
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 3304–3318
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Analysis of wave propagation in a thin composite cylinder with
periodic axial and ring stiffeners using periodic structure theory
Sungmin Lee a,�, Nickolas Vlahopoulos b, Anthony M. Waas c

a Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
b Department of Naval Architecture and Marine Engineering/Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2145, USA
c Department of Aerospace Engineering/Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2140, USA
a r t i c l e i n f o

Article history:

Received 14 May 2009

Received in revised form

22 December 2009

Accepted 23 February 2010
Handling Editor: D. Juve
mode or axial half-wave number. The propagation constants corresponding to several
Available online 25 March 2010
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.02.023

responding author. Tel.: +1 734 846 5027.

ail address: ohbang@umich.edu (S. Lee).
a b s t r a c t

Wave propagation characteristics of a thin composite cylinder stiffened by periodically

spaced ring frames and axial stringers are investigated by an analytical method using

periodic structure theory. It is used for calculating propagation constants in axial and

circumferential directions of the cylindrical shell subject to a given circumferential

different circumferential modes and/or half-wave numbers are combined to determine

the vibrational energy ratios between adjacent basic structural elements of the two-

dimensional periodic structure. Vibration analyses to validate the theoretical develop-

ment have been carried out on sufficiently detailed finite element model of the same

dimension and configuration as the stiffened cylinder and very good agreement is

obtained between the analytical and the dense finite element results. The effects of shell

material properties and the length of each periodic element on the wave propagation

characteristics are also examined based on the current analytical approach.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It is often found that an airplane or a rotorcraft fuselage consists of thin composite cylindrical shells with orthogonal
stiffeners which are usually spaced at quite regular intervals in both the axial and circumferential directions. These
structures are often considered to be spatially periodic in order to evaluate their dynamic properties. The spatial
periodicity allows elastic waves to propagate in certain frequency ranges and does not permit wave propagation in other
frequency ranges and these pass/stop bands are unique characteristic of periodic structures [1–3].

Free and forced wave motions through periodically-stiffened cylinders have been studied extensively. Mead [4] has
summarized a collection of state-of-the-art analytical and numerical wave-based methods among which two effective and
widely used methods are mentioned herein.

First, the transfer matrix method in conjunction with periodic structure theory was applied by Mead and Bardell [5,6] to
the free wave propagation in an isotropic circular cylinder with periodic axial and circumferential stiffeners. In their work,
a two-dimensional periodic cylinder was reduced for analytical purposes to two separate one dimensional stiffened
cylinders by assuming simply-supported boundary conditions either at ring frames or at axial stiffeners, and the pass/stop
bands were identified in terms of propagation constants for each axial or circumferential mode number. Later, they also
ll rights reserved.
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used the hierarchical finite element method to find the propagation frequencies of elastic waves by computing phase
constant surfaces for a number of different cylinder-stiffener configurations [7,8].

A different wave-based approach called space-harmonic method has also been employed due to its effectiveness in the
analysis of sound radiation from a vibrating periodic structure [4]. Hodges et al. [9] used the method to find the low order
natural frequencies and modes of a ring-stiffened cylindrical shell. Since then, many researchers [10–12] have adopted the
method of space harmonics to analyze the vibro-acoustic interactions of a periodic structure and fluid. For example, Yan
et al. [12] analyzed the vibro-acoustic power flow of an infinite fluid-filled isotropic cylindrical shell with periodic
stiffeners.

Although the aforementioned analytical methods are focused on quasi-one dimensional wave propagation problems
where vibrational energy flows in one direction (e.g., along the length) with wave motion in the other direction (e.g.,
around the circumference) assumed to be spatially harmonic, they may be effectively utilized to compute the wave power
transmission in two dimensional periodic cylinders. For example, Wang et al. [13] used the transfer matrix method based
on periodic structure theory to calculate transferred vibrational energy level in aircraft-like aluminum cylinder with
periodic axial and circumferential stiffeners and obtained a good agreement with experimental data (see also Ref. [14]).
The same method was also applied for the high frequency vibration analysis of cylindrical shells with periodic
circumferential stiffeners immersed into heavy fluid and subjected to axisymmetric excitation. The corresponding results
agreed well with a very fine axisymmetric structural-acoustic finite element model [15].

All of the previous developments, however, are restricted to cylinders made only of isotropic materials. These
techniques need to be extended for the wave propagation analysis of periodic composite laminate cylindrical structures of
interest to many engineering applications. Among recent works associated with the vibration analysis of composite
cylinders with discrete stiffeners, Zhao et al. [16] analyzed simply supported rotating cross-ply laminated cylindrical shells
with different combination of axial and circumferential stiffeners. The effects of the stiffeners on the natural frequencies of
the structure were evaluated via a variational formulation with individual stiffeners treated as discrete elements. More
recently, Wang and Lin [17] presented an analytical method to obtain the modal frequencies and mode shape functions of
ring-stiffened symmetric cross-ply laminated cylindrical shells. Both publications presented the formulation of governing
equations for the vibration analysis of composite cylinders with periodic stiffeners based on either dynamic equations of
motion or variational principle. Neither of the two publications addresses the evaluation of the wave propagation
constants between adjacent periodic units using periodic structure theory.

Hence this paper aims to fill this specific void in the wave propagation analysis by combining periodic structure theory
with classical lamination theory. The latter is more than adequate for the present study since the ratio of the cylinder
radius to the thickness tends to be of the order of 500 and greater in many aircraft and rotorcraft fuselage applications of
interest. Furthermore, if the wave energy ratios between two adjacent periodic elements are of primary interest, Mead and
Bardell’s wave-based approach provides the technical foundation that can be extended to composite cylinders. In this
development, two eigenvalue problems for longitudinal and circumferential wave propagations are formulated in terms of
elastic constants of composite laminates and the attenuation constants (the real part of propagation constants) are
calculated for each circumferential mode number or axial half-wave number. After evaluating the wave attenuation
constants, the energy ratio between two adjacent periodic elements is also computed. Thus, the analytical method
presented in this paper can be used for computing the wave propagation constants and the energy ratio between adjacent
periodic units of a composite laminated cylinder with metallic axial and ring stiffeners.

For the validation of this analytical method, the computed attenuation constants and/or energy ratios of a periodic
composite structure are compared to those from the vibration analysis of very dense finite element models, which are
regarded as quasi-exact solutions. Based on the current analytical approach, the effects of shell material properties and the
periodic element length on the transferred wave energy from one periodic element to the next have been investigated in
detail.

2. Periodic structure theory

When a harmonic wave with wavenumber k propagates along a periodic structure of infinite length in one-dimension,
there is a phase difference kl between the wave motions at corresponding points in any pair of adjacent units with a length
of l. In addition, the elastic wave motion over the distance l from one bay to the other may have the logarithmic decay rate
of dl which is zero for propagating waves and nonzero for evanescent waves in undamped periodic structures. The phase
difference and logarithmic decay rate are combined to have a complex propagation constant m(=d+ik) so that edge
displacements and the associated forces at one point in the jth element (dj

L and Fj
L, say) are related to those at the

corresponding point in the adjacent (j+1)th element (djþ1
L and Fjþ1

L , say) as follows:

dj
L

Fj
L

8<
:

9=
;¼ em

djþ1
L

Fjþ1
L

8<
:

9=
; (1)

where superscripts stand for the periodic element number and subscripts represent the specific location (left edge for this
case) of the point in the element. Furthermore, the directions of displacements and forces are assumed to be collinear with
the wave propagation direction. This transformation property of traveling waves in a periodic system is well known as
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Bloch’s or Floquet’s theorem [18]. Note here that the attenuation constant, the real part of the propagation constant, d,
represents the decay rate in the wave motion over the length of one bay in the wave propagation direction and the phase
constant, the imaginary part, k, represents the phase change over the same length.

Since the continuity of displacements and tractions at the junction between the adjacent two bays requires

djþ1
L

Fjþ1
L

8<
:

9=
;¼

dj
R

�Fj
R

8<
:

9=
; (2)

Substitution of these into Eq. (1) yields

dj
L

Fj
L

8<
:

9=
;¼ em

dj
R

�Fj
R

8<
:

9=
; (3)

This final relationship is a result known as periodic structure theory in structural vibro-acoustic analysis [19]. Since this
relates the displacements and tractions acting on both edges of a periodic element and the propagation constant is
computed from this equation, the wave propagation of a periodic structure can be investigated by considering only a single
element.

3. Calculation of propagation constants

If we regard the whole structure of an orthogonally stiffened thin cylindrical shell as an assembly of periodic units, then
each unit consists of a bay of the shell, together with half-stiffeners attached at each edge as shown in Fig. 1. The local
coordinate system (x,y,z) and displacement components u(u,v,w) are oriented as shown.

Due to the two-dimensional periodicity of the structure, the displacements, d and the associated elastic tractions, t at
the left or bottom edge can be related to those at the right or top edge using periodic structure theory, as follows:

dL

tL

( )
¼ emx

dR

�tR

( )
(4)

dB

tB

( )
¼ emx

dT

�tT

( )
(5)

where the structure is assumed to have a constant thickness, and mx and my are the propagation constants in the axial and
circumferential directions, respectively. It should be noted that the tractions tL and tB are defined to have the same
direction as tR and tT, respectively. For the present study, the assumptions of Mead and Bardell will be employed such that
Fig. 1. (a) A thin cylindrical shell with periodic stiffeners; (b) a periodic element with applied tractions and displacements.
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the elastic wave is transmitted in the axial direction by using cylindrical symmetry of the shell motions in the
circumferential direction and the wave propagation in the circumferential direction is subject to simply-supported
boundary conditions at ring frames along axial direction.

3.1. Wave propagation around circumferential direction

In this analysis, a cylinder of radius R and thickness h with 44 axial stringers of length L is considered, as shown in Fig. 2.
For a thin circular cylindrical shell made of cross-ply laminates, based on Reissner–Naghdi shell theory [20], the dynamic
equations of motion may be written in the form

Lu¼ 0 (6)

where L is a linear differential operator which has the following entries:

L11 ¼ A11@xxþA66@yy�I0@tt ,

L12 ¼ ½ðA12þA66ÞþðB12þB66Þ=R�@xy,

L13 ¼�B11@xxx�ðB12þ2B66Þ@xyyþðA12=RÞ@x,

L22 ¼ ðA66þ2B66=RþD66=R2Þ@xxþðA22þ2B22=RþD22=R2Þ@yy�I0@tt ,

L23 ¼�½B12þ2B66ÞþðD12þ2D66Þ=R�@xxy�ðB22þD22=RÞ@yyyþðA22=RþB22=R2Þ@y,

L33 ¼D11@xxxxþ2ðD12þ2D66Þ@xxyyþD22@yyyy�2½ðB12=RÞ@xxþðB22=RÞ@yy�þA22=R2þ I0@tt ,

L12 ¼ L21, L13 ¼ L31, L23 ¼ L32

Here Aij, Bij, and Dij (i,j=1,2,6) are extensional, coupling, and bending elastic constants of the shell material. Furthermore, @x,
@y, and @t represent partial differentiation with respect to spatial coordinates x and y and time (t). It is noted that, as
discussed in [20], the first order shear deformation model becomes more accurate as R/h tends to be smaller values.
However, in the present study the cylinder considered has R/h=500 for which the shell theory used here is more than
adequate.

The displacements, dy and the associated tractions, tsh
y at an edge in line with axial direction of the shell may be written

in the forms

dy ¼Dyu (7)

tsh
y ¼ Tsh

y u (8)

where Dy and Tsh
y are 4 by 3 differential operators with the following non-zero entries:

Dy11 ¼Dy22 ¼Dy33 ¼ 1, Dy43 ¼ @y,

Tsh
y11 ¼ A66@y, Tsh

y12 ¼ ðA66þB66=RÞ@x, Tsh
y13 ¼�2B66@xy,

Tsh
y21 ¼ ðA12þB12=RÞ@x, Tsh

y22 ¼ ðA22þ2B22=RþD22=R2Þ@y,
Fig. 2. A periodic unit for circumferential wave analysis.
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Tsh
y23 ¼�ðB12þD12=RÞ@xx�ðB22þD22=RÞ@yyþðA22=RþB22=R2Þ,

Tsh
y31 ¼ ðB12þ2B66Þ@xy, Tsh

y32 ¼ 2ðB66þD66=RÞ@xxþðB22þD22=RÞ@yy,

Tsh
y33 ¼�ðD12þ4D66Þ@xxy�D22@yyyþðB22=RÞ@y,

Tsh
y41 ¼�B12@x, Tsh

y42 ¼�ðB22þD22=RÞ@y, Tsh
y43 ¼D12@xxþD22@yy�B22=R

According to Vlasov’s theory of a beam with open cross-section [21], the x, y, and z components of the displacements
have the form u�zw0�yv0�w�y0x,v�zyx, and w+yyx where prime indicates the differentiation with respect to x and w*
represents the warping of the cross-section. With the rotary inertia effect and the approximation of angle of twist of the
stiffener as yx=w,y, the differential equations governing the vibrations of the axial stiffeners may give rise to the following
traction component

tbm
y ¼ Tbm

y u (9)

where the entries of Tbm
y are as follows:

Tbm
y11 ¼�EA@xxþrA@tt , Tbm

y12 ¼�yHEA@xxxþðryHA@xÞ@tt ,

Tbm
y13 ¼�zHEA@xxxþðrzHA@xÞ@tt ,

Tbm
y21 ¼�Tbm

y12, Tbm
y22 ¼ EIzzH@xxxxþrðA�IzzH@xxÞ@tt ,

Tbm
y23 ¼ EIyzH@xxxxþrð�IyzH@xx�zHA@yÞ@tt ,

Tbm
y31 ¼�Tbm

y13, Tbm
y32 ¼ EIyzH@xxxxþrð�IyzH@xxÞ@tt ,

Tbm
y33 ¼ EIyyH@xxxxþrðA�IyyH@xx�yHA@yÞ@tt ,

Tbm
y41 ¼ 0, Tbm

y42 ¼ rzHA@tt , Tbm
y43 ¼ EIo@xxxxy�GJ@xxyþrððIyyHþ IzzHÞ@y�yHAÞ @tt

where E and G are the elastic moduli of the beam, r the mass density, A the cross-sectional area, (yH,zH) the location of the
beam-shell connecting point, H with respect to the beam centroid, IyyH and IzzH the second moments of area in regard to the
point H, and Io and J are the torsional coefficients of the beam cross-section.

The above traction terms from both shell and beam are combined to yield the total tractions, tT and tB at the top and
bottom side of the periodic element as

tT ð ¼ TT uT Þ ¼ ½t
sh
y þ

1
2 tbm

y �T ¼ ½T
sh
y þ

1
2Tbm

y �T uT (10)

tBð ¼ TBuBÞ ¼ ½�tsh
y þ

1
2 tbm

y �B ¼ ½�Tsh
y þ

1
2Tbm

y �BuB (11)

and the corresponding edge displacements, dT and dB are easily shown to be

dT ð ¼DT uT Þ ¼ ½dy�T ¼ ½Dy�T uT (12)

dBð ¼DBuBÞ ¼ ½dy�B ¼ ½Dy�BuB (13)

where [ � ]T and [ � ]B stands for value of [ � ] evaluated at the top and bottom edges and uT and uB are the displacements at
top and bottom edges, respectively. Note that half the stiffener at a junction interconnects adjacent two shell elements and
exerts equal amount of forces on each of them, and the negative sign is introduced to the shell traction component at the
bottom edge because tsh

y was defined to be oriented in the positive coordinates.
These Eqs. (10)–(13), along with the Eqs. (7) and (8) are applicable to arbitrary motion of the shell element with two

stiffeners. The specific concern here is with an elastic wave motion which is propagating along circumferential direction
while satisfying the simply-supported boundary conditions at two ring locations. Hence, the elastic wave will be taken to
have frequency o and axial wavenumber kx ¼ np=l ðn¼ 1,2,3, . . .Þ, so that the shell motion must take the form

u¼

U cos kxx

V sin kxx

W sin kxx

8><
>:

9>=
>;elyeiot (14)

Substitution of this expression into Eq. (6) yields

bU¼ 0 (15)

where the entries of b may be deduced from those of L and thus are a function of shell materials and a triad (o, k, l). The
characteristic equation of b is a bi-quartic in l which, for the given o and k, yields eight eigenvalues lm (m=1,2,y,8) and
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eight associated eigenvectors Um ¼ ½Um,Vm,Wm�
T from which the shell motion with n fixed may be obtained

u¼
X8

m ¼ 1

Cm

Um cos kxx

Vm sin kxx

Wm sin kxx

8><
>:

9>=
>;elmyeiot (16)

where Cm is the amplitude of the mth wave and Um is normalized such that Wm=1. By combining this and Eqs. (10)–(13),
Eq. (5) will be written in the form

X8

m ¼ 1

DBmUmCm

X8

m ¼ 1

TBmUmCm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼ emy

X8

m ¼ 1

DTmUmelmRYCm

�
X8

m ¼ 1

TTmUmelmRYCm

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(17)

where DBm ¼DBðlmÞ,DTm ¼DT ðlmÞ,TBm ¼ TBðlmÞ,TTm ¼ TT ðlmÞ and RY is the length of the periodic element along
circumference. This can be written in more compact form

KBC¼ emy KT C (18)

or

K�1
T KBC¼ emy C (19)

where C=[C1,C2,yC8]T is the vector form of the wave amplitudes and KB and KT are 8 by 8 square matrices which are given
as follows:

KT ¼
DT1U1el1RY DT2U2el2RY . . . DT8U8el8RY

�TT1U1el1RY �TT2U2el2RY . . . �TT8U8el8RY

" #
(20)

KB ¼
DB1U1 DB2U2 . . . DB8U8

TB1U1 TB2U2 . . . TB8U8

" #
(21)

Eqs. (18) and (19) are in canonical form for the determination of the eigenvaluesemy from which the complex propagation
constants my’s or the attenuation constants, real part of my’s, are obtained.

3.2. Wave propagation along axial direction

In this analysis, a thin cross-ply cylinder of radius R, thickness h and infinite length in axial direction is considered, as
shown in Fig. 3.

Application of Reissner–Naghdi shell theory yields exactly the same dynamic equations of shell motion as Eq. (6), and
edge displacements and tractions of the shell are shown to be

dx ¼Dxu (22)

tsh
x ¼ Tsh

x u (23)

where the entries of Dx and Tsh
x are as follows:

Dx11 ¼Dx22 ¼Dx33 ¼ 1, Dx43 ¼ @x,
Fig. 3. A periodic unit for axial wave analysis.
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Tsh
x11A11@x, Tsh

x12 ¼ ðA12þB12=RÞ@y, Tsh
x13 ¼�B11@xx�B12@yyþA12=R,

Tsh
x21 ¼ ðA66þB66=RÞ@y, Tsh

x22 ¼ ðA66þ2B66=RþD66=R2Þ@x,

Tsh
x23 ¼�2ðB66þD66=RÞ@xy,

Tsh
x31 ¼ B11@xxþ2B66@yy, Tsh

x32 ¼ ðB12þ2B66þðD12þ2D66Þ=RÞ@xy,

Tsh
x33 ¼�D11@xxx�ðD12þ4D66Þ@xyyþðB12=RÞ@x,

Tsh
x41 ¼�B11@x, Tsh

x42 ¼�ðB12þD12=RÞ@y, Tsh
x43 ¼D11@xxþD12@yy�B12=R

Vlasov’s beam theory is again employed to obtain the x, y, and z components of the displacements, i.e.
v�xu0�zðw0�v=RÞ�w� ðy0y�u0=RÞ, and w�xyy where prime indicates the differentiation with respect to y. This gives

tbm
x ¼ Tbm

x u (24)

where the entries of Tbm
x are

Tbm
x11 ¼ ðEIzzHþEIo=R2Þ@yyyy�ðGJ=R2Þ@yyþrðA�IzzH@yyÞ@tt ,

Tbm
x12 ¼ ðxHEA�EIxzH=RÞ@yyy�rðxHA�IxzH=RÞ@y@tt ,

Tbm
x13 ¼ ðxHEA=RÞ@yyþEIxzH@yyyy�ðEIzzH=RþGJ=RÞ@xyyþðEIo=RÞ@xyyyyþrð�IxzH@yyþzHA@xÞ@tt ,

Tbm
x21 ¼�Tbm

x12,

Tbm
x22 ¼ ð�EAþ2zHEA=R�EIxxH=R2Þ@yyþrðA�2zHA=Rþ IxxH=R2Þ@tt ,

Tbm
x23 ¼ ð�EA=RþzHEA=R2Þ@yþð�zHEAþEIxxH=RÞ@yyyþðxHEA=R�EIxzH=R2Þ@xyþrðzHA�IxxH=RÞ@y@tt ,

Tbm
x31 ¼ ðxHEA=RÞ@yyþEIxzH@yyyy�rðIxzH@yyÞ@tt ,

Tbm
x32 ¼ ðEA=R�zHEA=R2Þ@yþðzHEA�EIxxH=RÞ@yyyþrð�zHAþ IxxH=RÞ@y@tt ,

Tbm
x33 ¼ EA=R2þð2zHEA=RÞ@yyþEIxxH@yyyy�ðxHEA=R2þðEIxzH=RÞ@yyÞ@xþrðA�IxxH@yy�xHA@xÞ@tt ,

Tbm
x41 ¼ ð�EIzzH=R�GJ=RÞ@yyþðEIo=RÞ@yyyyþrzHA@tt ,

Tbm
x42 ¼ ð�xHEA=RþEIxzH=R2Þ@y,

Tbm
x43 ¼�xHEA=R2�ðEIxzH=RÞ@yyþðEIzzH=R2þEIo@yyyy�GJ@yyÞ@xþrð�xHAþðIxxHþ IzzHÞ@xÞ@tt

where (xH,zH) the location of the beam-shell connecting point in x�z plane with respect to the beam centroid and IxxH and
IzzH the second moments of area with in regard to the point, H, of the beam cross-section.

Using the half stiffener method, the resulting edge displacements, dL and dR and the associated tractions, tL and tR at the
left and right side of the periodic element as

dLð ¼DLuLÞ ¼ ½dx�L ¼ ½Dx�LuL (25)

dRð ¼DRuRÞ ¼ ½dx�R ¼ ½Dx�RuR (26)

tLð ¼ TLuLÞ ¼ ½�tsh
x þ

1
2 tbm

x �L ¼ ½T
sh
x þ

1
2Tbm

x �LuL (27)

tRð ¼ TRuRÞ ¼ ½t
sh
x þ

1
2 tbm

x �R ¼ ½T
sh
x þ

1
2Tbm

x �RuR (28)

where uL and uR are the displacements at left and right edges, respectively.
Due to cylindrical symmetry where the radial displacement, w is always in quadrature with the other two components,

u and v, the components of the cylinder displacement are described by sinusoidal motion in y and traveling wave motion
in x

u¼

U cos kyy

V sin kyy

W cos kyy

8><
>:

9>=
>;elxeiot (29)

where ky=m/R (m=0, 1, 2,y) is the circumferential wavenumber.
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Substituting this into Eq. (6) and solving the resulting characteristic equation as described in the previous section, eight
eigenvalues ln (n=1, 2,y,8) and eight associated eigenvectors Un=[Un, Vn, Wn]T may be obtained to yield the following
shell motion

u¼
X8

n ¼ 1

Cn

Un cos kyy

Vn sin kyy

Wn cos kyy

8><
>:

9>=
>;elnxeiot (30)

where Cn is the amplitude of the nth wave and Un is normalized such that Wn=1. As before, by combining this and
Eqs. (25)–(28), Eq. (4) will be written in the form

KLC¼ emx KRC (31)

or

K�1
R KLC¼ emx C (32)

where C=[C1,C2,y,C8]T is the vector form of the wave amplitudes and KL and KR are 8 by 8 square matrices which are given
as follows:

KL ¼
DL1U1 DL2U2 � � � DL8U8

TL1U1 TL2U2 � � � TL8U8

" #
(33)

KR ¼
DR1U1el1 l DR2U2el2 l � � � DR8U8el8 l

�TR1U1el1 l �TR2U2el2 l � � � �TR8U8el8 l

" #
(34)

Here, DLn=DL(ln), DRn=DR(ln), TLn=TL(ln), TRn=TR(ln), and l is the length of the periodic element along axial direction. This
eigenvalue problem can be solved for the complex propagation constants mx’s or the attenuation constants, real part of mx’s,
as explained in the previous section.

4. Numerical examples

4.1. Flexural wave propagation in axial direction

Propagation constants for axisymmetric mode [22], the case of m=0 in Section 3.2, have been computed over a certain
frequency range for a thin cylinder of radius R=0.381 m and ring spacings l=0.135 m with 10 uniformly spaced ring
stiffeners. The cylindrical shell itself consists of 4 layers of carbon/epoxy laminates with 0.1905 mm thickness of each
lamina and 90/0/0/90 stacking sequence and the circumferential stiffeners are made of aluminum. The detailed material
and physical properties of the shell and stiffeners are summarized in Tables 1 and 2. Note that 1 percent structural
damping loss factor (Z) is used for both shell and stiffeners.

Displacement or velocity ratios between two adjacent bays, i.e. attenuation constants, are calculated for dense FE model
of the same dimension using MSC/NASTRAN cyclic symmetry frequency response analysis [23,24] for the comparison with
analytic results. An 1.0 degree strip in circumferential direction is considered for finite element analysis and the finite
element mesh density is chosen so as to satisfy the condition that at least 10 elements are included in one wavelength of
deformation at the maximum frequency of interest which, in this case, is 7079 Hz. An axisymmetric excitation is applied at
the far left end of the cylindrical shell (periodic unit 1). Analyses are performed between 3548 and 7079 Hz and these
analyzed frequencies are above the ring frequency of the cylindrical shell (around 2973 Hz) such that the axisymmetric
mode may be dominant in that frequency range.

The attenuation constant of the flexural wave is first presented in Fig. 4. It can be observed that adding ring stiffeners
generates the stop bands to the thin cylinder and, in this particular case, there are four stop bands within the analyzed
frequency range.
Table 1
Cross-sectional properties of stiffeners.

Axial stiffeners

A (m2) 3.4�10�5

Iyy (m4) 2.0353�10�9

Izz (m4) 2.8883�10�10

J (m4) 1.1667�10�11

Ring stiffeners

A (m2) 1.2�10�5

Ixx (m4) 1.44�10�10

Izz (m4) 1.00�10�12

J (m4) 3.79�10�12
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Table 2
Material properties of stiffeners and cylindrical shell.

Aluminum (stiffeners)

E (Pa) 7�1010

v 0.3

r (kg/m3) 2700

Z 0.01

Carbon/epoxy (cylindrical shell)

E1 (Pa) 1.44�1011

E2 (Pa) 9.38�109

v12 0.325

G12 (Pa) 5.39�109

r (kg/m3) 1525

Z 0.01

Fig. 4. The flexural wave attenuation constant of axisymmetric mode of the 90/0/0/90 carbon/epoxy laminated cylindrical shell with and without ring

stiffeners.
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The time averaged kinetic energy stored in the jth periodic unit, KEj, may be expressed as

KEj ¼
1

4

Z L

0
r2pRhjvjj

2 dx

� �
(35)

where |vj| is the velocity amplitude of the axisymmetric response and r, R and h are, respectively, the mass density, radius
and thickness of the cylindrical shell.

Since the velocities at the two adjacent periodic units are related by the propagation constant, i.e., jvjþ1j ¼ erealðmÞjjvjj,
the energy ratio (ER) between two adjacent units is computed based on the periodic structure theory as

ER¼
KEjþ1

KEj
¼

R L
0 r2pRhðerealðmÞjvjjÞ

2 dxR L
0 r2pRhjvjj

2 dx
¼ ðerealðmÞÞ2 (36)

Here, the energy ratios of the bending wave between two adjacent bays are computed from the attenuation constants and
compared with FEA results as shown in Fig. 5. As shown in the figure, the stop/pass band characteristics due to ring
stiffeners are accurately captured and thus the good correlation between finite element and analytical results has been
obtained. Notice that, as shown in Figs. 5 and 6, an additional finite element analysis has been performed with twice denser
mesh in order to ensure that the FEA solution converged. It should also be noted that, as shown in Fig. 5, there exist some
disturbances in all propagation zones of the FEA results due to the finite number of periodic elements. They, however, are
too small to affect the validity of the FEA solution to represent the overall pass and stop band characteristics of the periodic
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Fig. 5. The energy ratio of the 90/0/0/90 carbon/epoxy laminated cylindrical shell with ring stiffeners subject to axisymmetric excitation.

Fig. 6. The frequency averaged energy ratio of the 90/0/0/90 carbon/epoxy laminated cylindrical shell with ring stiffeners under axisymmetric excitation.
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structure of interest. Hence, the FEA model can provide a reference solution to which the analytical results can be
compared.

In structural acoustics, the frequency and space averaged energy density is of primary importance and the energy level
of a receiving periodic unit may be calculated from that of an exciting unit combined with the energy ratio. Thus, the
energy ratio is averaged in frequency domain over each 1/3 octave band and is presented in Fig. 6 for the same frequency
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range of interest as before. Compared to FEA results, it is shown that the difference between analytical and finite element
results is less than 1 dB which is almost negligible in structural acoustics analysis.

4.2. Flexural wave propagation in circumferential direction

Considered in this section is a cylindrical shell of the same dimension as that of the previous section, but in this case
with axial stiffeners. The attenuation constants of bending waves propagating in circumferential direction through the
90/0/0/90 carbon/epoxy laminated cylindrical shell with axial stiffeners are presented in Fig. 7 for the first three axial half-
wave numbers. As shown in the figure, the flexural waves having one half-wave along axial direction start to propagate at
around 1000 Hz and have the first propagation zone from 1000 to 2000 Hz, the second from 2300 to 2750 Hz, the third from
3400 to 3550 Hz, and the fourth 5350 to 5623 Hz. In other words, in the frequency range between 178 and 5623 Hz, flexural
waves of n=1 have four discrete pass bands between which there are stop bands. Each stop band also has different values
of attenuation constants which will determine how much of the flexural energy will be transmitted from a periodic unit to
the next one. The flexural waves having two or three half sinusoidal waves in axial direction have pass/stop bands at
different frequency zones.

In order to calculate the energy ratio using MSC/NASTRAN, the frequency averaged energy density over each 1/3 octave
band is computed over wide frequency range between 200 and 5000 Hz and finally the space averaged energy density in
each bay is obtained and used to evaluate the energy ratio between adjacent two periodic units. For the energy ratio
computation by the analytical method, the propagation constants corresponding to different half-wave numbers along the
length of the longitudinal bay are first calculated and those which undergo a pass band are selected as explained in the
previous paragraph, and they are finally used to determine the total response of the structure, i.e. energy ratio between two
consecutive bays. Much attention is given to the flexural wave motion of the periodic structure and thus the transverse
velocity ratios corresponding to the flexural waves are calculated in this analysis as shown in Fig. 8.

As previously mentioned, the first wave propagation occurs around 1000 Hz at which the given structure has its first
natural frequency when there exists one sinusoidal half-wave along longitudinal direction. Between 1000 and 5000 Hz,
pass/stop bands exist discretely for each flexural wave. However, since their pass bands are repeated over broad frequency
range, if the first pass bands for flexural waves of n=1,2,3 are combined, the first pass band for that combination becomes
from 1000 to 3000 Hz, the second pass band appears to be 3300–4050 Hz and the third will be from 5350 to 5623 Hz.
Moreover, considerably small attenuation constants exist over the stop bands between pass bands. Therefore, the velocity
attenuation over one periodic element is shown to be so small over the frequency range between 1000 and 5000 Hz that
flexural energy can be transmitted along the axial direction even in this frequency range. This may manifest itself that
enormous numbers of vibration modes occur, densely populate the frequency range, and thus all waves having frequencies
in this range may propagate with very small attenuation which is mainly due to the structural damping loss factor.

4.3. Effects of material anisotropy and spatial periodicity

In this section, the effects of shell material properties and spatial periodicity on the energy ratio of flexural waves
between adjacent periodic elements will be examined based on the analytical approach presented in this paper. Shell
bending stiffness and periodic element length are chosen to vary, while other dimensions and material properties are held
constant. Throughout the analysis, the principal material directions (1- and 2-axes) are assumed to coincide with the
x- and y-axes of the shell coordinate system shown in Figs. 2 and 3.

If flexural waves propagate along the cylinder with the axisymmetric standing wave pattern in circumferential
direction, the change in the onset frequency of the axisymmetric mode will result in translation in the frequency axis of the
Fig. 7. The flexural wave attenuation constants of the 90/0/0/90 carbon/epoxy laminated cylindrical shell with axial stiffeners with respect to the number

of half-waves in axial direction.
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Fig. 9. The effect of bending stiffness ratio, 12ð1�v2ÞD11=Eh3, on flexural energy ratio of the laminated cylindrical shell with circumferential stiffeners.

Fig. 8. The frequency averaged flexural energy ratio of the 90/0/0/90 carbon/epoxy laminated cylindrical shell with axial stiffeners.
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attenuation constant or energy ratio curve. Since axisymmetric modes are initiated by the ring frequency of the cylindrical

shell, oring ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22=rhR2

p
, it is apparent that the elastic modulus, A22 may cause such shift over the frequency. If A22 is held

constant, then it is the bending stiffness ratio of shell to ring frame, 12ð1�v2ÞD11=Eh3, that needs to be given a special
attention among other elastic constants. The attenuation constant curves are shown in Fig. 9 for the three different values
of bending stiffness ratios. The number of pass and stop bands is seen to decrease as the bending stiffness ratio increases.

This would be attributed to the bandwidth of each propagation zone, Do, being proportional to D11 and thus the increased

bandwidth yields fewer propagation zones in the same frequency range of interest. Such relationship between Do and
D11 may be deduced from the Refs. [1,2] in that the lower and upper bounding frequencies of each propagation zone in
symmetric periodic systems are proved to coincide with natural frequencies of a single periodic element with free or fixed
boundaries. It is also observed in Fig. 9 that the higher bending stiffness ratio enables the more wave energy to propagate
with the less reflection. As would be expected, this is due to the fact that the more compliant stiffener tends to lose its
ability to block the flexural wave energy of shell across stiffeners and vice versa.

The axial length of each periodic element, l, has also influence on the flexural wave propagation along the cylinder.
In order to show the effect of the length, l, with respect to the circumferential length of the same bay, RY, the length ratio,
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l/RY, is considered here with RY being fixed. Fig. 10 shows that the larger length yields the more frequent pass/stop bands.
Since the difference between the bounding frequencies, Do, is inversely proportional to l, the increased length ratio may
result in more frequent repetition of propagation and attenuation zones. The lower propagated energy level for a higher
length ratio may need the explanation detailed in what follows. As an elastic wave propagates, it may experience
attenuation arising from either the structural damping or the structural discontinuity. The amount of wave amplitude
attenuation due to the structural damping is proportional to the distance over which a wave propagates. Moreover,
according to periodic structure theory, the wave amplitude will be attenuated across a circumferential stiffener by eRealðmÞl.
Both of the wave attenuation mechanism give rise to the wave energy loss proportional to the length, l. Hence, the longer
length results in the smaller energy being propagated over one periodic length.

In the case of the flexural wave propagating along the circumference, the first propagation zone begins (and the first
attenuation zone ends) at the first natural frequency of the stiffened cylinder subject to a sinusoidal half-wave in the
longitudinal direction (This phenomenon has been shown in Section 4.2 and the detailed theoretical proof can also be
found in the literature [1,2]). Therefore, the changes in bending stiffness in the circumferential direction, D22 and/or the
number of axial stringers may result in the change in the frequency. Such effect has been shown in Fig. 8 as the steep
increase in energy ratio across 1000 Hz, the first natural frequency of the stiffened cylinder considered in Section 4.2. For
the evaluation of wave propagation characteristics in higher frequencies, however, the frequency range of 1413–7079 Hz is
used and thereby the first attenuation zone is not shown in the following figures.
Fig. 10. The effect of length ratio, l=RY, on flexural energy ratio of the laminated cylindrical shell with circumferential stiffeners.

Fig. 11. The effect of bending stiffness ratio, 12ð1�v2ÞD22=Eh3, on flexural energy ratio of the laminated cylindrical shell with axial stiffeners.
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Fig. 12. The effect of the number of axial stiffeners on flexural energy ratio of the laminated cylindrical shell with axial stiffeners.
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If the bending stiffness ratio, 12ð1�v2ÞD22=Eh3, and the number of axial stiffeners are chosen to vary, they are expected
to affect the pass/stop band characteristics of the flexural waves with different sinusoidal half-waves. For instance, the
location of each pass or stop band may change depending on the value of bending stiffness ratio and the number of axial
stiffeners. However, when several half-waves are combined to yield space- and frequency-averaged energy ratios, the
changes in the location of pass and stop bands are likely to be smeared out to give almost same energy ratios in lower
frequency regions as shown, respectively, in Fig. 11 (up to 2500 Hz) and Fig. 12 (up to 4000 Hz). In higher frequency range,
however, it is still observed that the greater the bending stiffness ratio is and the more the axial stiffeners are used, the
more energy may transfer from one periodic element to another. Since the number of axial stiffeners can be expressed as
2p/Y and thus is inversely proportional to the circumferential length of each periodic element, RY, the flexural wave
energy propagation with respect to the bending stiffness ratio and the number of axial stiffeners can be explained in the
same manner as for the case of flexural wave propagating in axial direction.

5. Conclusion

The periodic structure theory is utilized for calculating propagation constants of a composite cylindrical shell stiffened
periodically by metallic circumferential stiffeners and axial stringers, which is of particular significance in vibro-acoustic
analysis of periodic structures. Since the two-dimensional periodic structures do not normally exhibit a single pass or stop
band at a particular frequency as is the case for one-dimensional periodic structures, the propagation constants
corresponding to several different circumferential modes or/and several different half-wave numbers along the length of
the cylinder should be calculated in order to identify the pass band characteristics when a circumferentially and axially
stiffened cylinder is analyzed. The propagation constants corresponding to these circumferential modes (for ring stiffeners)
or half-wave numbers (for axial stringers) are combined to determine the energy ratios of this kind of structure. The
validation through some vibration analyses in the previous section demonstrates that the analytical method shown in this
paper captures well the periodic characteristics for a thin composite cylinder with the axial stringers and ring stiffeners.

Based on the current analytical approach, the effects of shell material properties and spatial periodicity on the wave
propagation characteristics have been evaluated in terms of flexural wave energy transferred from one periodic element to
another. Among others, the bending stiffness and the length of a single periodic element in axial and circumferential
directions were chosen to vary. It has been shown that the more flexural wave energy can transmit in the axial direction as
the bending stiffness ratio of the shell to the ring stiffeners increases and the length of one periodic element decreases. The
flexural energy propagation in circumferential direction tends to be triggered by the first natural frequency so that the
shell material properties and the number of axial stiffeners can be used as control variables for the wave energy
propagation in higher frequency region as well as the onset frequency of the first wave propagation. These parametric
study reveals that both the material anisotropy (the different material properties in axial and circumferential direction)
and spatial periodicity (length of each periodic element in both directions) can be properly exploited to control the amount
of energy attenuation in propagating elastic waves by the means of the proposed method of combining periodic structure
theory and laminate theory.
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