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a b s t r a c t

The paper deals with the dynamic analysis of multiply supported continuous beams

subjected to moving loads, which in turn can be modelled either as moving forces or

moving masses. A dedicated variant of the component mode synthesis (CMS) method is

proposed in which the classical primary–secondary substructure approach (SA) is

geometry. To do this, the whole structure is ideally decomposed in primary and

secondary spans with convenient restraints, whose exact eigenfunctions are used as

assumed local modes; the representation of the internal forces is improved with the

help of two additional assumed modes for each primary span, while primary–secondary

influence functions allow satisfying the kinematical compatibility between adjacent

spans; the continuous beam is then re-assembled, and the Lagrange’s equations of

motion are derived in a compact block-matrix setting for both moving force and moving

mass model. Numerical examples demonstrate accuracy and efficiency of the proposed

procedure. An application with a platoon of high-speed moving masses confirms that

the inertial effects neglected in the moving force model may have a significant impact in

the structural response.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the general framework of vehicle-induced vibration of highway and railway bridges, the dynamics of multiply
supported continuous beams under moving loads has been extensively studied, and several approaches are available in the
literature, which differ in complexity and accuracy. In recent years, Lee proposed an approximate method for studying the
transverse vibration of a multi-span Euler–Bernoulli beam subjected to moving forces [1] and moving masses [2], in which
the assumed modes are the sinusoidal eigenfunctions of a homogenous simply supported beam, and the intermediate
supports are modelled as linear springs with arbitrarily large rigidity. Since the assumed modes suggested in these papers
do not satisfy the zero-deflection condition at the intermediate supports, Zheng et al. [3] proposed a modification
consisting of cubic splines, in so eliminating the kinematical inconsistency. In the study by Ichikawa et al. [4], the exact
eigenfunctions of homogeneous continuous beams have been derived and used to solve the moving mass problem;
unfortunately, quite often this exact solution is of little help when real-life bridge engineering applications are dealt with,
since the cross-sectional depth in actual continuous bridges increases in proximity of the intermediate supports. In order
to overcome this drawback, Dugush and Eisenberger [5] derived the exact eigenfunctions of continuous beams with a
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polynomial variation of the cross-sectional depth; in their formulation, however, only the moving force problem is
addressed, and the structural damping is not taken into account, while the computation of the eigenfunctions may be
cumbersome. Martı́nez-Castro et al. [6] pursed the solution of the moving force problem by discretizing the continuous
beam with two-node Euler–Bernoulli elements of variable cross section, in conjunction with a semi-analytical scheme of
dynamic analysis in the reduced modal space. Even thought of easy numerical implementation, this approach may require
a large number of degrees of freedom, and the extension to the moving mass problem is not straightforward. Other
investigations have been also focused on more specific aspects of continuous beams under moving loads, namely
separation and re-attachment of vehicles [7], coupling conditions between adjacent spans [8] and identification problems
[9]. Indeed, the persistent interest of researchers and engineers in this topic is justified both by the challenging nature of
the governing equations [10] and also by the practical need of analysing the vibrations induced by high-speed trains
crossing light bridge structures (e.g. Refs. [11–13]).

In this paper, aimed at overcoming the limitations of the methods available in the literature, a novel technique for the
dynamic analysis of multi-span continuous beams traversed by moving forces and masses is proposed and numerically
validated. The basic idea is to take advantage of the component mode synthesis (CMS) method (e.g. Refs. [14–18]), i.e. a
substructure approach (SA) which proved to be particularly effective in treating continuous structures coupled with
moving systems [19]. To do this, in a first stage the continuous beam is ideally decomposed into a series of alternate
primary and secondary spans, whose BCs (boundary conditions) are conveniently selected; in a second stage, the
Lagrange’s equations of motion of the re-assembled continuous beam are derived, in which the kinematical compatibility
is automatically satisfied at the interface between adjacent spans. In comparison with other CMS variants, the proposed
approach lends itself to be easily automated, since the approximate modal shapes of the continuous beam are deduced
from the eigenfunctions of pinned–pinned, pinned–clamped and clamped–clamped homogeneous beams, which are
known in closed form [20]. The proposed SA has the additional advantage that the pertinent time-dependent matrices of
mass, stiffness and damping are simply obtained by collocating the corresponding elementary blocks for each span within
the global matrices; in turn, elementary blocks for primary and secondary subsystems are given in analytical form, which
further reduces the computational burden.

For the sake of generality, the formulation is presented for the case of a stream of multiple forces and masses
accelerating along the continuous beam, and the structural damping is also accounted for. Accuracy is demonstrated with
two numerical applications taken from the literature, whose results are compared to those of previously published studies
and conventional FEM (finite element method) analyses. A third numerical application with a platoon of high-speed
moving masses is used to highlight the practical importance of the inertial effects neglected by the moving force model.
Indeed, to the best of authors’ knowledge, commercial FEM codes currently available for structural engineering purposes
do not allow running dynamic analyses of bridges under a stream of moving masses.
2. Substructure approach (SA)

Let us consider the N-span Euler–Bernoulli continuous beam shown in Fig. 1a, where L and z are total length and global
abscissa along the structure. Aimed at enabling analyses of actual bridges and vehicles, in this study the continuous beam
is inhomogeneous (i.e. the cross section is allowed to vary with z), the positions of the intermediate supports are arbitrary,
and the nF moving forces travelling on the beam may have different intensity fi, velocity _xiðtÞ and acceleration €xiðtÞ, xiðtÞ

being the position of the generic i-th force (i=1,y,nF) at the time instant t.
The dynamic problem under consideration is ruled by the partial differential equation:

mðzÞ q
2

qt2
uðz; tÞþDðz; tÞþ

q2

qz2
kðzÞ q

2

qz2
uðz; tÞ

 !
¼
XnF

i ¼ 1

fidðz�xiðtÞÞ; (1)

with the following boundary conditions (BCs):

uð0; tÞ ¼ 0;
d2

dz2
uðz; tÞ z ¼ 0 ¼ 0j

uðL; tÞ ¼ 0;
d2

dz2
uðz; tÞ z ¼ L ¼ 0;j

u
�

zi; t
�
¼ 0; i¼ 2; . . . ;N�1: (2a2e)

The functions m(z) and k(z) in Eq. (1) are mass for unit length and flexural stiffness along the continuous beam,
respectively; u(z,t) is the time-dependent field of transverse displacements; D(z, t) is the internal damping force per unit
length. Moreover, the Dirac’s delta function d(z) in the right-hand side of Eq. (1) is defined as the formal derivative of the
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Fig. 1. Continuous beam under moving forces (a); secondary substructures with clamped ends at the position of the intermediate supports (b); primary

substructures with pinned ends (c).
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Heaviside’s unit step function U(z):

dðzÞ ¼
d

dz
UðzÞ; UðzÞ ¼

0 zo0
1

2
z¼ 0

1 z40

8>><
>>: (3a,b)

while zi in Eq. (2) is the abscissa of the i-th internal support (Figs. 1b and c). It is worth mentioning that when spans
become relatively short with respect to the depth of the continuous beam, the Euler–Bernoulli formulation may be
inappropriate, and one may need to switch to the Timoshenko’s theory of beams. This case is beyond the scope of the
present paper.
2.1. Decomposition into primary and secondary spans

An exact solution for the dynamic problem in hand can be obtained in just a few situations, e.g. when inertia and rigidity
do not vary along the structure (i.e. m(z) and k(z) are constants), spans of the bridge have the same length (i.e. Li=L/N, for
i=1,y,N) and all the moving loads do not accelerate/decelerate (i.e. €xiðzÞ ¼ 0, for i=1,y,nF). It follows that in most of actual
design situations an exact solution is not available, and hence structural engineers must rely on approximate methods of
analysis. Within this framework, the proposed formulation builds on the component mode synthesis (CMS) method, which
lends itself to deal with moving load problems (e.g. Ref. [19]). Specifically, in order to particularize the classical primary–
secondary substructure approach (SA), let the continuous beam be conveniently thought as composed of nS = int[(N+1)/2]
secondary spans (Fig. 1b) and nP=N�nS primary spans (Fig. 1c). As illustrated in these sketches, substructures are numbered
in such a way that indexes i=1,y,nS denote secondary spans, while indexes i=nS+1,y,nS+nP=N denote primary spans. It is
also shown that, according to our decomposition, secondary and primary components alternate along the continuous beam.
More precisely, the spans in odd position (first, third, and etcetera, from the left) are secondary substructures (Fig. 1b), while
those in even position (second, fourth, and etcetera, from the left) are primary substructures (Fig. 1c).

The BCs of the substructures are imposed as follows: (i) the ends of the continuous beam are pinned, since this is the
usual configuration in practice; (ii) the internal nodes at the position of the intermediate supports are assumed to be
clamped for the secondary spans (Fig. 1b) and pinned for the primary ones (Fig. 1c), that is a free-fixed primary–secondary
interface.
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Once the whole structure has been decomposed in N elementary spans, the time-dependent field of displacement, u(z,t),
can be represented as

uðz; tÞ ¼
XN

i ¼ 1

uiðz�zi; tÞwiðz�ziÞ; (4)

where ui(zi,t) is the deflection of the i-th span at local abscissa zi ¼ z�zi and time instant t, while wiðziÞ is the window
function for the i-th span (e.g. Ref. [21]):

wiðziÞ ¼UðziÞ�Uðzi�LiÞ ¼

1; 0ozioLi;

1

2
; zi ¼ 0 zi ¼ Li;

0; zio0 zi4L:

8>><
>>: (5)

It is worth mentioning that, given the numbering scheme of primary and secondary spans, the i-th abscissa zi in Eq. (4) can
be evaluated as

zi ¼

0; i¼ 1;Xi�1

k ¼ 1

ðLkþLnSþkÞ; 2r irnS;

zi�nS
þLi�nS

; nSþ1r irN;

8>>>><
>>>>:

(6)

Lk being the length of the k-th span (see Fig. 1).

2.2. Assumed local modes for primary spans

Once the whole continuous beam has been decomposed into N individual spans, the transverse displacements for the
generic i-th primary span (i=nS+1,y,N) can be expressed in the form:

uiðzi; tÞ ¼
Xmi�2

j ¼ 1

fi;jðziÞqi;jðtÞþfi;mi�1ðziÞqi;mi�1ðtÞþfi;mi
ðziÞqi;mi

ðtÞ ¼/T
i ðziÞ � qiðtÞ; (7)

where /iðziÞ ¼ ffi;1ðziÞ . . . fi;mi�2ðziÞjfi;mi�1ðziÞ fi;mi
ðziÞg

T is the array listing the mi shape functions assumed for the i-th
primary span, while qiðtÞ ¼ fqi;1ðtÞ . . . qi;mi�2ðtÞjqi;mi�1ðtÞ qi;mi

ðtÞgT is the array of the corresponding generalized
displacements. The array /iðziÞ has been partitioned in order to highlight the last two assumed modes, which are defined
differently with respect to the first ones. More precisely, among all the possible choices, we take as first (mi�2) assumed
modes the eigenfunctions of the homogenized beam having averaged values of mass for unit length, m i, and flexural
stiffness, k i:

m i ¼
r
Li

Z Li

0
AiðziÞdzi; k i ¼

E

Li

Z Li

0
JiðziÞdzi; (8a,b)

where r and E are mass density and Young’s modulus of the material, respectively, while Ai(zi) describes the variation of
the cross-sectional area along the i-th span, and Ji(zi) the corresponding second moment.

The shape functions fi;jðziÞ, then, are obtained as solution of the classical eigenproblem (j=1,2,y,mi�2):

k i
d4

dz4
i

fi;jðziÞ ¼o2
i;jm ifi;jðziÞ; (9)

with pinned–pinned BCs (see Fig. 1c):

fi;jð0Þ ¼ 0; fi;jðLiÞ ¼ 0;
d2fi;jðziÞ

dz2
i

�����
zi ¼ 0

¼ 0;
d2fi;jðziÞ

dz2
i

�����
zi ¼ Li

¼ 0; (10a2d)

and subjected to the ortho-normalization condition:

m i

Z Li

0
fi;jðziÞfi;kðziÞdzi ¼ dj;k; (11)

dj,k being the Kronecker’s delta symbol, equal to one when j=k, zero otherwise. Thus, the first assumed modes for the
primary spans turn out to be sinusoidal functions given by (i=nS+1,y,N; j=1,2,y,mi�2)

fi;jðziÞ ¼

ffiffiffiffiffiffiffiffiffi
2

m iLi

s
sin

jpzi

Li

� �
: (12)

For illustrative purposes, the first assumed mode of the first primary beam, namely the function fnSþ1;1ðznSþ1Þ, is shown
in Fig. 2c.
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Fig. 2. Reference sketch of the continuous beam (a); first eigenfunction selected as assumed local mode for the first primary span (c); influence functions

on the adjacent secondary spans, which re-establish the compatibility between primary and secondary substructures (b).

Fig. 3. Reference sketch of the continuous beam (a); last assumed local mode for the first primary span (c); influence functions on the adjacent secondary

span (b).
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Although for engineering purposes these sinusoidal functions are able to describe accurately the transverse deflection
along the i-th primary span, the bending moment (BM) diagram cannot be represented adequately without enlarging
properly the set of assumed modes. Indeed, consistently to the pinned–pinned BCs, the value of the BM associated with the
eigenfunctions of Eq. (12) is zero at the ends of the i-th primary span (i.e. both at zi=0 and at zi=Li), while in practice a peak
of the BM diagram is expected at the position of the intermediate supports in the actual continuous beam.

To overcome this flaw, the last two assumed modes in the array /iðziÞ for primary spans are chosen as the deformed
shapes of the homogenized spans with clamped–clamped BCs and subjected to a unit rotation alternatively at each of the
two ends. For the i-th primary span these two additional functions are solution of the following fourth-order differential
equation (j=mi�1, mi):

d4

dz4
i

fi;jðziÞ ¼ 0; (13)

with BCs:

fi;jð0Þ ¼ 0; fi;jðLiÞ ¼ 0;
dfi;jðziÞ

dzi

�����
zi ¼ 0

¼ dmi�1;j;
dfi;jðziÞ

dzi

�����
zi ¼ Li

¼ dmi ;j; (14a2d)

and subjected to the normalization condition:

mi

Z Li

0
½fi;jðziÞ�

2dzi ¼ 1: (15)

One can easily prove that the new complementary assumed modes take the cubic expressions:

fi;mi�1ðziÞ ¼

ffiffiffiffiffiffiffiffiffi
105

m iLi

s
1�

zi

Li

� �2 zi

Li
; fi;mi

ðziÞ ¼

ffiffiffiffiffiffiffiffiffi
105

miLi

s
1�

zi

Li

� �
zi

Li

� �2

: (16a,b)

The second of these functions is qualitatively shown in Fig. 3c, where the righ-hand side end of the first primary beam
(i=nS+1) is subjected to an unitary clockwise rotation (j=1 in the sketch).
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2.3. Assumed local modes for secondary spans

According to the component mode synthesis (CMS) method (e.g. Refs. [14–18]), the field of displacement for the generic
secondary substructure is expressed as the superposition of two contributions. In the problem in hand, the first
contribution describes the transverse displacements of the i-th secondary span assumed to be clamped at the internal
supports, while the second contribution satisfies the compatibility conditions with adjacent primary spans:

uiðzi; tÞ ¼
Xmi

j ¼ 1

fi;jðziÞqi;jðtÞþ
XN

k ¼ nSþ1

Xmk

j ¼ 1

ci;k;jðziÞqk;jðtÞ ¼/T
i ðziÞ � qiðtÞþ

XN

k ¼ nS þ1

wT
i;kðziÞ � qkðtÞ; (17)

where, the mi-dimensional arrays /iðziÞ ¼ ffi;1ðziÞ . . . fi;mi
ðziÞg

T and qiðtÞ ¼ fqi;1ðtÞ . . . qi;mi
ðtÞgT list shape functions and

generalized displacements for the i-th span, respectively, while wi;kðziÞ ¼ fci;k;1ðziÞ . . . ci;k;mk
ðziÞg

T is the array collecting the
mk influence functions of the primary spans.

Similarly to the previous subsection, the assumed modes fi;jðziÞ are the eigenfunctions of the homogenized span (see
Eqs. (8)), which are solution of the same eigenproblem of Eq. (9), but with different BCs (see Fig. 1b). Specifically, for an
inner secondary span, the BCs read:

fi;jð0Þ ¼ 0; fi;jðLiÞ ¼ 0;
dfi;jðziÞ

dzi

�����
zi ¼ 0

¼
dfi;jðziÞ

dzi

�����
zi ¼ Li

¼ 0; (18a2d)

and the solution can be posed in the form [20]:

fi;jðziÞ ¼
ai;j

sinhðbi;jLiÞ�sinðbi;jLiÞ
� coshðbi;jziÞsinhðbi;jLiÞ�coshðbi;jLiÞsinhðbi;jziÞ

n

�cosðbi;jziÞsinhðbi;jLiÞþcosðbi;jLiÞsinhðbi;jziÞ�coshðbi;jziÞsinðbi;jLiÞ

þcoshðbi;jLiÞsinðbi;jziÞþcosðbi;jziÞsinðbi;jLiÞþcosðbi;jLiÞsinðbi;jziÞ

o
; (19)

where the coefficient bi,j is the j-th non-trivial root of the characteristic equation:

cosðbi;jLiÞ ¼
1

coshðbi;jLiÞ
; (20)

while the value of the normalization coefficient ai,j is computed in order to satisfy the condition:

m i

Z Li

0
½fi;jðziÞ�

2dzi ¼ 1: (21)

It is worth noting that, although more complicated than the analytical expressions reported in many textbooks of
structural dynamics, Eq. (19) virtually eliminates the round-off errors in the floating-point math imposed by digital
computers [20], which make the classical expressions not suitable for numerical computations. For the sake of
completeness, the first twelve roots of Eq. (20) are listed in Table 1 (top).

As shown in Fig. 1b, the BCs for the left-hand side span (i=1) are pinned–clamped:

f1;jð0Þ ¼ 0; f1;jðL1Þ ¼ 0;
d2f1;jðz1Þ

dz2
1

�����
z1 ¼ 0

¼ 0;
df1;jðz1Þ

dz1

�����
z1 ¼ L1

¼ 0: (22a2d)
Table 1
First non-trivial roots of the characteristic equations for homogeneous clamped–clamped (Eq. (20)) and pinned-clamped (Eq. (24)) beams.

j bi,jLi j bi,jLi j bi,jLi

Clamped–clamped

1 4.730041 5 17.278760 9 29.845130

2 7.853205 6 20.420352 10 32.986723

3 10.995608 7 23.561945 11 36.128316

4 14.137165 8 26.703538 12 39.269908

Pinned–clamped

1 1.875104 5 14.137168 9 26.703538

2 4.694091 6 17.278760 10 29.845130

3 7.854757 7 20.420352 11 32.986723

4 10.995541 8 23.561945 12 36.128316
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Therefore, the solution of Eq. (9) for this span can be posed in the form [20]:

f1;jðziÞ ¼
a1;j

sinhðb1;jL1Þþsinðb1;jL1Þ
� coshðb1;jL1�b1;jz1Þsinhðb1;jL1Þ�coshðb1;jL1Þsinhðb1;jL1�b1;jz1Þ

�cosðb1;jL1�b1;jz1Þsinhðb1;jL1Þ�cosðb1;jL1Þsinhðb1;jL1�b1;jz1Þþcos hðb1;jL1�b1;jz1Þsinðb1;jL1Þ

þcoshðb1;jL1Þsinðb1;jL1�b1;jz1Þ�cosðb1;jL1�b1;jz1Þsinðb1;jL1Þþcosðb1;jL1Þsinðb1;jL1�b1;jz1Þg; (23)

in which b1,j is the j-th root of the characteristic equation:

cosðb1;jL1Þ ¼ �
1

coshðb1;jL1Þ
; (24)

and again a1,j is the normalization constant satisfying the condition:

m1

Z Li

0
½f1;jðz1Þ�

2dz1 ¼ 1: (25)

The first twelve roots of Eq. (24) are listed in Table 1 (bottom).
When the total number of spans N is odd, the last secondary span has mirrored BCs with respect to the first one, i.e.

clamped–pinned instead of pinned–clamped. In this case the assumed modes fnS ;j
ðznS
Þ can be directly derived from

Eqs. (23)–(25), valid for the first secondary span, and are not reported here.
For illustrative purposes, the first assumed modes for lateral and internal primary beams, namely the functions f1;1ðz1Þ

and f2;1ðz2Þ, are shown in Fig. 4b.
2.4. Influence functions of primary spans on secondary spans

In order to complete the representation of the transverse displacements experienced by secondary spans, the influence
functions ci;k;jðziÞ appearing in Eq. (17) must be defined. Since the purpose of these additional assumed modes is to
re-establish the compatibility among adjacent spans, ci;k;jðziÞ is in our model the static deformed shapes of the i-th
secondary span (i=1,y,nS) obtained by imposing the compatibility in terms of rotation with the j-th assumed mode
(j=1,y,mk) of the k-th primary span (k=nS+1,y,N). Accordingly, when i-th and k-th spans are not adjacent, ci;k;jðziÞ � 0.
Otherwise, ci;k;jðziÞ can be sought as solution of the following fourth-order differential equation:

d2

dz2
i

JiðziÞ
d2

dz2
i

ci;k;jðziÞ

 !
¼ 0: (26)

For i=k�nS, i-th secondary span precedes k-th primary span (e.g. i=1 and k=nS+1), and the compatibility must be enforced
at the right-hand side of the secondary span:

ci;k;jðLiÞ ¼ 0;
dci;k;jðziÞ

dzi

�����
zi ¼ Li

¼
dfk;jðzkÞ

dzk

�����
zk ¼ 0

: (27a,b)

On the contrary, for i=k�nS+1, i-th secondary span succeeds k-th primary span (e.g. i=2 and k=nS+1), and hence the
compatibility must be re-established at the left-hand side of the secondary span:

ci;k;jð0Þ ¼ 0;
dci;k;jðziÞ

dzi

�����
zi ¼ 0

¼
dfk;jðzkÞ

dzk

�����
zk ¼ Lk

: (28a,b)

If the Ji(zi) is either constant (homogeneous span) or a polynomial function of the local abscissa zi, Eq. (26) can be solved in
closed form; otherwise, a numerical method of solution can be used.

In order to visualize the compatibility conditions between primary and secondary spans, the pertinent primary–
secondary influence functions are sketched in Figs. 2b and 3b.
Fig. 4. Reference sketch of the continuous beam (a); first eigenfunctions selected as assumed local modes for first (lateral) and third (internal) secondary

spans (b).
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3. Lagrange’s equations of motion: moving force problem

In the previous section, the assumed modes for each span of the continuous beam have been presented. These local trial
functions approximate the actual field of transverse displacements throughout the structure, and automatically satisfy the
global BCs for the whole continuous beam along with the kinematical compatibility between adjacent spans. In order to
derive the equations of motion for the entire structure, let us consider the Lagrangian function L (e.g. Refs. [22–24]) for the
dynamic system in hand:

L ¼ T�V ; (29)

where the explicit dependence on time t has been omitted in order to simplify the notation. By exploiting Eq. (4), kinetic
energy T and potential energy V in the right-hand side of Eq. (29) can be expressed as the sum of N contributions, one for
each span:

T ¼
1

2

Z L

0
mðzÞ @

@t
uðz; tÞ

� 	2

dz¼
1

2
r
XN

i ¼ 1

Z Li

0
AiðziÞ

@

@t
uiðzi; tÞ

� 	2

dzi; (30)

V ¼
1

2

Z Li

0
kðzÞ q2

qz2
uðz; tÞ

" #2

dz�g

Z Li

0
mðzÞuðz; tÞdz

8<
:

9=
;¼ 1

2

XN

i ¼ 1

E

Z Li

0
JiðziÞ

q2

qz2
i

uiðzi; tÞ

" #2

dzi�gr
Z Li

0
AiðziÞuiðzi; tÞdzi

8<
:

9=
;;
(31)

where g is the acceleration of gravity, while the functions m(z) and k(z) have been represented similarly to Eq. (4):

mðzÞ ¼ r
XN

i ¼ 1

Aiðz�ziÞwiðz�ziÞ; kðzÞ ¼ E
XN

i ¼ 1

Jiðz�ziÞwiðz�ziÞ: (32a,b)

According to Eqs. (7) and (17), the deformed shape of the continuous beam at a given time instant t depends on the
generalized coordinates listed in the N arrays qi(t), with i=1, y, N. Therefore, the Lagrange’s equations of motion for the
i-th span take the form:

d

dt

q
q _qi

L
� 	

�
q
qqi

Lþ q
q _q i

R¼Q iðtÞ; i¼ 1;2; . . . ;N; (33)

in which R is the so-called Rayleigh’s dissipation function (e.g. Refs. [22,24]), i.e. a quadratic form of the arrays _q iðtÞ, and
Q iðtÞ is the generalized excitation associated with the i-th arrays qi(t) for the moving force problem:

Q iðtÞ ¼
XnF

k ¼ 1

fk
q
qqi

uðxkðtÞ; tÞ ¼
XnF

k ¼ 1

XN

i ¼ 1

fkwiðxkðtÞ�ziÞ
q
qqi

uiðxkðtÞ�zi; tÞ: (34)

Upon substitution of Eqs. (7) and (17) into Eqs. (33) and (34), the equations of motion for the secondary spans can be
written as (i=1, y, nS):

mðSSÞ
i;i �

€qiðtÞþ
XN

j ¼ nSþ1

mðSPÞ
i;j �

€qjðtÞþ
XnS

j ¼ 1

cðSSÞ
i;j �

_q jðtÞþ
XN

j ¼ nSþ1

cðSPÞ
i;j �

_q jðtÞþk
ðSSÞ

i;i � qiðtÞ ¼ f
ðSÞ

i ðtÞ; (35)

while for the nP primary spans (i=nS+1, y, N):

XN

j ¼ nSþ1

mðPPÞ
i;j �

€q jðtÞþ
XnS

j ¼ 1

mðPSÞ
i;j �

€q jðtÞþ
XN

j ¼ nSþ1

cðPPÞ
i;j �

_q jðtÞþ
XnS

j ¼ 1

cðPSÞ
i;j �

_q jðtÞþ
XN

j ¼ nSþ1

k
ðPPÞ

i;j � qjðtÞ ¼ f
ðPÞ

i ðtÞ: (36)

In Eqs. (35) and (36), the symbols m, c and k denote mass, damping and stiffness matrices, respectively; the symbols
f denote the loading vectors; the superscripts S and P stand for secondary and primary spans, respectively. Once the super-
array qðtÞ, listing all the M¼

PN
i ¼ 1 mi generalized coordinates of the N spans has been introduced:

qðtÞ ¼



qT

1ðtÞ . . . qT
nS
ðtÞjqT

nSþ1ðtÞ . . . qT
NðtÞ

�T

; (37)

Eqs. (35) and (36) can be arranged in the more compact form:

M � €qðtÞþC � _qðtÞþK � qðtÞ ¼ f ðtÞ: (38)
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M-dimensional matrix of inertia, M, stiffness matrix, K, and loading vector, f ðtÞ, can be automatically assembled starting
from the corresponding quantities appearing in Eqs. (35) and (36), whose definition is given is Appendix A:

M ¼

& & ^ c

mðSSÞ
i;i � � � mðSPÞ

i;j � � �

& c ^ &

& ^ c

sym � � � mðPPÞ
i;j � � �

c ^ &

2
66666666664

3
77777777775

; (39a)

K ¼

&

k
ðSSÞ

i;i

&

& ^ c

� � � k
ðPPÞ

i;j � � �

c ^ &

2
66666666664

3
77777777775
; f ðtÞ ¼

^

f
ðSÞ

i ðtÞ

^

^

f
ðPÞ

i ðtÞ

^

2
66666666664

3
77777777775
; (39b,c)

while, in order to have the same viscous damping ratio z in all the modes of vibration, the damping matrix, C, can be
defined as follows:

C ¼ 2zM � A �X � A
T
�M; (40)

where spectral matrix X and modal matrix A are solution of the eigenproblem:

K � A ¼M � A �X
2
; (41)

with the normalization condition A
T
�M � A ¼ IM , IM being the identity matrix of size M.

It is worth noting that the particular choice of the shape functions fi;jðziÞ and ci;k;jðziÞ for the N spans implies that the
stiffness matrix of the continuous beam, K, is block-diagonal (see. Eq. (39b)), i.e. there is no coupling in terms of stiffness
coefficients between the generalized displacements associated with secondary and primary spans. Moreover, the ðSSÞ
upper-left blocks of both mass and stiffness matrices are block-diagonal itself (see. Eqs. (39a) and (39b)), i.e. there is no
coupling in terms of inertial and stiffness coefficients between different secondary spans.

Once the matrices M, C and K have been assembled along with the loading array f ðtÞ, the dynamic response of the
continuous beam can be obtained: first, by solving numerically Eq. (38), e.g. with the unconditionally stable Newmark’s b
method [25] with parameters b=1/4 and g=1/2 (constant average acceleration method); second, by projecting the time
histories of generalized coordinates listed in the super-array q(t), onto the actual fields of time-dependent transverse
displacements and internal forces.

Upon substitution of Eqs. (7) and (17) into Eq. (4), and conveniently rearranging the resulting expression, the time
history of deflections experienced by the continuous beam can be represented in a unified form as

uðz; tÞ ¼
XN

i ¼ 1

wiðz�ziÞ/
T
i ðz�ziÞ � qiðtÞþ

XnS

i ¼ 1

XN

k ¼ nSþ1

wiðz�ziÞw
T
i;kðz�ziÞ � qkðtÞ; (42)

which is valid for both primary and secondary spans. Bending moment (BM) Mðz; tÞ and shear force (SF) Vðz; tÞ along the
continuous beam can be evaluated according to the Euler–Bernoulli theory of slender beams in bending. After simple
manipulations, the internal forces take expressions similar to Eq. (42):

Mðz; tÞ ¼�E

0
@XN

i ¼ 1

wiðz�ziÞfJiðz�ziÞ/i
00 ðz�ziÞg

T � qiðtÞþ
XnS

i ¼ 1

XN

k ¼ nSþ1

wiðz�ziÞfJiðz�ziÞwi;k
00 ðz�ziÞg

T � qkðtÞ

1
A; (43a)

Vðz; tÞ ¼�E

0
@XN

i ¼ 1

wiðz�ziÞfJiðz�ziÞ/
000

i ðz�ziÞþ Ji
0 ðz�ziÞ/i

00 ðz�ziÞg
T � qiðtÞ

þ
XnS

i ¼ 1

XN

k ¼ nSþ1

wiðz�ziÞfJiðz�ziÞw
000

i;kðz�ziÞþ Ji
0 ðz�ziÞwi;k

00 ðz�ziÞg
T � qkðtÞ

1
A; (43b)

where the prime denotes derivation with respect to the abscissa z.
The accuracy in the evaluation of BM and SF can be further improved by using a proper modal correction method

(e.g. Ref. [26]).
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4. Lagrange’s equations of motion: moving mass problem

In previous section, the equations of motion of a continuous beam carrying nF moving forces have been derived.
Although very popular for practical applications, the moving force model is the crudest approximation known to the
literature for studying the vibration of a bridge traversed by vehicles. When the inertia of vehicles cannot be regarded as
small with respect to the mass of the bridge, however, moving forces should be substituted by a set of corresponding
moving masses (e.g. Refs. [27–29]). Unfortunately, this improved representation of moving loads complicates significantly
the governing equations [10], and hence conventional FEM (finite element method) codes do not allow this type of
analysis. Aim of this section is to derive the equations of motion of a continuous beam subjected to a platoon of nM moving
masses, in so showing the versatility of the proposed primary–secondary SA.

With respect to the previous case, total kinetic energy and total potential energy include now the additional
contributions due to the nM moving masses:

~T ¼ Tþ
XnM

k ¼ 1

DTk; ~V ¼ V þ
XnM

k ¼ 1

DVk: (44a,b)

The increment of the total kinetic energy due to the k-th mass is given by

DTk ¼
1

2
Mk

_x
2

k ðtÞþ
q
qt

uðxkðtÞ; tÞþ
_xkðtÞ

q
qz

uðxkðtÞ; tÞ

� �2
" #

¼
1

2
Mk

_x
2

k ðtÞþ
XN

i ¼ 1

q
qt

uiðxkðtÞ�zi; tÞþ
_xkðtÞ

q
qzi

uiðxkðtÞ�zi; tÞ

� �2

wiðxkðtÞ�ziÞ

" #
; (45)

in which Mk ¼ fk=g is the k-th moving mass, _xkðtÞ is the horizontal component of its velocity, while the vertical component
is the sum of two terms, which are related to the partial derivatives of the beam’s transverse displacements with respect to
time t and abscissa z, respectively.

The increment of the total potential energy due to the k-th mass is given by

DVk ¼�gMkuðxkðtÞ; tÞ ¼ �gMk

XN

i ¼ 1

uiðxkðtÞ�zi; tÞwiðxkðtÞ�ziÞ: (46)

Furthermore, since there are no external forces acting on the system (i.e. the moving masses must be regarded as part of
the dynamic system rather than external excitations), the right-hand side of Eq. (33) vanishes:

~Q iðtÞ ¼ 0: (47)

Taking into account Eqs. (44)–(47), the Lagrange’s equations of motion for the moving mass problem lead to

~MðtÞ � €qðtÞþ ~CðtÞ � _qðtÞþ ~KðtÞ � qðtÞ ¼ ~f ðtÞ; (48)

in which mass, damping and stiffness matrices are those provided in the previous section for the moving forces,
incremented by the time-dependent sparse matrices DMðtÞ, DCðtÞ and DKðtÞ , respectively, which take into account the
inertial effects due to the moving masses. That is, ~MðtÞ ¼MþDMðtÞ, ~KðtÞ ¼KþDKðtÞ and ~CðtÞ ¼ CþDCðtÞ. Moreover, the
loading vector, ~f ðtÞ is different too. The new quantities can be assembled as

DMðtÞ ¼

& & ^ c

DmðSSÞ
i;i ðtÞ � � � DmðSPÞ

i;j ðtÞ � � �

& c ^ &

& ^ c

sym � � � DmðPPÞ
i;j ðtÞ � � �

c ^ &

2
66666666664

3
77777777775

; (49a)

DCðtÞ ¼

& & ^ c

DcðSSÞ
i;i ðtÞ � � � DcðSPÞ

i;j ðtÞ � � �

& c ^ &

& ^ c & ^ c

� � � DcðPSÞ
i;j ðtÞ � � � � � � DcðPPÞ

i;j ðtÞ � � �

c ^ & c ^ &

2
66666666664

3
77777777775

; (49b)
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DKðtÞ ¼

& & ^ c

DkðSSÞ
i;i ðtÞ � � � DkðSPÞ

i;j ðtÞ � � �

& c ^ &

& ^ c & ^ c

� � � DkðPSÞ
i;j ðtÞ � � � � � � DkðPPÞ

i;j ðtÞ � � �

c ^ & c ^ &

2
66666666664

3
77777777775
; ~f ðtÞ ¼

^

~f
ðSÞ

i ðtÞ

^

^

~f
ðPÞ

i ðtÞ

^

2
66666666664

3
77777777775
; (49c,d)

where the time-dependent blocks Dm, Dc, Dk and ~f are defined in Appendix B. It is worth emphasizing that damping and
stiffness matrices in the moving mass problem are no more symmetric. This counterintuitive result is due to the fact that
the modification blocks Dc and Dk are not actual damping and stiffness contributions, but take into account the dynamic
effects associated with velocity and acceleration of the moving masses (see Eqs. (B.2) and (B.3)). Importantly, the latter
terms must be considered as exact contributions to the equations of motion, since the only approximation in deriving
Eq. (48) for the moving mass problem is the representation of the transverse displacements for the continuous beam. Once
the assumed modes are selected for the N spans, no further approximations are introduced in the solution.

5. Numerical applications

For validation purposes, the proposed SA (substructure approach) has been applied to study the vibration of two
inhomogeneous multiply supported beams considered in the papers by Zheng et al. [3] (examples 2 and 3), Dugush and
Eisenberger [5] (examples 1 and 2) and Martı́nez-Castro et al. [6] (tests 1 and 2). In the first two numerical applications
reported herein, the accuracy of the proposed technique of dynamic analysis has been verified by comparing the results in
terms of modal properties and moving force problem with those previously published in the literature, along with those
delivered by a commercial FEM (finite element method) software (namely SAP2000, by Computers & Structures [30]).
Aimed at showing versatility of the proposed SA and possible inaccuracy of the simplistic moving force model, a platoon of
high-speed masses travelling along a non-prismatic continuous beam has been studied in the third numerical example.

5.1. Undamped three-span stepped beam under single moving force

In the first numerical application, the three-span continuous beam shown in Fig. 5 has been considered. The length
of each span is Li=L/3=20 m; the mass per unit length is constant, m=1,000 kg/m, but the central span has double the
flexural rigidity of the side spans, k1=k2=k3/2=1,960 MN m2. Similar to Refs. [3,5,6], the structure is assumed to be
undamped (z=0).

In a first stage, the approximate eigenproperties of the continuous beam have been computed via Eq. (41), where the
matrices M and K have been assembled with seven assumed modes for each span (i.e. mi=7 and M=21). The inspection of
Table 2 reveals that the first five natural periods of vibration given by the proposed SA compare perfectly to the exact
Fig. 5. Three-span stepped beam under single moving force.

Table 2
First modal periods of vibration of the stepped beam shown in Fig. 5.

Mode Period (s)

Proposed SA Ref. [5] SAP2000

1 0.161 0.161 0.161

2 0.131 0.131 0.131

3 0.083 0.083 0.083

4 0.041 0.041 0.041

5 0.037 0.037 0.037

Comparison between proposed substructure approach (SA), exact value reported in Ref. [5] and conventional FEM analysis with SAP2000.
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values provided in Ref. [5] and with the approximate values furnished by SAP2000 through a FEM model with 60 Euler–
Bernoulli beam elements. Figs. 6 and 7 shows that proposed SA and FEM analysis are in perfect agreement in terms of
modal shapes and corresponding modal bending moment (BM) diagrams, respectively. Fig. 7 highlights also the effect of
the correction introduced for the central span (primary substructure) with the additional assumed modes of Eq. (16).
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Indeed, a SA without this correction fails to describe accurately the BM diagram (dashed lines); on the contrary, the
proposed SA with the correcting assumed modes (circles) is able to recover the FEM solution (solid lines).

In a second stage, the proposed SA has been used to compute the dynamic response due to a single force f1 ¼ 9:81 kN
moving at constant speed _x1ðtÞ ¼ 31 m=sðffi122 km=hÞ, and the results so obtained have been compared with those given
by the FEM software. Three locations have been considered in the comparison, denoted as positions 1 (centre of the first
span), 2 (first internal support) and 3 (centre of the second span) in the sketch of Fig. 5. The agreement in terms of time
histories of transverse deflection at Sections 1 and 3 (Fig. 8) and BM at Sections 2 and 3 (Fig. 9) is almost perfect. Fig. 9a
shows also that the accuracy in terms of BM at the position of the first internal support is completely lost without the
correction for the primary span (dashed lines), in so confirming the importance to introduce the additional assumed modes
of Eq. (16) for primary spans.

5.2. Undamped three-span haunched beam under single moving force

In the second application, the three-span haunched beam shown in Fig. 10 has been studied. Mass density,
r¼ 2;400 kg=m3, and Young’s modulus, E¼ 30 GPa, do not vary along the structure. The cross section is rectangular, with
constant width b=0.50 m and abscissa-dependent depth h(z) varying linearly from 1.00 to 1.60 m close to the internal
supports. Accordingly, the mass per unit length m(z) varies from mmin ¼ 1;200 kg=m to mmax ¼ 1;920 kg=m, while the
flexural stiffness kðzÞ varies from kmin ¼ 1;250 MN m2 to kmax ¼ 5;120 MN m2.

The length of the side (secondary) spans is L1=L2=18 m, whereas the length of the central (primary) span is L3=24 m.
It is worth noting that subscripts 1, 2 and 3 are here related to the numbering scheme of substructures reported
in Subsection 2.1, so that the actual sequence of span’s numbers in the continuous beam, from the left to the right,
is 1 (secondary), 3 (primary) and 2 (secondary).

The structure vibrate under a single force f1=100 kN travelling at constant speed _x1ðtÞ ¼ 17 m=sðffi61 km=hÞ. Following
Refs. [3,5,6], the damping is neglected (z=0).

The numerical investigations carried out for this second example confirm the effectiveness of the proposed SA. First, by
using seven assumed modes for each span (i.e. mi=7 and M=21), the first five natural periods of vibration of the continuous
beam turn out to be very close to exact values reported in Ref. [5] and approximate values given by the FEM model built on
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Fig. 10. Three-span haunched beam under single moving force.

Table 3
First modal periods of vibration of the haunched beam shown in Fig. 10.

Mode Period (s)

Proposed SA Ref. [5] SAP2000

1 0.255 0.255 0.254

2 0.150 0.150 0.149

3 0.108 0.108 0.106

4 0.063 0.063 0.062

5 0.043 0.043 0.043

Comparison between proposed substructure approach (SA), exact value reported in Ref. [5] and conventional FEM analysis with SAP2000.
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SAP2000 with 120 beam elements (see Table 3). Second, also in this case modal shapes (Fig. 11) and corresponding modal
BM diagrams (Fig. 12) delivered by proposed SA (circles) and FEM model (solid lines) compare very well, and also in this
case the correction introduced with the additional assumed modes of Eq. (16) is crucial in recovering the correct BM
diagrams (i.e. the dashed lines plotted in Fig. 12 without this correction are unacceptable for engineering applications).
This result is confirmed by Fig. 13, where the BM diagrams for two time instants of the forced vibration are shown.
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It emerges that the SA without correction (dashed lines) fails to predict the BM at the position of the internal supports,
while proposed SA (circles) and FEM model (solid lines) are always in excellent agreement.
5.3. Damped three-span haunched beam under a platoon of moving masses

In the third numerical application, moving force model (Section 3) and moving mass model (Section 4) have been
compared, aimed at highlighting with an example the unconservative results which can be obtained when the inherent
inertia of the moving loads is neglected in a realistic bridge engineering situation. To do this, the same three-span
haunched beam of the previous subsection has been studied under a platoon of three identical moving masses Mi (Fig. 14),
all having the same speed _xiðtÞ ¼ 85 m=sðffi306 km=hÞ, which falls within the design range for actual high-speed railway
bridges. The first mass enters the continuous beam at t=0, while the other two masses keep the same relative distance of
6 m. The equivalent viscous damping of the structure is assumed to be z=0.01 in all the modes of vibration.

Dynamic analyses have been carried out with three different intensities of the moving loads, i.e. three different platoons
of moving loads have been considered with equal masses Mi of 331.2, 1,656 and 3,312 kg; the corresponding dimensionless
ratios between single moving mass Mi and mass of the central span ð

R L3

0 m3ðz3Þdz3Þ are rM=1.5 and 10 percent, respec-
tively. Fig. 15 shows the results of the moving mass model in terms of dimensionless transverse displacement
d� ¼ 48 d kmin=ðM1 g L3

3Þ and dimensionless BM M� ¼ 4M=ðM1 g L3Þ at the middle position of the central span, which are
two among the most important design parameters in practice. For comparison purposes, the results delivered by the
corresponding moving force model (i.e. a group of three moving forces) are also displayed. It emerges that when the mass
ratio is low (rM=1 percent, circles), the moving force model (solid lines) is adequate; indeed, when rM tends to zero, the
dynamic modifications DMðtÞ, DCðtÞ and DKðtÞ of mass, damping and stiffness matrices (Eqs. (49)) tends to become
negligible with respect to the time-independent terms M, C and K (Eqs. (39) and (41)), and the moving mass model tends
to offer the same results as the moving force model. On the contrary, when the mass ratio increases to rM=5 percent
(dashed lines) and to rM=10 percent (dotted lines), the use of mass-less moving forces leads to unconservative results, and
the inaccuracy can be as large as 8.8 percent for rM=5 percent and 18.8 percent for rM=10 percent. It is worth noting that,
according to the analytical expressions of damping and stiffness modifications provided in Appendix B (Eqs. (B.2) and
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Fig. 15. Time history of dimensionless transverse deflection (a) and bending moment (b) experienced at the middle position of the central span in the

haunched beam of Fig. 14.
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(B.3)), this inaccuracy tends to increase with velocity and acceleration of the moving loads; as a consequence, the moving
mass model seems to be much more appropriate when high-speed railway bridges are dealt with.
6. Concluding remarks

A novel substructure approach (SA) has been presented for the dynamic analysis of multiply supported slender
(i.e. Euler–Bernoulli) continuous beams with varying cross section and subjected to a stream of moving loads. Based on the
ideal decomposition of the whole structure into a chain of alternate primary and secondary spans, the proposed
formulation builds on a special variant of the component mode synthesis (CMS) method, in which the assumed local
modes for each span are taken as the exact modal shapes of the homogenized span with appropriate boundary conditions
(BCs). The set of sinusoidal modes for primary pinned–pinned spans is conveniently enlarged with two cubic functions in
order to represent the peak of the bending moment (BM) at the position of the intermediate supports, while for internal
and side secondary spans the assumed modes are the eigenfunctions of beams with clamped–clamped and pinned–
clamped BCs, respectively. The compatibility between adjacent spans is re-enforced with the help of suitable primary–
secondary influence functions. (Section 2)

The Lagrange’s equations of motion of the re-assembled continuous beam have been derived in the case where
the moving loads are modelled either as moving forces (Section 3 and Appendix A) or moving masses (Section 4 and
Appendix B), i.e. either by neglecting or including in the dynamic analysis the inherent inertia of the moving loads. In both
cases the proposed formulation lends itself to be easily automated, since mass, damping and stiffness matrices are
partitioned in elementary blocks, whose analytical expressions are provided in the Appendixes. It is shown that mass,
damping and stiffness matrices in the moving mass model can be obtained from the analogous quantities in the moving
force model (Appendix A) with some time-dependent modifications (Appendix B). Interestingly, while the mass matrix is
always symmetric, damping and stiffness matrices lose this property in the moving mass model since the corresponding
modifications do not represent actual dissipations and rigidities, but the inertial effects associated with velocity and
acceleration of the moving masses.

Two numerical applications with the moving force model demonstrate that the results obtained with the proposed SA
are in excellent agreement with those of previously published investigations, along with those delivered by a standard FEM
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(finite element method) software. A third numerical application with the moving mass model shows the versatility of the
proposed formulation, and is also used to quantify the possible inaccuracy of the moving force model.
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Appendix A. Mass, stiffness and loading terms in the moving force problem

The mass sub-matrices in Eq. (39) can be evaluated through the following integrals:

mðSSÞ
i;i ¼ r

Z Li
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where the superscripts (P) and (S) stand for primary and secondary spans, respectively.
The stiffness sub-matrices are given by
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Finally, the loading terms are so defined:
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Appendix B. Mass, stiffness and loading terms in the moving mass problem

The mass sub-matrices in Eqs. (49) are given by
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The damping-like sub-matrices can be evaluated through the following summations:

DcðSSÞ
i;i ðtÞ ¼ 2

XnM

k ¼ 1

Mk
_xkðtÞ/iðxkðtÞ�ziÞ � ð/i

0 ðxkðtÞ�ziÞÞ
TwiðxkðtÞ�ziÞ; (B.2a)

DcðSPÞ
i;j ðtÞ ¼ 2

XnM

k ¼ 1

Mk
_xkðtÞ/iðxkðtÞ�ziÞ � fwi;j

0 ðxkðtÞ�ziÞg
TwiðxkðtÞ�ziÞ; (B.2b)

DcðPSÞ
i;j ðtÞ ¼ 2

XnM

k ¼ 1

Mk
_xkðtÞwj;iðxkðtÞ�zjÞ � f/j

0 ðxkðtÞ�zjÞg
TwjðxkðtÞ�zjÞ; (B.2c)

DcðPPÞ
i;j ðtÞ ¼

2
42
XnM

k ¼ 1

Mk
_xkðtÞ/iðxkðtÞ�ziÞ � f/i

0 ðxkðtÞ�ziÞg
TwiðxkðtÞ�ziÞ

3
5dij

þ2
XnM

k ¼ 1

XnS

r ¼ 1

Mk
_xkðtÞwr;iðxkðtÞ�zrÞ � fwr;j

0 ðxkðtÞ�zrÞg
TwrðxkðtÞ�zrÞ: (B.2d)

The stiffness-like sub-matrices take the form:
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Finally, the loading terms are so defined
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where fk=Mkg.

References

[1] H.P. Lee, Dynamic response of a beam with intermediate point constraints subjected to a moving load, Journal of Sound and Vibration 171 (1994)
361–368.

[2] H.P. Lee, Dynamic response of a beam on multiple supports with a moving mass, Structural Engineering and Mechanics 4 (1996) 303–312.
[3] D.Y. Zheng, Y.K. Cheung, F.T.K. Au, Y.S. Cheng, Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration

functions, Journal of Sound and Vibration 212 (1998) 455–467.
[4] M. Ichikawa, Y. Miyakawa, A. Matsuda, Vibration analysis of the continuous beam subjected to a moving mass, Journal of Sound and Vibration 230

(2000) 493–506.
[5] Y.A. Dugush, M. Eisenberger, Vibrations of non-uniform continuous beams under moving loads, Journal of Sound and Vibration 254 (2002) 911–926.
[6] A.E. Martı́nez-Castro, P. Museros, A. Castello-Linares, Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli-Euler beams

traversed by moving loads, Journal of Sound and Vibration 294 (2006) 278–297.
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