For certain kinds of imperfection a simple perturbation method will work, e.g. the authors initially used the Lindstedt–
Poincaré method (both in its standard form, and in the Rayleigh–Schrödinger variant [26] which is particularly convenient
here) to produce simple analytical predictions of phase shifts for the case Lk=Lb=ku0=kul=0, which agreed closely
with numerical simulation. However, in search for a generally applicable technique that can readily be adapted to
investigate other kinds of imperfections for fluid-conveying pipes [22,25], choice fell on the more powerful though also
more elaborate method of multiple scales [26–29], which can readily handle, e.g. nonlinearity, or even excitation with
random components [30].

3.2. General approximate solution in terms of slowly varying amplitudes

Using the method of multiple scales, we search for a perturbation solution in form of a two-time scale expansion valid
for e51:

uðx; tÞ ¼ u0ðx; T0; T1Þþeu1ðx; T0; T1ÞþOðe2Þ; (5)

where T0=t and T1=et, i.e. T1 is a slow timescale, and O(en) denotes terms of order of magnitude en and smaller. Inserting
into (1)–(3) and balancing terms of like powers of e one obtains, to lowest order e0, a partial differential equation with
boundary conditions for u0:

D2
0u0þu

0000

0 ¼ 0 for x 2�0;1½; (6)

u0 ¼ u0
00 ¼ 0 for x 2 f0;1g; (7)

and to first order e1, an equation for u1:

D2
0u1þu

0000

1 ¼�2D0D1u0�að2vD0u0
0 þv2u0

00 Þ�Lku0�LbðD0u0Þþpdðx�xpÞcosðOT0Þ; x 2�0;1½; (8)

with boundary conditions:

u1þku0p�3ðu
000

1þu
000

0 Þ ¼ 0 and u1
00 ¼ 0 for x¼ 0;

u1�kulp�3ðu
000

1þu
000

0 Þ ¼ 0 and u1
00 ¼ 0 for x¼ 1; (9)

where the operator Dj
i ¼ qj=qTj

i denotes partial differentiation of order j wrt. Ti.
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Consistently with the physical assumptions underlying the magnitude ordering of terms in (1)–(3), the small effects of
flow speed, damping, stiffness non-uniformity, external excitation, and support flexibility first appears at the e1-level of
approximation (8) and (9), which determines the first-order correction u1 to the dominating component of motion u0.

For cases violating the assumption (cf. Section 2) of slowly changing flow speed v=v(et), a term aðD0vÞu0
0 subtracts from

the right-hand side of (8). Also, the terms in (9) with u
000

1 might seem to belong to the second order e2-level, which is ignored
in the present analysis, and thus for consistency should be ignored at the e1-level (9) of boundary conditions. However,
with u0 describing motions in the primarily excited fundamental mode j01, and u1 mainly describing motions of the
flow-excited mode j02, the higher wavenumber of j02 implies that the magnitude of u

000

1 is not necessarily small com-
pared to u

000

0 , even if u1 is small compared to u0. The inclusion of the u
000

1 -terms in (9) adds only little to the computational
burden, while in the case of flexible supports (ku0+kula0) substantially improving the quality of the analytical predic-
tions at the e1-level (because it allows for a small but important rigid-body correction to the second-mode vibration
component in u1).

The general solution to (6) and (7) can be expressed as a series expansion in terms of a set of mode shape functions j0j:

u0ðx; T0; T1Þ ¼
X1
j ¼ 1

A0jðT1Þj0jðxÞe
io0jT0þcc; (10)

where A0j are complex-valued amplitude functions of slow time, i is the imaginary unit, cc denotes complex conjugates of
the preceding terms, and o0j and j0j(x) are, respectively, the linear natural frequencies and mode shapes for the
unperturbed, ideal system (e=0), i.e.:

o0j ¼ ðjpÞ2; j0jðxÞ ¼
ffiffiffi
2
p

sinðjpxÞ; j¼ 1;2; . . . : (11)

The latter satisfy the ordinary differential equation with boundary conditions for the free mode shapes, as well as
orthogonality and normalization conditions, i.e.:

j00000j ¼o
2
0jj0j;

j0jð0Þ ¼j0j
00 ð0Þ ¼j0jð1Þ ¼j0j

00 ð1Þ ¼ 0;

Z 1

0
j0jj0k dx¼ djk; j; k¼ 1;2; . . . ; (12)

where djk is Kronecker’s delta, and the first index of j, o and A here and below indicates the level of approximation (e.g.
j0j and A0j are, respectively, mode shapes and amplitude functions for the lowest, unperturbed e0-level of approximation).

One can proceed with (10) as is, but since we are specifically considering pipes under resonant excitation at or near the
fundamental natural frequency o01, it is adequate to retain only that corresponding part of (10), i.e. we let A0j=0 for
j=2,3,y, so that

u0ðx; T0; T1Þ ¼ A01ðT1Þj01ðxÞe
io01T0þcc: (13)

This describes the unperturbed motion of the pipe in its fundamental mode. The purpose of the perturbation analysis is
then to calculate how the perturbations, i.e. the e-terms in (1)–(3), will cause corrections to this fundamental motion,
including contributions from modes higher than the first.

Inserting (13) into (8) and (9), the perturbation correction u1 becomes governed by

D2
0u1þu

0000

1 ¼ f1ðx; T1;A01Þe
io01T0þcc; (14)

where

f1ðx; T1;A01Þ ¼�i2o01ðD1A01Þj01�aði2vo01j01
0 þv2j01

00 ÞA01�ðLkj01þ io01Lbj01ÞA01þ
1
2pdðx�xpÞe

isT1 ; (15)

and the boundary condition (9) becomes

u1þp�3ku0u
000

1 ¼ ku0A01

ffiffiffi
2
p

eio01T0þcc and u1
00 ¼ 0 for x¼ 0;

u1�p�3kulu
000

1 ¼ kulA01

ffiffiffi
2
p

eio01T0þcc and u1
00 ¼ 0 for x¼ 1: (16)

Here a detuning parameter s has been introduced to quantify the nearness of the excitation frequency O to the
fundamental, unperturbed natural frequency o01, i.e.:

O¼o01þes: (17)

Eqs. (14) and (15) for u1 is a linear partial differential equation with inhomogeneous terms (the right-hand side) which are
harmonic in T0. We seek a particular solution for u1 in terms of a Galerkin-expansion of the n lowest unperturbed modes
shapes j0j, i.e.:

u1ðx; T0; T1Þ ¼

�
A01ðT1Þj101ðxÞþ

Xn

j ¼ 2

B1jðT1Þðj0jðxÞþj10jðxÞÞ
�

eio01T0þcc; (18)
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where j0j(x) is given by (11), and j10j(x) are rigid body modes (as indicated by an additional middle index of zero; the first
index still refers to the order of approximation):

j10jðxÞ ¼
ffiffiffi
2
p

j3ðku0ð1�xÞ�ð�1ÞjkulxÞ; j¼ 1;2; . . . : (19)

The rigid body modes (19) are non-zero only in the case of transverse support flexibility, ku0+kula0, and along
with (12) ensures (18) to satisfy the boundary conditions (16) for any set of yet unknown complex-valued functions
A01(T1) and B1j(T1). Physically, the inclusion of rigid body modes in the set of expansion functions allows for
a simple analytical approximation of transverse pipe deformations, when supports are not completely rigid. Alternatively,
a new set of mode shapes j0j could be computed, taking into account support flexibility (by contrast to (11));
however, the expressions would be much more complicated, while not providing significant increase in accuracy for the
assumed small support flexibility. Mathematically, the rigid body modes (19) were determined by substituting (18)
into the boundary conditions (16), requiring j10j to be linear in x (the requirement for a rigid body mode), and solving
for the linear coefficients. Note that the summing index in (18) starts at j=2, i.e. the basic mode j01 is excluded
from the expansion. This is not an assumption, but a restriction needed for the boundary conditions (16) to be fulfilled,
reflecting that vibrations in the fundamental form j01 are already taken into account at the e0-level through the function
u0, cf. (13).

Next, to obtain the functions B1j, and thus u1, we follow the standard Galerkin procedure and insert (18)
into (14), multiply by any j0s, s=1,2,y,n, integrate over x, calculate the mode shape integrals using (11) and (12),
and find

ððo0j=o01Þ
2
�1ÞB1j ¼ R1j; j¼ 1;2; . . . ;n; (20)

where

R1j ¼

Z 1

0
j0j o�2

01 f1þA01j101þ
Xn

s ¼ 2

B1sj10s

 !
dx: (21)

With f1 depending on A0(T1) and its time-derivative D1A0, cf. (15), Eqs. (20) and (21) constitute n ordinary differential
equations for the determination of the n unknown functions A01(T1) and B1j(T1), j=2,3,y,n. It appears from (20) and (21),
and the definition of o0j in (11), that the first-order amplitude functions B1j(T1) decrease rapidly in magnitude (roughly as
j�4) with the mode number j. Thus, aiming at a two-mode approximation to u1, which will suffice to include all essential
effects of concern in the present case of resonant excitation of the fundamental mode, we let n=2 in (20) and (21), and find
for j=1 and 2, respectively, Z 1

0
j01ðo

�2
01 f1þA01j101þB12j102Þdx¼ 0; (22)

Z 1

0
j02ðo

�2
01 f1þA01j101þB12j102Þdx¼ ððo02=o01Þ

2
�1ÞB12; (23)

which should be solved for A01(T1) and B12(T1).
To relate to the typical application of the method of multiple scales, we note that (22) corresponds to a

solvability condition [26,27]; its fulfillment ensures the solution u1 to (14) be free of secular terms, i.e. terms proportional
to T0eio01T0 , which would violate the initial assumption underlying (5) that jeu1j5 ju0j at all times T040. For the ideal case
of no support flexibility (ku0=kul=0) the rigid body components j10j vanish, and (22) reduces to

R 1
0 j01f1 dx¼ 0, expressing

the well-known [26] requirement for the existence of solutions to an inhomogeneous differential equation with a self-
adjoint homogeneous differential operator: The inhomogeneous part (here f1) must be orthogonal to the solution (here
j01) of the corresponding homogeneous equation. With finite support flexibility (ku0+kula0), the boundary conditions
(16) imply that the operator for the homogeneous part of the system (14)–(16) is not self-adjoint, and thus the solvability
condition (22) appears ‘‘non-standard’’. Often, with the method of multiple scales, a solvability condition is imposed
directly, using explicit knowledge on what could cause secular terms; here it appears automatically, as a byproduct of the
Galerkin discretization process.

In solving (22) and (23) for A01 and B12 we can make greatly simplifying approximations, consistent with the already
established level of accuracy: It follows directly from (23) that

B12 ¼

1

15p4

R 1
0 j02f1 dxþ

1

15
A01

R 1
0 j02j101 dx

1�
1

15

R 1
0 j02j102 dx

; (24)

where o0j from (11) has been substituted. Here the denominator is O(1), while the second integral in the numerator, due to
j101, is proportional to the small parameters ku0 and kul. For the first integral of the numerator it follows, when inserting
(15) for f1, that all terms are proportional to quantities assumed small (v, Lk, Lb, p), except the first term which is of order
unity. However, the integral of this first term vanishes due to the orthogonality of j01 and j02, cf. (12), and B12 is thus
proportional to the small parameters (as required also for u1 to be small compared to u0, cf. (18)). But this implies that the
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third term in (22) is proportional to the square product of small parameters, and for consistency with the present first-
order approximate analysis, such terms should be ignored compared to the first and second terms in (22) which are,
respectively, O(1) and proportional to the first power of the small parameters. As a result we can obtain A01 by solving (22)
with the B12-term ignored, i.e. the solvability condition becomesZ 1

0
j01ðo

�2
01 f1þA01j101Þdx¼ 0: (25)

Then (24) can be used to find B12 in terms of A01, in all calculations keeping terms of the two largest orders of magnitude
(e.g. O(1) and O(e), or O(e) and O(e2)), and ignoring any higher.

Substituting j02, j101, j102, and f1 from (11), (19), and (15) with (2) into (24), and performing the integrations, one
finds B12 in terms of A01:

B12 ¼ 1þ
8

15pk1

� �
1

15p2
pk2�k2�i

16

3
avþb2

� �� �
A01þ

1

30p4
pj02ðxpÞe

isT1

� �
; (26)

where the first parenthesis results from Taylor-expanding the reciprocal of the denominator in (24) for small ku0,l, and the
total support flexibility k1, the asymmetry k2 in support flexibility and the first-to-second mode coupling stiffness and
damping constants k2 and b2 are defined by, respectively,

k1 ¼ ku0þkul; k2 ¼ ku0�kul;

k2 ¼
1

p2

Z 1

0
j02Lkj01 dx¼

1

p2

Z 1

0
ðkuj01j02þkyj01

0 j02
0 Þdx;

b2 ¼

Z 1

0
j02Lbj01 dx¼

Z 1

0
ðbuj01j02þbyj01

0 j02
0 Þdx; (27)

where k2 and b2 have been calculated using (2), (12), and integration by parts.
For determining A01 we start by inserting (11), (15), and (19) into the solvability condition (25), calculate the mode

shape integrals, and find

iD1A01� K1�i
1

2
b1

� �
A01 ¼

1

4p2
j01ðxpÞpeisT1 ; (28)

where the first-mode modal stiffness and damping constant k1 and b1, and the change in effective transverse stiffness K1

due imperfections are defined by, respectively:

k1 ¼
1

p2

Z 1

0
j01Lkj01 dx¼

1

p2

Z 1

0
ðkuj2

01þkyj
02
01ÞdxZ0;

b1 ¼

Z 1

0
j01Lbj01 dx¼

Z 1

0
ðbuj2

01þbyj
02
01ÞdxZ0;

K1 ¼
1
2 av2þpk1�

1
2k1; (29)

where k1 and b1 have been calculated using (2), (12), and integration by parts.
The presence of the operator D1 makes (28) a first-order ordinary differential equation for the determination of A01(T1).

To solve it we express the complex-valued function A01(T1) in polar form:

A01 ¼
1
2a01eiðsT1�Z01Þ; (30)

where a01=a01(T1) and Z01=Z01(T1) are real-valued functions. Substituting this into (28) gives, when separating real and
imaginary parts, the corresponding equations for a01 and Z01:

D1a01 ¼�
1

2
b1a01þ

1

2p2
j01ðxpÞp sinZ01;

a01D1Z01 ¼ ðsþK1Þa01þ
1

2p2
j01ðxpÞp cosZ01: (31)

On the assumptions already stated, all terms on both right-hand sides are small, implying that also the rate of changes
D1a01 and D1Z01 on the left-hand sides are small, so that a01(T1) and Z01(T1), T1=et, are indeed slowly varying functions of
time.

Now we can calculate the two-mode (n=2) approximate pipe response u(x,t). Using (5), (13), (17), (18), (26), (30), and
the definitions under (5) of T0 and T1, and consistently ignoring terms of order e2 and smaller, it becomes

uðx; tÞ ¼ a01ðtÞ½hkðxÞcosðOt�Z01ÞþhbðxÞsinðOt�Z01Þ�þe
1

15p4
pj02ðxpÞj02ðxÞcosðOtÞ; (32)
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where

hkðxÞ ¼j01ðxÞþe j101ðxÞþ
1

15p2
ðpk2�k2Þj02ðxÞ

� �
;

hbðxÞ ¼ e
1

15p2

16

3
avþb2

� �
1þ

8

15pk1

� �
j02ðxÞþj102ðxÞ

� �
; (33)

and the slowly varying amplitude and phase functions (a01,Z01) are solutions of (31). The accuracy of this approximate
solution assumes all terms multiplied by e be small compared to unity.

3.3. Interpreting the general solution

Recalling that e is the bookkeeper of terms assumed to be small, (32) and (33) shows that the pipe basically vibrates in
its driven fundamental mode j01, i.e. u-u0=a01j01cos(Ot�Z01) as e-0. On top of this there are small additional
motions—those multiplied by e—accounting for the effects of mass flow av, for possible external excitation of the second
mode pj02(xp), and for the various imperfections considered.

The antisymmetric second mode j02 is only excited if there are ‘‘asymmetrical causes’’, that is nonzero mass flow av, or
asymmetry in the damping or stiffness imperfections (i.e. nonzero k2, k2, b2), or asymmetrical external forcing (i.e. xpa1

2 so
that j02(xp)a0). The first rigid body mode j101 is excited only if there is transverse support flexibility (i.e. ku0+kula0, cf.
(19)), while excitation of the second rigid body mode j102 further requires mass flow av or damping asymmetry b2.
Whatever mix of modes (j10j, j0j) are excited, every pipe point oscillates at a single frequency O, that of the
excitation.

It readily appears from (32) and (33) that the part of the response u which is related to the flow and the damping (the
term with hb(x)) is phase-shifted 901 in time wrt. the response related to elastic stiffness (the term with hk(x)). For an ideal
pipe, the expressions for hk and hb in (33) reduce to hk ¼j01ðxÞ;hb ¼ eð16=45p2Þavj02ðxÞ; i.e. the pipe vibrates in the
resonantly excited fundamental symmetric mode j01, with a small overlay—proportional to mass flow av—of vibrations
of the antisymmetric second mode j02. Since the latter vibrates 901 out-of-phase wrt. the fundamental mode, the resulting
motion u is a traveling wave, i.e. the nodes of the vibration pattern move in time, and different points on the pipe axis do
not cross the equilibrium line u=0 simultaneously.

For Coriolis flowmeters the time shift Dt in zero-crossing between two pipe axis points, or the corresponding phase shift
Dc=ODt, is considered proportional to mass flow av and thus—after suitable calibration—a measure of mass flow.
However, as appears already from (32) and (33), various imperfections may induce time- or phase-shifts in a manner
similar to that of mass flow. For example, in (32) and (33) the mass flow av occurs only in summation with b2, and thus the
effect of mass flow and (asymmetric or non-proportional) damping on phase shift cannot be distinguished. If the part
caused by damping is constant in time, this only implies a change of calibration offset and thus is not necessarily a problem
for applications. But if the damping part is fluctuating in time, e.g. due to temperature changes, bubbles in the flow, or eddy
current damping from magnets, then this would reflect as a phase shift and thus a meter reading of an equivalent change in
mass flow, even at constant true mass flow.

Next the above results are used to set up simple predictions for vibration phase shift due to fluid flow and
imperfections.

3.4. Main case of interest: phase shift under mid-pipe sharply resonant excitation

We specialize to the case of common interest with Coriolis flowmeters, where periodic excitation is usually
applied mid-pipe, and maintained by feedback-control to be in sharp resonance with a fundamental, symmetric mode
shape.

Eqs. (32) with (33) describe stationary as well as transient solutions to (1). Being particularly interested in the steady-
state vibrations that remain when the effect of a disturbance (e.g. a change in mass flow or damping) has settled, we note
that such solutions are characterized by having constant amplitude and phase, i.e. a01ðT1Þ ¼ ~a01 and Z01ðT1Þ ¼ ~Z01; and
D1 ~a01 ¼D1 ~Z01 ¼ 0. Inserting this into (31) and solving the resulting algebraic equations gives

~a01 ¼

1

2p2
pj01ðxpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsþK1Þ
2
þ

1

4
b2

1

r ; ~Z01 ¼ arctan
�

1

2
b1

sþK1

0
B@

1
CA: (34)

We define the resonant detuning s* as the value of s maximizing ~a01 in (34), i.e.:

s� ¼�K1: (35)

According to (17) and (11) this corresponds to the excitation frequency O¼o�01;

o�01 ¼ p
2�eK1; (36)
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which is then the fundamental resonance frequency of the pipe under fluid flow and in the presence of imperfections,
differing a little (since eK1 is small) from the unperturbed natural frequency o01. With K1 defined by (29) it appears that
o�01 decreases with the softening effects of mass flow (via av2) and support flexibility k1, but increases with the presence of
additional transverse stiffness k1. The corresponding resonant amplitude and phase is, by (34) and (35), and noting that the
phase here is wrt. the excitation force p and independent of x:

~a�01 ¼
pj01ðxpÞ

p2b1

; ~Z�01 ¼
p
2
: (37)

With Coriolis flowmetering the excitation is maintained by feedback-control to be in sharp resonance with the
fundamental mode, i.e. s=s*, and thus O¼o�01 holds approximately on a timescale comparable to that of changes in flow
speed or other parameters. Also, the excitation is usually applied mid-pipe, i.e. xp ¼

1
2, and the response is measured at two

points symmetrically located around the mid-pipe, i.e. x1;2 ¼
1
28Dx, Dx 2�0; 1

2½: Under such conditions we find, using (32),
(37), (11), and trigonometric identities that

uðx; tÞ ¼

ffiffiffi
2
p

p2

p

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hkðxÞ

2
þhbðxÞ

2
q

sinðo�01t�cðxÞÞ; (38)

where the phase c depends on x,

cðxÞ ¼ arctan
hbðxÞ

hkðxÞ

� �
�

hbðxÞ

hkðxÞ
; (39)

and the approximation for the last term is adequate under the already stated assumption on the smallness of quantities in
hb. The difference Dc in phase between the two measurement points x1,2 is

DcðDxÞ ¼cð12 �DxÞ�cð12þDxÞ; (40)

and for further calculations it is useful to note from (11) and (19) that

j01ð
1
27DxÞ ¼

ffiffiffi
2
p

cosðpDxÞ;

j02ð
1
27DxÞ ¼ 8

ffiffiffi
2
p

sinð2pDxÞ;

j10jð
1
2 7DxÞ ¼

ffiffiffi
2
p

j3ðku0ð
1
2 8DxÞ�ð�1Þjkulð

1
27DxÞÞ; j¼ 1;2: (41)

Finally insert (39) into (40) using (41), Taylor-expand Dc under the stated assumption on the smallness of parameters,
assume the measurement points x1,2 are not close to the supports (i.e. Dx is away from 1

2 so that
ffiffiffi
2
p

cosðpDxÞ is not small),
and find the following simple prediction for the phase shift:

DcðDxÞ ¼ s1ðDxÞðavþ 3
16b2Þ; (42)

where

s1ðDxÞ ¼
64

45p2
sinðpDxÞ 1þk1

8

15p�
1

2 cosðpDxÞ
1�

8Dx

sinðpDxÞ

� �� �� �
; (43)

and for consistency in the approximation order, terms of the two lowest orders of magnitude are retained (e.g. av, avk1, b2,
and b2k1), while terms of higher order are neglected (e.g. avk1

2 and b2k1k2).
Equivalently to the phase shift Dc, the time shift Dt between vibration properties (e.g. the zero-crossings of velocity) at

the two measurement points is often used (e.g. [17]), differing from phase shift only by a constant of proportionality:

DtðDxÞ ¼DcðDxÞ=o�01: (44)

It appears from (42) and (43) that s1 is the linear meter sensitivity, i.e. the factor of proportionality between mass flow and
phase shift for small mass flows. Letting av=0, the zero shift is obtained, i.e. the phase shift Dc0 measured without any
flow:

Dc0ðDxÞ ¼ 3
16b2s1ðDxÞ: (45)

Had (11) not been used already to substitute o0j=(jp)2, the factor 64/45p2 in (43) would appear instead as
64p2=3ðo2

02�o2
01Þ; i.e. the meter sensitivity grows with the closeness between the natural frequency (Eo01) of the

fundamental symmetric mode which is driven at resonance, and the natural frequency (o02) of the antisymmetric mode
excited by the flow (sometimes called the Coriolis frequency and Coriolis mode, respectively); this agrees with a well-known
observation in Coriolis flowmetering [31].

In practice, to maximize meter performance, measurement pickups are placed near the antinodes of the antisymmetric
mode which is excited by the flow through Coriolis forces; for the present model that would be the maxima of j02(x),
i.e. Dx¼ 1

4. For this case (42)–(45) gives the phase shift, meter sensitivity, and zero shift, respectively,

Dcð14 Þ ¼ s1ð
1
4 Þðavþ 3

16b2Þ;
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s1
1

4

� �
¼

32
ffiffiffi
2
p

45p2
ð1þr1;1=4k1Þ; r1;1=4 ¼ 2 1þ

4

15p

� �
�

1ffiffiffi
2
p � 1:463;

Dc0ð
1
4 Þ ¼

3
16 b2s1ð

1
4Þ; (46)

which we recall is an approximation, supposed to be correct up to second order, i.e. it neglects terms of cubic order and
smaller in the parameters assumed to be small. This also implies that the second term in the expression for s1 in (46)
should be small compared to unity. As an example one could consider this term ‘‘small’’ if order of magnitude 1/10 or
smaller. This would imply k1=ku0+kul should be Oð 1

10=r1;1=4Þ ¼ Oð0:1Þ; which by the definition of ku0,l in (4) means that for
(46) to be a reasonable approximation, the transverse deflections at each flexible support should not exceed about
1
2� 0:1¼ 5% of the mid-pipe deflection, for a given transverse mid-pipe load.

On the assumed smallness of parameters, and according to (43), the quantities s1, Dc, and Dc0 vary smoothly and
monotonically with all parameters for values of Dx near 1/4; therefore the particular choice Dx¼ 1

4 is not critical for the
analysis.

For parameters corresponding to an ideal system, a result identical to (46) (but with k1=b2=0) was obtained by the
authors by using the Rayleigh–Schrödinger variant [26] of the Lindstedt–Poincaré perturbation method.

In Section 5 we use the simple analytical prediction (46) to illustrate the effect of some imperfections on flowmeter key
factors, comparing also to the results of pure numerical analysis of the original system (1)–(3), i.e. without any
assumptions on the smallness of parameters. As the assumptions underlying the approximate analysis become better
fulfilled, i.e. when the parameters assumed small are decreased in magnitude, then increasingly accurate agreement with
the numerical solution should be, and is, observed. The following section describes how the numerical analysis was
performed.

4. Primary resonant response II: numerical solution using Galerkin expansion

Using instead a standard Galerkin approach to discretize the equation of motion (1) directly, we expand the unknown
solution u(x,t) into

uðx; tÞ ¼
XN

j ¼ 1

qjðtÞjjðxÞ; (47)

where jj(x), j=1,y,N, are suitable expansion functions satisfying all boundary conditions of the problem, and qj(t) the new
set of independent variables.

4.1. Expansion functions

For the expansion functions jj we use the N lowest mode shapes of the corresponding unforced, undamped and
uniform pipe with no flow, but with flexible supports (if ku0,la0). This set is both relatively simple, satisfies all boundary
conditions (3) (by contrast to j0j as defined by (11) and (12)), and is capable of capturing the dynamic response in the case
of interest, i.e. primary 1st-mode resonance. To calculate jj, let, p=Lk=Lb=v=0 in (1), substitute u=j(x)eiot into (1) and (3)
to obtain the eigenvalue problem j0000 ¼o2j with boundary conditions jð0Þþep�3ku0j

000

ð0Þ ¼j00ð0Þ ¼jð1Þ �ep�3ku1j
000

ð1Þ ¼j00ð1Þ ¼ 0, and general solution j=jj:

jjðxÞ ¼ c1;j coshðgjxÞþc2;j sinhðgjxÞþc3;j cosðgjxÞþc4;j sinðgjxÞ; j¼ 1;2; . . . ; (48)

where gj ¼
ffiffiffiffiffiffioj
p

. Here the constants ci,j, i=1,...,4, j=1,y,N, are determined by inserting (48) into the boundary conditions,
giving for each j a homogeneous set of algebraic equations:

AðgÞc¼ 0; (49)

where c¼ fc1 � � � c4g
T, and,

AðgÞ ¼

1 0 �1 0

1 ~kg0 1 � ~kg0

cosh g sinh g �cos g �sin g
cosh g� ~kgl sinh g sinh g� ~kgl cosh g cos g� ~kgl sin g sin gþ ~kgl cos g

2
66664

3
77775; (50)

where ~kg0;l ¼ p�3ku0;lg3: The requirement |A(g)|=0, which is necessary for non-trivial solutions cja0 to (49) to exist, gives a
scalar nonlinear algebraic equation which can be solved numerically for g¼ gj; j¼ 1;2; . . . ; g1og2o � � �ogN ; using, e.g.
gj= jp (i.e. the solution for the case of no support flexibility, ku0=kul=0) as starting values for the iterations. This gives the
corresponding natural frequencies oj ¼ g2

j for free, undamped oscillations of the uniform pipe without flow, but taking into
account support flexibility. Substituting any gj for g in (49) and solving for c then gives the corresponding cj, which can be
arbitrarily normalized, and determines the corresponding mode shape jj(x) through (48).



ARTICLE IN PRESS

J.J. Thomsen, J. Dahl / Journal of Sound and Vibration 329 (2010) 3065–30813076
4.2. Discretised system

Following the Galerkin procedure [32], one substitutes (47) into (1), multiplies by any jiðxÞ, and integrates over the pipe
length to obtain

M €qþC _qþKq¼ f cosðOtÞ; (51)

where qðtÞ ¼ fq1ðtÞ � � �qNðtÞg
T holds the modal coordinates, and the components (i,j) of the modal mass, stiffness, and

damping matrix, and the modal force vector are, respectively,

Mij ¼

Z 1

0
jijj dx; Kij ¼

Z 1

0
jij

0000

j dxþe av2

Z 1

0
jijj

00 dxþ

Z 1

0
jiLkjj dx

 !
;

Cij ¼ e 2av

Z 1

0
jijj

0 dxþ

Z 1

0
jiLbjj dx

 !
; f i ¼ epjiðxpÞ; i; j¼ 1; . . . ;N: (52)

Eq. (51) then forms a system of ordinary differential equations, governing time evolution of the modal coordinates qj(t).

4.3. Excitation condition of interest

The pipe is assumed to be excited resonantly in its fundamental symmetric mode. The resonance frequency of this
mode changes with fluid flow, with support flexibility, and with other imperfections. It can be calculated by letting f=0 in
(51), insert a time harmonic solution q(t)=u*elt, and solve the resulting algebraic eigenvalue problem numerically for the
fundamental eigenvalue l1. If the flow speed v is nonzero, or if C is not proportional to K or M, then for small damping the
eigenvalues l=lj come as complex conjugate pairs, with their imaginary parts o�j defining the jth natural frequency, and
the real part di defining the damping ratio zj ¼ dj=o�j of mode j. Thus, as the excitation frequency for resonant excitation of
the fundamental mode we take O¼o�1 ¼ Imðl1Þ.

4.4. Resonant 1st-mode response

The stationary response under resonant excitation of the fundamental mode is obtained by substituting a harmonic
solution form:

qðtÞ ¼ a sinðOtÞþb cosðOtÞ; (53)

into (51). Separating the in-phase (cos(Ot)) and out-of-phase (sin(Ot)) terms then gives

K�O2M �OC

OC K�O2M

" #
a

b

	 

¼

0

f

	 

; (54)

which can be solved for the vectors a and b to give the corresponding q(t) for any excitation frequency O, including the
particular 1st-mode resonance frequency O¼o�1 of interest here.

4.5. Phase shift between two pipe points under resonant 1st-mode response

Substituting O¼o�1 into (53) and (54) and solving (54) for the corresponding resonant values of aðtÞ ¼ fa1ðtÞ � � �

aNðtÞg
T and bðtÞ ¼ fb1ðtÞ � � � bNðtÞg

T ; the resulting q can be substituted into (47) to give, when rewriting from sine–cosine to
amplitude-phase form:

uðx; tÞ ¼ AðxÞsinðOt�cðxÞÞ; (55)

where the amplitude A and the phase c generally vary along the pipe axis x:

AðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�XN

j ¼ 1

ðajjjðxÞÞ
�2
þ

�XN

j ¼ 1

ðbjjjðxÞÞ
�2

vuut ; (56)

cðxÞ ¼�arctan
�XN

j ¼ 1

bjjjðxÞ=
XN

j ¼ 1

ajjjðxÞ
�
: (57)

Eq. (57) can be used to calculate the phase shift Dc=c(x1)�c(x2) between any two pipe points. For two symmetrically
situated points x1;2 ¼

1
28Dx this gives

DcðDxÞ ¼cð12 �DxÞ�cð12þDxÞ; (58)

which can be compared to the corresponding phase shift predicted by the simple analytical approximations, e.g. (46),
which holds for Dx¼ 1

4.
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Eqs. (58) with (57) will be subsequently referred to as the numerical solution; it was implemented using MATLAB.
Convergence of numerically calculated phase shifts Dc with increased number of included modes N was tested in each of
the cases reported in Section 5 below. In general N=2 was found to capture the main part of the phase shift, while N=4
gave a small correction to that, and N44 only marginal changes; in most cases N=8 was used.

The numerical solution can be expected to offer good accuracy as N is increased, converging towards the exact solution
as N-N. It does not require imperfections to be small, but on the other hand provides very little insight into how
imperfections affect phase shift. The numerical solution is thus complementary to the analytical solution (46), which is
approximate and assumes imperfections to be small, but offers direct insight into how these imperfections affect phase
shift. Thus the key role of numerical solution is here to test the quality of analytical solutions. For parameter ranges where
the analytical expressions can be validated, these are considered more useful than numerical solutions for practical
innovation, design and troubleshooting.

5. Application examples: effects of imperfections

The simple prediction (46) is here used to illustrate the effect of some imperfections on flowmeter key factors, recalling
from Section 2 that the ideal pipe has no transverse or rotational damping (bu=by=0), no transverse flexibility at either
support end (ku0=kul=0), and no inhomogeneity in transverse or flexural stiffness (ku=ky=0). For the numerical examples
we use a mass ratio of a=0.3 and a mass flow range avA[0; 0.1], roughly corresponding to a specific industrial Coriolis
flowmeter measuring water flow from zero to full nominal flow rate. Unless otherwise stated the pipe damping is taken to
be axially uniform with bu(x)=0.002; this corresponds to a quality factor Q=o1/buE5000 for the drive mode, or a damping
ratio of (2Q)�1E0.01 percent.

5.1. Effect of rotational damping at supports, by(x)a0

In this case the pipe is ideal except for the presence of rotational damping at the simple supports, i.e.
bu=ku0=kul=ku=ky=0, but by(x)a0 at x=0 or 1. Specifically we let

byðxÞ ¼ by0dðxÞþbyldðx�1Þ; (59)

where d(x) is Dirac’s delta function, and by0 and byl are the coefficients of linear rotational damping at the left and right
pipe support, respectively. Using (27) and (29) gives

k1 ¼ k2 ¼ k1 ¼ k2 ¼ 0; K1 ¼
1
2av2; b1 ¼ 2p2ðby0þbylÞ; b2 ¼ 4p2ðby0�bylÞ; (60)

so that b1 and b2 express, respectively, the magnitude and the asymmetry in rotational support damping. Using (46) one
obtains the predicted phase shift, sensitivity, and zero shift, respectively,

Dc
1

4

� �
¼ s1

1

4

� �
avþ

3

4
p2ðby0�bylÞ

� �
; s1

1

4

� �
¼

32
ffiffiffi
2
p

45p2
� 0:1; Dc0

1

4

� �
¼

8

15
ðby0�bylÞ; (61)

which implies that:
(a)
 Small rotational damping at the supports does not necessarily cause phase shift, but any asymmetry (by0�byla0) in
support damping causes a phase shift proportional to the asymmetry.
(b)
 The phase shift caused by fluid mass flow av is inseparable from the phase shift caused by damping asymmetry, unless
either the mass flow or the damping asymmetry is known, or known to be constant in time. This can be understood
also in terms of the corresponding forces involved: The forces of rotational support damping are proportional to the
angular velocity _u 0 of pipe segments, just as are the Coriolis forces corresponding to mass flow.
(c)
 The effect of rotational support damping can be of the same order of magnitude as the effect of mass flow. This occurs
when the (nondimensional) damping asymmetry is similar in magnitude to the mass flow, a situation more likely to
arise at low values of flow speed.
(d)
 Damping asymmetry causes a phase shift Dc0a0 even at zero fluid flow (av=0). This zero shift can be compensated for
during initial meter calibration. However, during later operation the support damping may fluctuate in time and
(asymmetrically) in space due to many factors, e.g. temperature, wear, lubrication, or vibration level—in any case
causing phase shifts that will read out as equivalent changes in mass flow. Thus, fluctuating support damping could be
a factor contributing to the lack of zero-point stability occasionally observed with industrial Coriolis flowmeters,
referring to changes in meter readings under (allegedly) constant mass flow.
Fig. 2 shows the variation in phase shift Dcð14Þ with mass flow av for five values of asymmetry (by0�byl) in rotational
support damping. The middle of the five lines is for symmetric damping, the top and bottom lines for a level of support
damping asymmetry (positive and negative) five time as large as the transverse damping bu of the pipe, and the two
middle-most lines for an asymmetry of half the magnitude of the pipe damping. As appears the analytical approximation
(61) (lines) rather accurately agrees with the numerical solution (57) and (58) (symbol markers). Good accuracy of the
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Fig. 2. Effect of rotational support damping (by0,byl) on phase shift Dcð14Þ for varying mass flow av, as obtained by the analytical approximation (61)

(lines), and by a numerical solution (57) and (58) to (1)–(3) using N=8 modes (symbol markers). The total support damping is by0+byl=10�2, and from

bottom to top the lines show Dcð14Þ for different levels of damping asymmetry, by0�byl ¼ f�1022 ;�1023 ;0; þ1023 ; þ1022
g. Other parameters: a=0.3,

p=10�3, bu=0.002, ku0=kul=by=ku=ky=0.
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analytical approximation persists even if both the magnitude and asymmetry in rotational damping is raised to as much as
about 0.3, i.e. to levels of damping far above physically realistic values. Hence the simple expression (61) gives about the
same accuracy as the numerical solution, but provides much more insight. The agreement between analytical and
numerical results can become even closer by reducing the number of modes used in the numerical Galerkin expansion to
N=2; however, this just reflects that the analytical approximation relies on only the two lowest modes. Using N=6, 8, or 10
for computing Fig. 2 produced no discernible changes to the plot, but increased computational time almost in proportion to
N4 (f122; 362; 855g s for N¼ f6; 8; 10g on a 2.4 GHz 2CPU PC).

Fig. 2 also illustrates some of the general observations (a–d) made above from (61): A zero shift is noted (phase shift
even for zero mass flow) which grows with the damping asymmetry, while the sensitivity is not affected by this
asymmetry (all the lines are parallel).

5.2. Effect of rotational stiffness at supports, ky(x)a0

Here the pipe is ideal except for a small but finite rotational stiffness at the hinged supports, i.e. bu=by=ku=ku0=kul=0
but ky(x)a0 at x=0 or 1, specifically

kyðxÞ ¼ ky0dðxÞþkyldðx�1Þ; (62)

where, ky0 and kyl are the stiffness coefficients of linear rotational springs at the pipe ends. Using (27) and (29) gives

k1 ¼ k2 ¼ b1 ¼ b2 ¼ 0; K1 ¼
1
2 av2�1

2k1; k1 ¼ 2ðky0þkylÞ; k2 ¼ 4ðky0�kylÞ; (63)

so that k1 and k2 express, respectively, the total magnitude and the asymmetry in rotational support stiffness. Then
(46) gives

Dc
1

4

� �
¼ s1

1

4

� �
av; s1

1

4

� �
¼

32
ffiffiffi
2
p

45p2
; Dc0

1

4

� �
¼ 0; (64)

which is the same as for an ideal pipe. This implies that:
(e)
 Small rotational support stiffness has no effect on measured phase shift, to the order of accuracy used in the
approximation. If there is an effect, it must be of cubic or smaller order in the parameters assumed small (cf. remark
below (46)), and thus at least two orders of magnitude smaller than the primary effect of mass flow av. For practical
purposes this can be considered negligible, or overshadowed by the effects of other imperfections.
(f)
 Though not affecting phase shift, rotational support stiffness still affect pipe vibrations to first order, as predicted by
(32) and (33), where a nonzero value of k2 (i.e. asymmetric support stiffness) increases the amplitude of the second
vibration mode j02. The reason this does not cause phase shift is that k2 appears in the part of the response which is in
phase with the driving force (at least when, as here, rotational support damping is neglected, so that b1 ¼ ~Z01 ¼ 0;
cf. (32)–(34)).
(g)
 Consideration to the effect of rotational stiffness on phase shift should go instead to the damping accompanying any
real structure having finite stiffness, cf. Section 5.1.
A plot of phase shift versus mass flow for this case, using the same base parameters as for Fig. 2 and ky0+kyl=0.1,
ky0�kyl=[�10�1, �10�2, 0, +10�2, +10�1] appears trivial and is thus not shown; it is similar to Fig. 2, except that all the
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lines collapse into the middle line in Fig. 2 (since the analytical prediction does not depend on rotational stiffness). Also
here the agreement with numerical analysis is good, in the sense that magnification of parts of the figure is necessary to
see that numerical analysis gives slightly different phase shifts for the different values of rotational stiffness. The relative
deviations between analytically and numerically obtained phase shifts are in the range 10�2

�10�4 for this example.

5.3. Effect of transverse flexibility at supports, ku0+kula0

This pipe is ideal, except for the presence of a small transverse flexibility at the (then only approximately) simple
supports, i.e. bu=by=ku=ky=0, but ku0+kula0. By (27)–(29)

k1 ¼ ku0þkul; k2 ¼ ku0�kul;

k1 ¼ k2 ¼ b1 ¼ b2 ¼ 0; K1 ¼
1
2av2þpk1; (65)

so that k1 and k2 expresses, respectively, the total magnitude and the asymmetry in transverse support flexibility. With
(46) the predicted phase shift becomes

Dc
1

4

� �
¼ s1

1

4

� �
av; s1

1

4

� �
¼

32
ffiffiffi
2
p

45p2
ð1þr1;1=4ðku0þkulÞÞ; Dc0

1

4

� �
¼ 0; (66)

with the number constant r1,1/4 defined in (46). According to this prediction:
(h)
Fig.
(66)

ku0 ¼

(b) r
Transverse support flexibility increases the meter sensitivity s1, but does not affect phase shift at zero mass flow, i.e.
there is no zero shift.
(i)
 The increase in sensitivity is proportional to the summed transverse support flexibility, and is thus present even in the
case of purely symmetrical support flexibility.
(j)
 The effect of transverse support flexibility on phase shift is of second order (proportional to the product of the two
small terms k1 and av), and thus of lower order than the effect of mass flow av.
Fig. 3(a) illustrates the variation of phase shift with mass flow for three levels of equal flexibility ku0=kul of the two
supports in the range 10�3–10�1. The lowest line (dotted) is for the smallest support flexibility 10�3, i.e. the pipe is very
close to being simply supported and this curve is almost identical to the one for an ideal pipe (i.e. the middle line in Fig. 2,
dotted). The analytical approximation (66) (lines) agrees well with the numerical solutions (57) and (58) (symbol markers),
with minor discrepancies seen only for the largest support flexibility 10�1. Fig. 3(a) also illustrates some of the general
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3. (a) Effect of transverse support flexibility (ku0,kul) on phase shift Dcð14Þ for varying mass flow av, as obtained by the analytical approximation
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observations (h–j) made above from (66), i.e. there is no zero shift, but an increase in sensitivity (line slope) with support
flexibility.

Fig. 3(b) shows how the relative deviation between analytical prediction and numerical analysis decreases as the
support flexibility becomes smaller, i.e. as the assumptions for the perturbation analysis is better met. This deviation can
be perceived as the approximation error accompanying the perturbation analysis; its order of magnitude appears to match
that of the support flexibility itself, e.g. for ku0=kul=10�2, the error is also of order magnitude 10�2.

5.4. Effect of transverse damping at flexible supports, bu(x)a0

Transverse support flexibility (cf. Section 5.3) opens an additional pathway for energy dissipation, to be examined here.
We consider by=ku=ky=0, but ku0+kula0 (since to dissipate energy the supports need to move, i.e. they should be flexible),
and bu(x)a0, in particular:

buðxÞ ¼ bu0dðxÞþbuldðx�1Þ; (67)

where bu0 and bul, respectively, are the coefficients of linear transverse damping at the left and right pipe support. Using
(27) and (29) still gives b1=b2=0, even if bu(x)a0, and thus (65) holds also for this case. Then (46) also gives (66)
unchanged, and it follows that:
(k)
 Transverse damping of the flexible supports of the model, even if unsymmetrical, does not affect phase shift, at least
not to the order of approximation employed.
The reason for this is that the transverse damping forces at the supports are of second order in the small parameters,
occurring as a product of damping coefficients bu0,l which are small, and rigid body modes j10j(x) which are also small (due
to small support flexibility). This is a marked difference to the effect of rotational support damping, cf. Section 5.1, where
the damping forces are proportional to first powers of the small parameters, and thus can have a similar influence on phase
shift as mass flow.

Numerical simulation in this case gives results virtually indistinguishable from those already presented in Section 5.3
and Fig. 3(a) (top line and circle markers). This confirms the prediction in (k) above, i.e. for estimating the effect of
transverse support flexibility on phase shift, the effect of energy dissipation is ignorable compared to that of mass flow and
flexibility itself.

6. Conclusions

We have demonstrated how phase shift effects for vibrating fluid-conveying pipes with small imperfections can be
conveniently analyzed using perturbation analysis. The results come as simple analytical expressions, relating measures of
imperfection to vibration parameters of interest, such as the spatial phase shift relevant for Coriolis flowmeters. The
analytical predictions provide immediate insight into which imperfections affect phase shift, and in which manner.
Representative examples were tested against pure numerical solution, demonstrating very good agreement with analytical
predictions.

Some general results were derived for imperfections associated with pipe supports. For example it was predicted, and
validated numerically, that the asymmetric part of rotational support damping changes the spatial phase shift along the
pipe in the same manner as does mass flow, so that—in a phase shift measuring flowmeter—any asymmetric fluctuation in
rotational support damping could be mistaken for a change in mass flow. Similarly, a small flexibility at pipe supports
supposed to be ideally rigid was shown to increase the ratio of phase shift to mass flow, thus changing the sensitivity for a
Coriolis flowmeter. On the other hand, imperfections such as small transverse damping at flexible supports (even if
asymmetric), or finite rotational stiffness at simple supports, were demonstrated to influence phase shift at a level
proportional to the square product of small parameters, i.e. ignorable for typical applications.

The results were derived for a simple model of single straight pipe with uniform plug flow. This model ignores
substantial features of real systems, e.g. industrial Coriolis flowmeters typically have two curved pipes, with clamped
rather than simple supports, and are further influenced by, e.g. connected sensors and actuators, external disturbances, and
non-uniform flow. However, the main physical properties could be unaffected by this seeming complexity, so that
predictions based on simplified models (e.g. that phase grows linearly with the asymmetric part of the damping) could be
used for creating hypotheses to be tested with detailed computational models, e.g. FEM and CFD models taking into
account two-way fluid-structure interaction, or real laboratory experiments. If passing such tests with acceptable accuracy,
the simple analytical predictions may be more valuable for applications than detailed numerical simulation, which are still
highly time consuming and prohibits any deeper insight into the effects at play.

The combination of simple modeling and systematic perturbation analysis, used here for examining pipe support
imperfections, can be readily extended to other kinds of imperfection. With the perturbation analysis used in Section 3,
even consideration to weak nonlinearity is rather straightforward. Effects of imperfections in the form of weak
nonlinearity, pulsating flow, and general non-proportional damping are currently investigated and partly reported [22,25].
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