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a b s t r a c t

One of the most important factors that affect the pointing of precision payloads and

devices in space platforms is the vibration generated due to static and dynamic

unbalanced forces of rotary equipments placed in the neighborhood of payload.

Generally, such disturbances are of low amplitude, less than 1 kHz, and are termed as

long decay time and they degrade the performance of payload. This paper addresses the

design, modeling and analysis of a low frequency space frame platform for passive and

active attenuation of micro-vibrations. This flexible platform has been designed to act as

a mount for devices like reaction wheels, and consists of four folded continuous beams

arranged in three dimensions. Frequency and response analysis have been carried out

by varying the number of folds, and thickness of vertical beam. Results show that lower

frequencies can be achieved by increasing the number of folds and by decreasing the

thickness of the blade. In addition, active vibration control is studied by incorporating

piezoelectric actuators and sensors in the dynamic model. It is shown using simulation

that a control strategy using optimal control is effective for vibration suppression under

a wide variety of loading conditions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration propagation into mechanical systems can cause many problems at different levels resulting in performance
degradation of sensitive systems [1]. Vibrations that occur at frequencies up to 1 kHz have often been neglected in the past
due to the low levels of disturbances. However, recently these have become very important and have received a great deal
of attention by many researchers. This is especially true for spacecraft structures where, due to the ever increasing
requirements to protect sensitive payloads, such as optical instruments or microgravity experiments, there is a pressing
need for such micro-vibration suppression. In a spacecraft, micro-vibrations are produced by the functioning of on-board
equipment such as reaction wheels, gyroscopes, thrusters, electric motors, cryocoolers and data storage devices. They
propagate through the satellite structure towards sensitive payloads such as mid-wave infrared surveillance sensors, laser
communication devices and astronomical telescopes thereby jeopardizing their correct functioning. Spacecraft that use
control moment gyroscopes (CMG) for attitude control tend to have high sensitivity to pointing and jitter, creating a need
for isolation [2]. Passive vibration suppression and isolation is the recommended first approach, to try to reduce these
unwanted disturbances [3–6]. From a practical standpoint, the reduction of the vibration level at a sensitive location of a
ll rights reserved.
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structure can be attempted by placing the equipment on appropriate mountings [7,8]. The Hubble Space Telescope (HST) is
probably the best known example of a spacecraft that includes an isolation system that is necessary to achieve its science
mission [9] – it uses a passive isolation system to mitigate effects from the reaction wheel assembly that points the
spacecraft. The system, designed by Honeywell, employs a viscous fluid-damped isolator. Another example of an isolator
used in several space missions is the Honeywell D-Strut [10] that uses a bellows system with a viscous damped-fluid and is
similar to the Hubble system. This isolator has been reengineered in recent years to combine a passive and active system.
Vibration isolation has been tested with an ultra quite platform (UQP) – a six axis Stewart platform active isolation system
[11]. A high performance strut isolator has been developed for multiaxis isolation for reaction wheel assembly [12]. In this
case a three parameter system with spring elements in series and parallel with the damper have been incorporated for
each strut elements. The shape memory alloy (SMA) actuators have been used in Ref. [13], but its response time is too slow
for vibration suppression using the thermal control to effect changes in 10–50 Hz range. An experimental investigation of
shape memory alloy springs for passive vibration isolation has also been studied in Ref. [14]. All of the above passive
isolation systems use a variety of implementation devices including visco-elastic materials, springs, soft materials,
hydraulic dampers and pneumatic isolator [15].

Passive damping limits the amplification at resonance but tends to reduce the high frequency attenuation of the
isolation system. For demanding missions, passive solutions may have limited effectiveness, particularly if the
disturbances are harmonic in nature and with broad frequency content such as those generated by cryocooler and
reaction wheels. Active isolation has been introduced to resolve this conflict, allowing to achieve, simultaneously, a low
amplification at resonance and a large attenuation at high frequency. Active six degree of freedom local vibration isolation
applied to a flexible space telescope has been studied by Kaplow and Velman [16] for attenuating high frequency
disturbances. Active vibration isolation interface to protect the spacecraft pointing accuracy from payload disturbances has
been discussed in Refs. [17–19]. The piezoelectric Stewart platform for general purpose active damping has been studied in
Ref. [17]. This uses stiff active damping interface as a support for payloads and it consists of a six degree of freedom Stewart
platform, where each leg of the active interface is made of a linear piezoelectric actuator. Another six-axis single-stage
active vibration isolator based on Stewart platform has been developed for space application [18]. The structural vibration
control using an active resonator absorber (ARA) has been studied with PZT inertial actuators [19]. An integrated active
damping device (IADD—a piezo based device) and the multipurpose active isolation system (MAIS) with a six dof isolator
based on six active struts (co-located piezosensor and actuator) arranged in hexapod configuration have been studied for
high pointing accuracy satellites [20]. Active vibration control is also increasingly being used for flexible structures. In such
control systems, the piezoelectric materials is embedded in the structural elements as actuators and these smart structures
have advantages such as high stiffness, light weight, low cost, low power consumption and easy implementation. Crawley
and Javier [21] have derived the static and dynamic models for segmented piezoelectric actuators bonded or embedded in
the flexible structures. The use of surface mounted piezo-actuators as active dampers in reducing the free vibration decay
time of cantilevered beams has been studied by Bailey and Hubbard [22]. Optimal control of vibration in flexible smart
structures using piezosensors and actuators has been studied in Refs. [23,24].

In this paper, a low frequency space platform has been proposed which can be used as a mounting device for payloads
in spacecrafts for both passive and active control of disturbances arising due to micro-vibrations. Finite element analysis of
the platform is carried out for static and dynamic load cases. Passive vibration control has been analyzed using modal
analysis techniques to simulate the response of each mode for free and forced vibration cases. Active control has been
studied by embedding the platform with piezo-actuators and sensors. The simulation results show further improvement in
vibration attenuation when active control is used.

This paper is organized as follows: In Section 2, we present a detailed description of the space frame platform designed
to suppress micro-vibrations. Section 3 describes the finite element formulation of the proposed platform. Results for
different load cases described in Section 4 show the effectiveness of the platform for passive control of vibration.
Simulation results for active control are described in Section 5. Concluding remarks on the performance of the designed
isolator system are presented in Section 6.
2. Description of flexible platform

The study of isolator must be viewed as a system consisting of three parts – the source system in which the vibration is
generated, the receiver system in which vibration force or response is felt and the interconnecting isolation system which
connects the source to the receiver. The requirements of any isolator therefore will be to support the objects with sufficient
static stiffness and strength and also to provide the smallest possible dynamic stiffness. Therefore, the isolator must
support the equipment under static loading and must also be compliant so that disturbances are not transmitted to the
precision equipments in spacecrafts. Design criteria [25] require that the low frequency platform supports a generic
payload up to 5.5 kg with a low isolation plunge frequency less than 15 Hz. Simulations were performed using Matlab [26]
to determine the optimum geometry of the platform. The proposed low frequency space frame platform consisting of four
folded beams is shown in Fig. 1. It comprises of four single folded beams placed orthogonal to each other. Each of these four
folded beams is assembled on to the payload as shown in Fig. 2 which is considered to be a source of micro-vibrations. The
other end of these beams is connected to a base platform of high stiffness whose first fundamental frequency is greater
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Fig. 1. Flexible space frame platform.

Fig. 2. A rigid mass mounted on the flexible platform.
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than 100 Hz. The dimensions and properties of the flexible beams are given in Table 1. These dimensions have been arrived
at by calculating the frequencies, displacements and reaction forces for varying geometric dimensions of the beam. The
vertical beams are thinner than the horizontal beams, thus making them less stiff.

3. Finite element formulation

Finite element analysis of the platform is carried out using frame elements with six degrees of freedom for each node.
Flexure part of the frame element is modeled using the Euler–Bernoulli beam theory.

3.1. Dynamic equation of motion of frame element

For a typical element in the four folded beam shown in Fig. 3, the element degrees of freedom expressed in local axes
Oxyz are [27]

qT
eL ¼ ½u1v1w1cx1cy1cz1u2v2w2cx2cy2cz2� (1)
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Table 1
Geometric, mass and physical properties of one fold beam.

Geometric properties

For elements 1, 2, 3, 4

Depth (m) 0.003

Length (m) 0.035

For elements 5, 6, 7, 8, 21, 22, 23, 24

Depth (m) 0.001/or 0.0008/or 0.0006

Length (m) 0.024/or 0.036/or 0.048

For elements 9, 10, 11, 12, 17, 18, 19, 20

Depth (m) 0.003

Length (m) 0.008

For elements 13, 14, 15, 16

Depth (m) 0.001/or 0.0008/or 0.0006

Length (m) 0.048/or 0.060/or 0.072

For elements 25, 26, 27, 28

Depth (m) 0.003

Length (m) 0.030

Width of all elements (m) 0.025

Physical and mass properties

E, modulus of elasticity 21,000 GPa

G, modulus of rigidity 7000 GPa

Density 7800 kg/mm3

Mass of the object 5.5 kg

Mass moment of inertia, Iyy 0.0465 kg m2

Mass moment of inertia, Ixx and Izz 0.0270 kg m2

Fig. 3. A typical beam element.
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and the rotation wx and wy are linked to deflection by

wx ¼
@v

@x
, wy ¼�

@w

@x
(2)

As the frame element consists of beam element, bar element and torsional element, the strain energy of the frame
element with uniform cross section is obtained as the sum of energies of the above elements. The element (12�12)
stiffness matrix KeL in local axes is composed of (6�6) submatrices and is of the form

KeL ¼
Kjj Kjk

Kkj Kkk

" #
(3)

with

Kjk ¼Kkj
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The element mass matrix as described from the kinetic energy of the frame element is also composed of (6�6)
submatrices and is of the form

MeL ¼
Mjj Mjk

Mkj Mkk

" #
(4)

with

Mjk ¼Mkj

The elementary stiffness and mass matrices are expressed in structural axes OXYZ, by performing the rotation from local
frame to structural frame using the operator T

qeL ¼ TqeS

KeS ¼ TTKeLT

MeS ¼ TTMeLT

(5)

where T is a 12�12 block diagonal matrix with 4 blocks of 3�3 rotation matrix. The structural degrees of freedom for the
element are

qT
eS ¼ ½U1V1W1cX1cY1cZ1U2V2W2cX2cY2cZ2� (6)

The undamped equations of motion describing the nodal displacements of the attached and free nodes, devoid of
contribution from the rigid body are given as [27]

MAA MAF

MFA MFF

" #
€DA

€DF

( )
þ

KAA KAF

KFA KFF

" #
DA

DF

( )
¼

AAðtÞ

AF ðtÞ

( )
(7)

To account for the presence of rigid body, we realize that nodes of type A (Fig. 2.) are constrained to move with
the rigid body. Thus, the actions, stiffness and mass are transformed from A to C, the center of mass of the rigid body
as follows:

AB

AF

" #
¼Q

AA

AF

" #
(8)

For displacement and acceleration, we have

DA

DF

" #
¼Q T

DB

DF

" #
(9)

and

€DA

€DF

" #
¼Q T

€DB

€DF

" #
(10)

In this the transformation operator Q in Eqs. (8), (9) and (10) is given as

Q ¼
Q BA 0

0 IF

" #
(11)

in which IF is the identity matrix of order equal to the number of free nodal displacements. The transformation matrix QBA

is a sparse array containing the submatrices which transform actions, stiffness and consistent mass from node A to node C.
Premultiplying Eq. (7) by Q and using Eqs. (8)–(10) we get

MBB MBF

MFB MFF

" #
€DB

€DF

( )
þ

KBB KBF

KFB KFF

" #
DB

DF

( )
¼

ABðtÞ

AF ðtÞ

( )
(12)

where

KBB ¼Q BAKAAQ T
BA

KBF ¼KT
FB ¼Q BAKAF

and

MBB ¼Q BAMAAQ T
BA

MBF ¼MT
FB ¼Q BAMAF

The final mass matrix after adding the mass inertia of the rigid body will be as follows:

M�BB ¼MBBþMC (13)
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where MC is a 6�6 matrix with top left 3�3 submatrix as mI3 and right bottom corner 3�3 submatrix as the inertia
matrix. The equation of motion for platform in the nodal form after the full assembly can be written as

M €xðtÞþL _xðtÞþKxðtÞ ¼ B0u (14)

y¼ C0qxþC0v _x (15)

where M, L and K are the mass, damping and stiffness matrices and x, _x and €x are the nodal displacement, nodal velocity
and nodal acceleration, respectively. B0u is the external force vector, y the output vector, C0q the output displacement
matrix and C0v the output velocity matrix. In Eq. (15), the damping matrix is assumed to be a linear combination of
stiffness and mass matrices as L=aK+bM, where a and b are nonnegative scalars.

3.2. Constitutive equations of the piezo-actuators and sensors

The linear piezoelectric coupling between the elastic field and the electric field can be expressed by the direct and the
converse piezoelectric equations, respectively [28]:

fSg ¼ ½sE�fTgþ½d�fEg

fHg ¼ ½d�fTgþ½eS�fEg
(16)

where {S} is the strain vector, {T} the stress vector, {E} the electric field, {H} the electric displacement, [sE] the compliance
matrix when the electric field is constant, [d] the matrix which relates electric displacement vector H to stress under a zero
electric field matrix and [eS] the dielectric constant matrix under constant stress. For a piezoelectric strip with thickness
hp5hb, where subscript p stands for piezo and subscript b stands for beam, a voltage V applied to the electrodes will
produce electric field V/hp. The constitutive equation in one dimensional can be written as

s11 ¼ Epe11�e31
V

hp
(17)

where s11 is the longitudinal stress, e11 is the longitudinal strain and Ep denotes the Young’s modulus of the piezo and
e31=Epd31, where d31 is piezoelectric coupling coefficient.

3.2.1. Modeling of smart single fold beam platform

Active vibration control of the flexible platform has been studied using the finite element model based on the Euler–
Bernoulli beam theory. Each of the four beams is discretized into 7 elements (Fig. 1). The vertical elements are thin
elements in each folded beam and they are bonded with an actuator and sensor pair on either side of its surface and the
horizontal elements are normal thick beam elements. Thus, in each of the folded beams, the vertical elements are smart
beam elements and the horizontal elements are normal beam elements.

3.2.1.1. Smart element formulation. The vertical element with piezoelectric patch as shown in Fig. 4 is assumed to have the
axial, transverse and rotation degrees of freedom at each node as shown in Fig. 5. The physical properties of the smart
beam element are listed in Table 2. The electric degree of freedom is used as a sensor or actuator voltage. The kinematics of
the model is derived based on the Euler–Bernoulli beam theory [28–30]. Assuming the transverse shear strain in the base
beam to be negligible, the longitudinal normal strain at a point in the base beam and in the piezoelectric layer is given as

ðexxÞb ¼ ðexxðx,z,tÞÞb ¼ ½½N
0
u��z½N

00

w��
u

w

� �
(18)

ðexxÞp ¼ ðexxðx,z,tÞÞp ¼ ½N
0
u��

hb

2
þzp

� �
½Nn

w�

� �
u

w

� �
(19)

Here, Nu and Nw are the linear and cubic shape functions, hb and zp are thickness of beam and piezo strip and u and w are
nodal degrees of freedom. The stiffness and mass matrices are developed using energy methods as described below.

3.2.1.2. Strain energy and stiffness matrix. The strain energy stored in a deformed beam of length L, width b, thickness hb and
hp is given by

U ¼UðtÞ ¼UEbþUEp ¼
1

2
b

Z L

0

Z hb=2

�ðhb=2Þ
ðEðx,zÞðexxðx,z,tÞÞ2Þdz dx (20)

where UEb and UEp are strain energies of beam and piezo strip elements and are given as

UEb ¼
1

2

u

w

� �T

bEb

Z L

0

Z hb=2

�ðhb=2Þ

½N0u�
T½N0u� �z½N0u�

T½N
00

w�

�z½N
00

w�
T½N0u� z2½N

00

w�½N
00

w�

" #
dx dz

u

w

� �
(21)
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Fig. 4. Smart folded beam platform. (Piezoelectric beam element)

Fig. 5. A typical smart element.

Table 2
Physical properties of smart beam element

Width of element (beam/PZT) 0.025 m

Depth of piezo actuator/sensor 0.00035 m

Eb, modulus of elasticity of beam element 21,000 GPa

Ep, modulus of elasticity of piezo element 13,900 GPa

Gb, modulus of rigidity of beam element 7000 GPa

Density of beam element (rb) 7800 kg/m3

Density of PZT element (rp) 7500 kg/m3

PZT strain constant (d31) 125�10�12 m/V

PZT stress constant (g31) 10.5�10�3 V m/N
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UEp ¼
1

2

u

w

� �T

bEp

Z L

0

Z hp

0

½N0u�
T½N0u� �

hp

2
þzp

� �
½N0u�

T½N
00

w�

�
hp

2
þzp

� �
½N
00

w�
T½N0u�

hp

2
þzp

� �2

½N
00

w�½N
00

w�

2
66664

3
77775dzp dx

u

w

� �
(22)

In the above equations, Eb and Ep are the modulus of elasticity of beam and piezo materials. These strain energy terms
contribute to the stiffness matrix which is given as

½K� ¼ ½KEb�þ½KEp� (23)
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3.2.1.3. Kinetic energy and mass matrix. The kinetic energy of beam of width b and length L is given by

T ¼ TðtÞ ¼
1

2
b

Z L

0

Z z=2

�ðz=2Þ
rðx,zÞðð _wðx,z,tÞÞ2þð _uðx,z,tÞÞ2Þdz dx (24)

T ¼ TwþTu ¼ TwþðTubþTupÞ

For a beam with uniform density and thickness, the kinetic energy associated with the transverse motion Tw and
longitudinal motion (Tub, Tup) of the beams are given by

Tw ¼
1

2

f _u g

f _w g

( )T

bðrbhbþrphpÞ

Z L

0

½0� ½0�

½0� ½Nw�
T½Nw�

" #
dx
f _u g

f _w g

( )
(25)

Tub ¼
1

2

f _u g

f _w g

( )T

brb

Z L

0

Z hb=2

�ðhb=2Þ

½Nu�
T½Nu� �z½N0w�

T½Nu�

�z½N0w�
T½Nu� z2½N0w�

T½N0w�

" #
dz dx

f _u g

f _w g

( )
(26)

Tup ¼
1

2

f _u g

f _w g

( )T

brp

Z L

0

Z hp

0

½Nu�
T½Nu� �

hb

2
þzp

� �
½N0w�

T½Nu�

�
hb

2
þzp

� �
½N0w�

T½Nu� z2½N0w�
T½N0w�

2
6664

3
7775dzp dx

f _u g

f _w g

( )
(27)

The densities of beam and piezo materials are rb and rp, respectively. These expressions lead to the following element
mass matrix:

½M� ¼ ½Mw�þ½Mu� ¼ ½Mw�þð½Mub�þ½Mup�Þ (28)

3.2.2. Sensor equation

The sensor equation is derived from the direct piezoelectric equation as described in Ref. [30]. The electric displacement
developed on the sensor surface is directly proportional to the stress acting on the sensor. If the polling is done along the thickness
direction of the sensors with the electrodes on the upper and lower surfaces, then the electric displacement Hz is given as

Hz ¼ d31Epex ¼ e31ex (29)

where d31 is the piezoelectric constant, e31 the piezoelectric stress/charge constant, ex the strain produced and Ep the
Young’s modulus. The total charge Q(t) developed on the sensor surface (due to the strain) is the spatial summation of all
the point charges developed on the sensor layer and is given by

iðtÞ ¼
dQ ðtÞ

dt
¼

d

dt

Z
A

Hz dA¼
d

dt

Z
A

e31ex dA (30)

Since the strain ex of the testing structure at a point can be expressed in terms of the second spatial derivative of the
displacement function w00(x, t) as ex=z(d2w/dx2), where z is a coordinate of the point on the beam with respect to the axis of
the beam, Eq. (30) can be written as

iðtÞ ¼
Z

A
e31zN

00

w
T d

dt
ðwÞdA (31)

where z=((tb/2)+ta) The output current of the piezosensor measures the moment rate of the flexible beam. This current is
converted into the open circuit sensor voltage Vs(t) using a signal conditioning device with gain Gc which is then applied to
an actuator with a suitable controller gain. Thus, the sensor output voltage Vs(t) is obtained as

Vs
ðtÞ ¼ Gce31zb

Z lp

0
N
00

w
T d

dt
ðwÞdx (32)

which is the signal conditioning gain Gc multiplied by the closed circuit current i(t) generated by the piezoelectric lamina.
The sensor output voltage can further be written for beam elements as

Vs
ðtÞ ¼ ½0 �Gce31zb 0 Gce31zb�f _w g ¼ Gce31zb½0 �1 0 1�f _w g ¼ PT

f _wg (33)

3.2.3. Actuator equation

The actuator equation is derived from the converse piezoelectric equation as described in Ref. [30]. The strain ea

developed by the electric field Ef on the actuator layer is given by

ea ¼ d31Ef (34)

where d31 is the piezoelectric constant. When the input voltage Va(t) is applied to the piezoelectric actuator in the
thickness direction ta, the electric field Ef and the stress ra developed by the actuator is given by

Ef ¼
Va
ðtÞ

ta
and ra ¼ Epd31

Va
ðtÞ

ta
(35)
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where, Ep is the Young’s modulus of the piezoelectric layer. Because of this stress in the structure, bending moments act at
nodes. In general, the expression for the bending moment in a small cross section of the piezoelectric element is given by

dMa ¼ EpIp
d2w

dx2
(36)

Since the strain ea=z(d2w/dx2) which is also equal to ra/Ep, the bending moment in the small cross section can be finally
obtained as dMa=raz. The resultant moment Ma acting on the beam element due to the applied voltage Va is determined by
integrating Eq. (36) throughout the structure thickness as

Ma ¼

Z
zra dz (37)

which after simplifying becomes

Ma ¼ Epd31zVa
ðtÞ (38)

where z ¼ ðtaþtb=2Þ is the distance between neutral axis of the beam and the piezoelectric layer. The control force Fctrl

produced by the actuator that is applied on the beam element is obtained using the Eq. (38) as

Fctrl ¼ Epd31z

Z
w0ðx,tÞdxVa

ðtÞ (39)

which when expressed in terms of the control input to the actuator Va(t) becomes

Fctrl ¼ hVa
ðtÞ ¼ huðtÞ (40)

In the above equation, the constant vector h is obtained as

hT
¼ ½�Epd31bz 0 Epd31bz0� (41)

In the presence of external forces the total force vector becomes

FT
¼ FextþFctrl (42)

3.2.4. Dynamic equation of the smart beam

The flexible platform shown in Fig. 4 has been designed to act as a mount for devices like a reaction wheel, which would
have a maximum speed of 3600 rev/min. This suggests that we need to control only those modes for which the frequency is
less than 60 Hz. Therefore in the dynamic model only the first four modes are considered. The dynamics of the platform is
represented by the following differential equation:

M €qþKq¼ Bf uf þBcuc ¼ FextþFctrl (43)

where K and M are taken from Eqs. (23) and (28), respectively, and for a system with nd degrees of freedom the size of the
mass and stiffness matrices is nd�nd. In Eq. (43), q is the nd�1 nodal displacement vector, €q the nd�1 nodal acceleration
vector, uf the s�1 input force vector and uc the t �1 control force vector. The input force matrix Bf is nd� s, and the control
force matrix Bc is nd� t. The modal form of Eq. (43) is derived by using the transformation q=Uz, where z and €z represent
the modal displacement and modal acceleration, respectively. Therefore,

MU €zþKUz¼ FextþFctrl ¼ Ft (44)

Here, U is the modal matrix of size (nd�4) and consists of the eigenvectors corresponding to the first four modes.
Premultiplying Eq. (44) by UT, we get

UTMU €zþUTKUz¼UTFextþUTFctrl (45)

which can be written as

Mm €zþKmz¼ F�extþF�ctrl (46)

where Mm=UTMU and Km=UTKU are the diagonalized mass and stiffness matrices.
By introducing the modal damping matrix Lm=UTLU in the above Eq. (46), where L=aK+bM with a and b as

nonnegative scalars, we get the dynamic equation of smart flexible beam platform with four modes as

Mm €zþLm _zþKmz¼UTFextþUTFctrl (47)

The state space model of the flexible platform of four folded beams with 12 inputs and 12 outputs is given in state space
form as

_x ¼AxþBu (48)

where, A and B are given by

A¼
0 I

�M�1
m Km �M�1

m Lm

" #
8�8

(49)
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B¼
0

M�1
m UTh1

. . .
0

M�1
m UTh12

" #
8�12

(50)

and u is an input matrix. In Eq. (50), h is a constant vector which depends on the type of the actuator, its location on the
beam, its characteristic properties and is given by

hT
¼

h1

h2

^

h12

2
66664

3
77775

T

12�150

(51)

The output equation is

fyðtÞg ¼ ½C�fxðtÞg (52)

where

C¼ 0 PTU
h i

12�8
(53)

and P is a constant vector which depends on sensor characteristics and its location/position on the beam and is given as

PT
¼

P1

P2

^

P12

2
66664

3
77775

T

12�150

(54)

4. Passive control simulation results

The equations developed in Section 3.1, namely Eq. (14) were simulated using Matlab. Results obtained are discussed
next.

4.1. Eigenvalue analysis

4.1.1. Natural frequencies of four beam platform (symmetrical)

In this case the four horizontal planar beams, as shown in Fig. 1, were placed symmetrically with respect to the folds.
The top and bottom folds were terminated at 24 mm from the horizontal beam. Eigenvalue analysis was carried out to
study the variation in natural frequency by varying the thickness of vertical beam members. The results have been listed in
Table 3. The frequencies have been listed up to 60 Hz as the platform is expected to take a mount that has a maximum
speed of 3600 rev/min. It is observed that a decrease in thickness of vertical beam member lowers the frequency of the
platform. The first eigenvalue is obtained as �28.868 j103.49 which has a negative real part. Although not presented here,
all eigenvalues have been found to be negative, thereby implying that the system is well damped and stable.
Table 3
Natural frequency (Hz) of four beam platform.

Vertical beam thickness (m) Symmetrical (0.024–0.024) m Symmetrical (0.024–0.036) m Unsymmetrical (0.024–0.048) m

0.001 17.100 13.320 10.555

24.816 21.021 18.440

37.833 32.552 28.709

44.756 42.761 40.659

74.134 67.172 60.723

0.0008 13.275 10.134 7.908

19.347 16.649 14.877

31.358 26.864 23.562

42.390 40.284 38.078

70.239 62.926 56.252

93.990

0.0006 9.304 6.942 5.333

13.566 11.820 10.713

23.298 19.742 17.143

39.864 37.701 38.402

66.239 58.890 52.083

102.617 90.940
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4.1.2. Natural frequencies of four beam platform (unsymmetrical)

In this case the four horizontal planar beams were placed unsymmetrically with respect to top and bottom folds. Two
types of unsymmetrical beams are considered. In the first type the horizontal beam is at a distance of 24 mm from the top
fold and 36 mm from the bottom fold. In the second type the horizontal beam is placed from the top and bottom folds at a
distance of 24 and 48 mm, respectively. In either case frequencies were obtained for varying thickness of vertical beam
members. Comparing the results in Table 3, it is inferred that an increase in length of the vertical members, leads to
reduction in frequency.

4.1.3. Natural frequencies for different number of folds

The platform shown in Fig. 1 has only one fold. In order to investigate the design for more flexibility, numerical
simulations were carried out by increasing the number of folds to two, three and four. It is seen that as the numbers of
folds are increased, there is drop in the frequency. Similarly when the thickness of vertical members is reduced from 0.001
to 0.0006 m, there is further reduction in frequency. The results are tabulated in Table 4.

Thus, low frequencies for the platform can be achieved by
(i)
Table
Natur

Ver

0

0

0

increasing the number of folds,

(ii)
 decreasing the thickness of vertical members and
(iii)
 placing the horizontal beams unsymmetrically with respect to the top and bottom folds.
The flexible platform can therefore be used as a mounting device with an optimal set of design parameters to meet the
frequency specification in any given application.

4.2. Response analysis

4.2.1. Free undamped response analysis

Time responses were computed from Eq. (14) by assuming the initial condition vector as x(0)={0.002, 0.005, 0.002,
0,y}T. Results corresponding to 2nd and 4th degree of freedom for the platform are shown in Fig. 6(a) and (b). It can be
seen that the largest amplitude response in either case is as high as �4�10�3 m and �4�10�2 rad. All other degrees of
freedom have lower response.

4.2.2. Impulse response analysis

For an external impulse of 1 N at 2nd degree of freedom, the responses were calculated at all nodes. It is observed that
for all degrees of freedom of the platform the peak responses are small and they damp out in a very short time. This
4
al frequencies (Hz) of a four beam platform for varying number of folds.

tical beam thickness (m) One-fold Two-folds Three-folds Four-folds

.001 17.100 11.128 7.637 5.771

24.816 15.010 10.729 8.595

37.838 22.195 14.960 10.896

44.756 33.173 27.913 24.429

74.134 57.356 38.911 33.820

72.051 63.479

.0008 13.275 8.317 5.557 4.167

19.347 11.144 7.820 6.237

31.358 16.629 10.972 7.920

42.390 35.551 27.147 23.987

70.109 55.578 38.109 33.332

92.938 71.288 60.272

.0006 9.304 5.578 3.649 2.723

13.566 7.443 5.142 4.092

23.298 11.166 7.249 5.204

39.864 34.092 26.493 23.543

66.239 53.780 37.238 32.738

82.896 56.888 41.519

56.897 41.601

68.288 52.930

53.314

58.111

59.361

60.473
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Fig. 6. Time response of the platform: (a) response of 2nd dof and (b) response of 4th dof.

Fig. 7. For an impulse of 1 N at 2nd dof: (a) response at 1st dof and (b) response at 2nd dof.
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behavior for the first two degrees of freedom has been depicted in Fig. 7(a) and (b). Since the damping ratio (z) for a metal
structure generally lies between 0.01 and 0.05, in this simulation, we consider B1=0.025 for the first mode. For the other
modes damping ratio [26] is calculated using the relation Bi � B1ðoi=o1Þ

e1 ð0:5re1r0:7Þ.
4.2.3. Forced response analysis

The response of the symmetrical flexible platform at the first two degrees of freedom subjected to a harmonic load of
5 sin (24.816t) N at the first node is depicted in Fig. 8(a) and (b). It is observed that the amplitude of the response is of the
order 10�5. Similar behavior has been observed at all other degrees of freedom too.
4.2.4. Frequency response analysis

For the one folded beam platform, the forced response analysis was carried out by varying the forcing frequency from
0 to 65 Hz. The transfer receptances a12 and a32 are plotted in Fig. 9(a) and (b), respectively. The peaks are seen at the
natural frequencies of the system. The damped and undamped responses clearly demonstrate that platform system is quite
stable.
4.2.5. Modal responses

Response of the first two modes plotted in Fig. 10(a) and (b) indicates that each response is a sinusoid of frequency
equal to the natural frequency and of exponentially decaying amplitude proportional to modal damping Bi. Note that the
higher frequency responses decay faster.
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Fig. 9. Damped and undamped forced frequency response plots.

Fig. 8. For a sinusoidal input (a) response at 1st dof and (b) response at 2nd dof.
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Fig. 10. Modal response of first two modes.
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4.2.6. Effectiveness of the platform isolator

Platform isolation has been estimated for a typical symmetric flexible platform comprising of three folded beams. For
vertical beams with thickness equal to 0.8 mm and a forcing frequency of 60 Hz it is found that the ratio of forcing
frequency to the first natural frequency is 10.797 which amounts to an isolation of 99.0905%.
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5. Active control simulation results

Active vibration control of the flexible platform was studied using piezolaminated beam elements. Two PZT layers were
bonded on either side of the vertical beams to act as a sensor and actuator pair. Finite element formulation was done with
the following assumptions:
(i)
Table
Respo

Exc

1

2

3

4

Sensor-actuator patches are placed on either side of the most flexible part of the four beams.

(ii)
 PZT sensor actuator patches are made of lead zirconate titanate material of 35mm thickness.
(iii)
 Length of both the piezoelectric sensor and actuator patch is equal to the length of one finite element.

(iv)
 Structural damping is proportional and is taken to be Lm=aKm+bMm; where a=0.0005, b=0.0002. These values are

deliberately assumed to be very low in order to study the effectiveness of active control on response.
Optimal control has been applied using the linear quadratic regulator [23,24]. The optimal control problem consists of
solving for the feedback gain matrix, G, such that the performance matrix J is minimal. The cost function to be minimized is
given by

J¼
1

2

Z1
0

ð xgT ½Q ðtÞ� xf gþ ugT ½RðtÞ� uf gÞdt
��

(55)

where [Q(t)] and [R(t)] are semi-positive definite and positive definite weighting matrices on the outputs and control
inputs, respectively. Assuming full state feedback, the control law is given by

fug ¼�½G�fxg (56)

The above state feedback is applied to reduced order model considering only the first four modes of interest which

correspond to disturbances of frequency less than 60 Hz. Response of the system to various types of loading conditions is
studied using Eq. (53) and is described below.

5.1. Response to harmonic loading

The dynamic response of the platform has been studied for sinusoidal load of 0.5 sin(oit) N where, the forcing
frequencies oi(i=1–4) are the first four natural frequencies. The vibration amplitudes are controlled using the LQR optimal
control with weighing matrices (i) Q=1012I8, R=0.5I12 and (ii) Q=1011I8, R=0.5I12Q. The amplitudes of the modal response
of first four modes are listed in Table 5. The uncontrolled and controlled responses are compared in Figs. 11 and 12. The
control brings about a significant reduction in amplitude for all four modes as indicated by the dark line. It is also seen that
no resonance occurs for all four modes. Considering a single beam from Fig. 1, the actuator voltages developed in each
vertical strip of the beam were recorded. Fig. 13 represents these voltages for the first mode which are observed to be
within the PZT threshold. The voltage required for the longer vertical beam is more due to higher bending strain. The
eigenvalues for the closed loop system listed in Table 6, show that there is a significant shift in the real part when the
Q=1012I8 and R=0.5I12.

5.2. Response to initial condition

The system is subjected to an initial displacement of 0.005 m at the second degree of freedom. The modal responses of
first four modes are given in Table 7. It is seen that the dynamic response is more influenced by the third mode. The
weighing matrices Q=109I8 and R=0.8I12 have been chosen for control and the settling time is seen to be less than 0.5 s as
shown in Fig. 14. The control voltages for the actuators plotted in Fig. 15 once again reflect that higher bending strain
results in higher control voltage. The eigenvalues are given in Tables 8 and 9 for controlled and uncontrolled system.
Although there is a small shift in the real part but the control is found to be significant with the chosen weighing matrices.
5
nses to harmonic loading.

iting frequency (Hz) Amplitude of modal response (m) Q R

Without control With control

7.100 1.25�10�5 0.15�10�5 1012 0.5

4.816 0.75�10�5 0.2�10�5 1012 0.5

7.838 2.0�10�5 0.25�10�5 1012 0.5

4.756 1.9�10�5 0.25�10�5 1012 0.5
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Fig. 11. Modal response – 1st and 2nd mode. __ uncontrolled response, _ controlled response.
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Fig. 12. Modal response – 3rd and 4th mode. __ uncontrolled response, _ controlled response.
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Table 6
Eigenvalues of closed loop when external force of 0.5 sin(on)i tN at 2nd dof.

Eigen values of open and closed loop

Without PZT control With PZT control actuators and sensors

Eigenvalues Nat. freq. (Hz) Q R Eigenvalues Actuator voltage (V)

�1.68657129.848i 20.677 1012 0.5 �8.26857129.624474i Typical voltages 50, 150, 5

�3.18837178.522i 28.4316 �12.13497178.104864i

�7.52227274.159i 43.6723 �10.31247274.376612i

�8.85547297.445i 47.3848 �15.55587296.826947i

�1.68657129.848i 20.677 1011 0.5 �3.08177129.8228i Typical voltages 8, 25, 0.5

�3.18837178.522i 28.4316 �4.90997178.48335i

�7.52227274.159i 43.6723 �7.89327274.15381i

�8.85547297.445i 47.3848 �9.768617297.4123i

Table 7
Responses to initial condition.

Initial displacement at 2nd dof Amplitude (m) of the first four modes Q R

0.005 m 1.0�10�4 109 0.8

1.75�10�4 109 0.8

2.0�10�3 109 0.8

1.50�10�3 109 0.8
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Fig. 14. First two modal responses. — Controlled response, _ uncontrolled response.
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5.3. Response to step loading

5.3.1. Response to sinusoidal input

The platform is subjected at time 0.1 s, to a sinusoidal input of 0.5 sin(io11t) N at 2nd degree of freedom for a duration of
0.4 s where, o1 is the first natural frequency of the platform. This leads to an amplification of 1.2�10�5 m in the response
in the uncontrolled state as shown in Fig. 16. The amplification is limited to 0.4�10�5 m using an optimal control with
weighing factors Q=1010I8 and R=0.5I12. The amplitude peak that is seen to be 1.3�10�5 m at the end of 0.5 s does not
decay to zero at the end of 2 s for the uncontrolled state. But active control causes the same to decay to zero at 0.7 s which
means that only 0.2 s are required to control the system. The voltage plots for first three actuators are given for this case in
Fig. 17 for the above values of Q and R.
5.3.2. Response to pulse loading

The uncontrolled and controlled modal response of the flexible platform for a pulse load of 2 N applied at 2nd degree of
freedom for a duration of 0.4 s is simulated. The modal response contribution for this input is plotted only for the first
mode and it is given in Fig. 18. It can be noted that the controlled responses are of low magnitude and the decay is very fast.
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Fig. 15. Actuator voltages for a single beam. v1 and v3 are the volatges in smaller vertical strips and v2 is the voltage in the longer vertical strip (Fig. 1).

Table 8
For Q=109I8 and R=0.8I12.

Eigen values of open and closed loop

Without PZT control With PZT control (actuators and sensors)

Eigenvalues Nat. freq. (Hz) Q R Eigenvalues Actuator voltage

�1.68657129.848i 20.677 109 0.8 �1.69889+129.8479i Typical voltages 100, 250, 5

�3.18837178.522i 28.4316 �3.20197+178.522i

�7.52227274.159 43.6723 �7.52468+274.1597i

�8.85547297.445 47.3848 �8.86153+297.4456i

Table 9
For Q=109I8 and R=0.8I12.

Eigen values of open and closed loop

Without PZT control With PZT Control (actuators and sensors)

Eigenvalues Natural freq. (Hz) Q R Eigenvalues Actuator voltage

�1.68657129.848i 20.677 1010 1.0 �1.782644+129.8468i Typical voltages 75, 250, 15

�3.18837178.522i 28.4316 �3.296029+1785208i

�7.52227274.159i 43.6723 �7.5415871+274.159i

�8.85547297.445i 47.3848 �8.90370+2.9744440i
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When the load is taken off, the system tends to go the equilibrium and thus oscillates. It is again controlled within 0.2 s. The
LQR weighing factors are chosen as Q=1010I8 and R=0.5I12. The response peak is seen to be 1.5�10�6 m at the end of 0.5 s
and the controlled plot peak is 1�10�6 m. The decay is happening within 0.3 s for the first modal response contribution.
The uncontrolled vibration lasts over 2 s. The voltage plots for first three actuators are given for this case in Fig. 19. The
voltage again indicates that the middle vertical beam experiences higher bending strain thus producing higher control
voltage.

6. Conclusion

This paper addresses the design, modeling and analysis of low frequency space frame platform for passive and active
attenuation of low amplitude vibrations. Finite element analysis of the proposed platform suggests that low frequencies
can be achieved by increasing the flexibility of the platform which can be done either by decreasing the vertical beam
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thickness or by increasing the length of the flexible vertical beam or both. An increase in the number of folds also leads to
low frequencies. Numerical simulations confirm that vibration isolation of disturbances on-board spacecraft could be
achieved passively through this kind of platform. Active vibration control of the device, using sensors and actuators
embedded as collocated pair on flexible arms, has been studied using the optimal control technique. Numerical results
show that although the flexible folded beam platform is able to passively suppress the vibration for space usage, it could
also be equipped with piezoceramic actuators and sensors to actively cut down further vibrations. Suppression of vibration
has been demonstrated for harmonic loading, pulse loading and initial displacement loading conditions. In all such cases
the first few modes of vibration have been effectively controlled. Therefore, we conclude that this platform configured with
flexible beam structure can be used as a platform for mounting the payload where source generated vibration have to be
insulated to reach out to critical location/areas of structure.
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