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a b s t r a c t

In this paper, natural frequencies of planar vibration of axially moving beams are

numerically investigated in the supercritical ranges. In the supercritical transport speed

regime, the straight equilibrium configuration becomes unstable and bifurcate in

multiple equilibrium positions. The governing equations of coupled planar is reduced to

solution, those nonlinear equations are cast in the standard form of continuous

gyroscopic systems by introducing a coordinate transform. The natural frequencies are

investigated for the beams via the Galerkin method to truncate the corresponding

governing equations without nonlinear parts into an infinite set of ordinary-differential

equations under the simple support boundary. Numerical results indicate that the

nonlinear coefficient has little effects on the natural frequency, and the three models

predict qualitatively the same tendencies of the natural frequencies with the changing

parameters and the integro-partial-differential equation yields results quantitatively

closer to those of the coupled equations.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving beams are involved in many engineering devices, such as power transmission belt, band saws and aerial
cable tramways. The wide diffusion of axially moving systems in industrial processes has motivated intense research
activity. In 1965, Mote [1] studied the fundamental frequency approximations via the Galerkin method, and supported by
the experiment [2]. Wickert and Mote [3] presented a classical vibration theory for the traveling string and the traveling
beam where natural frequencies and modes associated with free vibration serve as a basis for analysis. Wickert [4] used a
perturbation method to investigate the natural frequency of an axially moving beam under the simple support boundary
conditions in the supercritical regime. Öz and Pakdemirli [5] and Öz [6] calculated the first two natural frequencies values
in the cases of pinned–pinned ends and clamped–clamped ends, respectively. Özkaya and Öz [7] applied artificial neural
networks to determine the natural frequencies of axially moving beams and gave a comparison of analytical and ANN
results for the first two natural frequencies. Öz [8] computed natural frequencies of an axially moving beam in contact with
a small stationary mass under pinned–pinned or clamped–clamped boundary conditions. Chen and Yang [9] gave the first
two frequencies of axially moving elastic and viscoelastic beams on simple supports with torsion springs. Wang and Ni [10]
presented numerical results for natural frequency for an axially moving beam in fluid based on the differential quadrature
method. Ghayesh and Khadem [11] investigated natural frequency for the first two modes in free nonlinear transverse
010 Published by Elsevier Ltd. All rights reserved.
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vibration of an axially moving beam in which rotary inertia and temperature variation effects have been considered. All of
above literatures except [4], the natural frequency of axially moving beams were calculated from governing equation
of transverse vibration in the subcritical ranges. And Wickert [4] only investigated the fundamental natural frequency of
transverse vibration of an axially moving beam in the supercritical regime.

Under certain conditions, an axially moving beam may undergo transverse and longitudinal motions that are usually
coupled if the geometrical nonlinearity has to be considered. Thurman and Mote [12] first developed the full governing
equations of planar motion and calculated the nonlinear fundamental frequency from simplified governing equations.
Wang and Mote [13] studied the linear coupling between the transverse and longitudinal motions due to the finite
equilibrium curvatures. Riedel and Tan [14] studied the forced response of a nonlinear axially moving beam with coupled
transverse and longitudinal motion. Sze et al. [15] applied the incremental harmonic balance method for transverse and
longitudinal motions for nonlinear phenomena of axially moving beams. The literature regarding the coupled equations of
axially moving beams is wide [10]. However, there have been no investigations about the natural frequency of planar
vibration of axially moving beams in the supercritical regime. Here, we focus on the first and second natural frequencies of
planar vibration of axially moving beams in the supercritical regime.

The transverse motion can be decoupled from the longitudinal motion so that the nonlinear integro-partial-differential
equation and the nonlinear partial-differential equation are obtained to govern the transverse motion. Both models for
transverse vibration of axially moving beams have been widely used as summarized in [16]. Approximate analytical results
based on the two models were compared for parametric vibration [17], free vibration [18] of axially moving beams. It is
found that the predictions made by the two models are qualitatively the same, but quantitatively different. The transverse
responses calculated numerically from the two models were, respectively, compared with the transverse component
calculated from the coupled equation for free vibration [19] and forced vibration [20] of axially moving beams in the
subcritical ranges. Both models yield almost the same precision results and the integro-partial-differential equation gives
better results. However, so far it has not been clear which model yields better outcomes. And there are no works for this
issue in the supercritical ranges.

It should be remarked that the literatures on axially moving materials in the supercritical ranges are rather limited.
Wickert [4] noticed that the straight equilibrium configuration becomes unstable and bifurcates in multiple equilibrium
positions of a translating beam above a certain critical velocity are analogous to those in a buckled beam problem from the
nonlinear integro-partial-differential equation, and for each non-trivial equilibrium solutions, the governing equation is
cast in the standard form of continuous gyroscopic systems by introducing a coordinate transform, and the natural
frequency of an axially moving beam is calculated by perturbation method. Hwang and Perkins [21,22] investigated the
effect of an initial curvature due to supporting wheels and pulleys on the bifurcation and stability of equilibrium in the
supercritical speed regime; they underlined the system sensitivity to initial imperfections. Ravindra and Zhu [23]
investigated a symmetric pitchfork bifurcation for a parametrically excited as the axial velocity of the beam is varied
beyond a critical value. Pellicano and Vestroni [24] focused on exploring the dynamics of a traveling beam subjected to a
transverse load with simple supported via the Galerkin method when its main parameters vary in the supercritical velocity
range. Parker [25] discussed supercritical phenomena in moving strings and found elastically supported strings always
exhibit divergence instability above the first critical speed. Pakdemirli and Öz [26] calculated the natural frequency values
of axially moving beams under clamped–clamped boundary conditions in the supercritical regime from the governing
equation in the subcritical range; they found the complex frequency values non-zero imaginary parts, i.e. the beam is
unstable at those velocities. The present investigation focus on the natural frequency of an axially moving beam in the
supercritical speed ranges.

However, there are no works on coupled vibration of axially moving beams in the supercritical speed ranges. To address
the lacks of research in this aspect, the natural frequencies are calculated by the Galerkin truncation to the coupled
longitudinal–transverse governing equations. It is also not clear which transverse models approximate coupled model
better for beams moving at the supercritical speed. The additional goal of the present investigation is to examine the
validity and the superiority of the two nonlinear transverse models. To compare the two nonlinear transverse models in
the sense of approximating the nonlinear coupled governing equation, the natural frequencies in the supercritical regime
calculated from the two transverse models via the Galerkin method, and the frequencies are contrasted with the results
based on the coupled equations.

The present paper is organized as follows. Section 2 establishes the coupled governing equation and two equations for
transverse motion of an axially moving beam in the supercritical regime. Section 3 develops the Galerkin truncation
schemes to solve the natural frequency from the coupled equations of planar motion presented in Section 2. Section 4
compares the coupled equations of planar motion with two governing equations of transverse motion via the natural
frequency. Section 5 ends the paper with the concluding remarks.
2. Mathematical models and equilibria

Consider a uniform axially moving beam travels at the uniform constant transport speed g between two boundaries
separated by distance l with density r, cross-sectional area A, moment of inertial I, initial tension P0 and Young’s
modulus E. Assume that the deformation of the beam is confined to the vertical plane. For a slender beam, the linear
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moment–curvature relationship is sufficiently accurate. The fixed axial coordinate x measure the distance from the left
boundary. The longitudinal displacement u(x,t) related to coordinate translating at speed g and the transverse
displacement v(x,t) related to a spatial frame specify the in-plane motion of the beam. The beam is subjected to no
external loads. The coupled equation for transverse motion and longitudinal displacement of axially moving elastic beam
can be cast into the dimensionless form [19]

u,ttþ2gu,xtþg2u,xx�k2
1u,xx ¼ ðk

2
1�1Þv,x½ð1þu,xÞv,xx�u,xxv,x�½ð1þu,xÞ

2
þv,2x �

�3=2

v,ttþ2gv,xtþg2v,xx�k2
1v,xxþk2

f v,xxxx ¼�ðk
2
1�1Þð1þu,xÞ½ð1þu,xÞv,xx�u,xxv,x�½ð1þu,xÞ

2
þv,2x �

�3=2 (1)

where a comma preceding x or t denotes partial differentiation with respect to x or t, and the dimensionless variables and
parameters as follows:
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Introduce an approximately transform by Taylor series expansion method
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2
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2ð2u,xþu,2xþv,2x Þ (3)

Substitution of Eq. (3) into Eq. (1) yield
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Equilibrium solutions v̂ðxÞ and ûðxÞ of Eq. (4) satisfy
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where the prime indicates differentiation with respect to x and the superscript indicates the sense of the equilibrium
displacement. In the present investigation, only the boundary conditions of the beam is simply supported at both ends are
considered as follows:

uð0,tÞ ¼ uð1,tÞ ¼ 0 (6)

vð0,tÞ ¼ vð1,tÞ ¼ 0,v,xxð0,tÞ ¼ v,xxð1,tÞ ¼ 0 (7)

Denote the function values v̂ðxiÞ and ûðxiÞ at (xj) as v̂i and ûi. The trivial configuration v̂0 ¼ 0, û0 ¼ 0 is always an
equilibrium solution. The numerical schemes are presented for Eq. (5) for pairs of non-trivial equilibrium solutions v̂

7
i and

û
7
i in the supercritical regime via and differential quadrature method by modification of the weighting coefficient

matrices to implement the simply supported boundary conditions (6) and (7). Then the nonlinear equations (5) can be
solved using an iterative procedure, develop iterative schemes [19]
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where space sampling points
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and the weighting coefficients are the expression [19]

Að1Þij ¼
YN

k ¼ 1,kai

ðxi�xkÞ½ðxi�xjÞ
YN

k ¼ 1,kaj

ðxj�xkÞ�
�1 ði,j¼ 1,2, � � � ,N; jaiÞ (10)

and the recurrence relationship

AðrÞij ¼ r Aðr�1Þ
ii Að1Þij �

Aðr�1Þ
ij

xi�xj

" #
ðr¼ 2,3,4; i,j¼ 1,2, . . . ,N; jaiÞ (11)



ARTICLE IN PRESS

H. Ding, L.-Q. Chen / Journal of Sound and Vibration 329 (2010) 3484–3494 3487
and the weighting coefficient matrices Bij
(2) without modification
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In the computations, N=17.
For motion about each bifurcated solution, the coupled equation is cast in the standard form of continuous gyroscopic

systems by introducing a coordinate transform. The substitution v(x,t)-v̂7(x)+v(x,t) and u(x,t)-û7(x)+u(x,t) in Eq. (1)
yields
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For small but finite stretching problems, one can only consider the transverse motion. In this case, only the lowest order
nonlinear terms need to be retained. Then the transverse motion can be decoupled so that the nonlinear the partial-
differential equation

v,ttþ2gv,xtþðg2�1Þv,xxþk2
f v,xxxx ¼

3
2k2
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and the integro-partial-differential equation
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are obtained [19]. The pairs of non-trivial equilibrium solutions of nonlinear equations (19) [4]
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The non-trivial equilibrium solutions of nonlinear equations (18) can be solved using iterative schemes
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ðxÞþvðx,tÞ in Eq. (18) yields
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In this paper, the natural frequency of an axially moving beam in the supercritical speed ranges are focused on, the
details of the non-trivial equilibria for three nonlinear models of axially moving beams have been discussed in [27], and the
numerical error, the convergence and the stability of numerical schemes also have been discussed.
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3. The natural frequencies of the coupled equation

The Galerkin method will be used to solve numerically the linear equations correspondingly those nonlinear equations
for the natural frequencies under the boundary conditions (6) and (7). Omitting nonlinear terms of Eq. (16) yield
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Jha and Parker [28] have found stationary beam eigenfunctions yield excellent convergence at subcritical and
supercritical speeds. In the present investigation, both the trial and weight functions are chosen as eigenfunctions of a
stationary beam under the boundary conditions (6) and (7), namely, suppose that the solution to Eq. (24) takes the
form [15]
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where qj
v(t) and qj

u(t) are sets of generalized displacements of the beam. After substituting Eq. (25) into Eq. (24), the
Galerkin procedure leads to the following set of second-order ordinary differential equations
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where the dot above a variable denotes its derivative with respect to the non-dimensional time t
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Eq. (26) can be written in matrix-vector form as
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If qðtÞ defined as

qðtÞ ¼Q eiot (35)

Eq. (33) yield

½�o2Mþ ioCþK�Q ¼ 0 (36)

Non-triviality of solutions to Eq. (36) requires its determinant of coefficients to be zero, therefore, the natural
frequencies o can be obtained from

j�o2Mþ ioCþKj ¼ 0 (37)
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In the computations, n=4, that is to say, the natural frequency is numerical calculated based on 4-term
Galerkin truncation. Here only show the results of vðx,tÞ-v̂

þ
ðxÞþvðx,tÞ, as the results via vðx,tÞ-v̂

�
ðxÞþvðx,tÞ are

the completely same. Fig. 1 illustrates the dependence of the first two natural frequencies on the axial speed for
fixed nonlinear coefficient k1=100 and four different flexural stiffness kf values. In the present investigation, beams
are assumed to move with a supercritical axial speed. For the given kf, the natural frequencies increase with the
growth of axial speed. Fig. 2 illustrates the effects of the nonlinear coefficient with kf=0.8 on the first two natural
frequencies. In Fig. 2, the dotted lines and the solid lines, respectively, stand for the natural frequencies to
k1=100 and 200. The comparisons indicate that nonlinear coefficient k1 has little effects on the natural frequency.
The results of 2-term Galerkin truncation, 4-term Galerkin truncation and 8-term Galerkin truncation for Eq. (24) are
shown in Fig. 3, where the dash-dot lines are for 2-term Galerkin truncation results, the solid lines are for 4-term Galerkin
truncation results and the dot lines are for 8-term Galerkin truncation. The 2-term Galerkin truncation results are bigger
than the 4-term ones and the 8-term ones, especially for the second natural frequency, and the difference increase with the
growth of axial speed. Fig. 3 demonstrates that the 2-term Galerkin method is not good enough for the first two natural
frequencies for axially moving beams in the supercritical regime and the 4-term Galerkin method yields rather accurate
results.
Fig. 1. Natural frequencies versus axial speed and flexural stiffness: (a) the first natural frequency and (b) the second natural frequency.

Fig. 2. The effects of the nonlinear coefficient on the natural frequencies versus axial speed: (a) the first natural frequency and (b) the second natural

frequency.
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Fig. 3. Comparison between 2-term, 4-term and 8-term Galerkin truncation results: (a) the first natural frequency and (b) the second natural frequency.

H. Ding, L.-Q. Chen / Journal of Sound and Vibration 329 (2010) 3484–34943490
4. Natural frequencies of nonlinear models of transverse vibration and comparisons

4.1. Natural frequencies of the integro-partial-differential equation

Omitting nonlinear terms of Eq. (21) yield

v,ttþ2gv,xtþ g2�1�
k2

1

2

Z 1

0
v̂

7 0 2
dx

 !
v,xxþk2

f v,xxxx ¼ k2
1v̂

7
00
Z 1

0
v,xv̂

7 0

dx (38)

In the present investigation, both the trial and weight functions are chosen as eigenfunctions of a linear non-translating
beam under the boundary condition (7), namely, suppose that the solution to Eq. (24) takes the form [15]

vðx,tÞ ¼
Xn

j ¼ 1

qjðtÞ sinðjpxÞ, j¼ 1,2,:::,n (39)

where qj(t) are sets of generalized displacements of the beam. After substituting Eqs. (20) and (39) into Eq. (38), the
Galerkin procedure leads to the following set of second-order ordinary differential equations:

Xn

j ¼ 1

Mij €qjðtÞþ
Xn

j ¼ 1

Cij _qjðtÞþ
Xn

j ¼ 1

KijqjðtÞ ¼ 0 (40)

where

Mij ¼

Z 1

0
sinðjpxÞ sinðipxÞdx¼

1

2
dij (41)

Cij ¼ 2gjp
Z 1

0
cosðjpxÞ sinðipxÞdx¼

4gij=ði2�j2Þ, iaj

0, i¼ j

(
(42)

Kij ¼

Z 1

0
ðj2�1Þk2

f p
2ðjpÞ2 sinðjpxÞ�ð1þk2

f p
2�g2Þ4p sinðpxÞ

Z 1

0
jp cosðjpxÞ cosðpxÞ dx

" #
sinðipxÞdx (43)

Eq. (26) can be written in matrix-vector form as

M €qþC _qþKq¼ 0 (44)

where

q¼ ½q1,q2,:::,qn�
T , K¼

�p2ð1þk2
f p

2�g2Þ 0 � � � 0

0 22
ð22
�1Þk2

f p
4 ^

^ & 0

0 � � � 0 j2ðj2�1Þk2
f p

4

2
666664

3
777775 (45)
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Fig. 4. Comparison between 2-term, 4-term and 8-term Galerkin truncation results: (a) the first natural frequency and (b) the second natural frequency.
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Substitution of Eq. (35) into Eq. (44) yield

½�o2Mþ ioCþK�Q ¼ 0 (46)

Non-triviality of solutions to Eq. (46) requires its determinant of coefficients to be zero, therefore, the natural
frequencies o can be obtained from

j�o2Mþ ioCþKj ¼ 0 (47)

Fig. 4 shows the results of the first two natural frequencies of 2-term Galerkin truncation, 4-term Galerkin truncation
and 8-term Galerkin truncation for Eq. (38) dependence on the axial speed for fixed nonlinear coefficient k1=100 and
flexural stiffness kf=0.8 values. In Fig. 4, the dash-dot lines, the solid lines and the dots, respectively, stand for 2-term, 4-
term and 8-term Galerkin truncation. Fig. 4 demonstrates that 4-term Galerkin truncation predict the almost same results
as 8-term Galerkin method, while the 2-term ones bigger than them, especially for the second natural frequency, and the
difference increase with the growth of axial speed. That is meaning that the 4-term Galerkin method is sufficient in
predicting the first two natural frequencies of axially moving beams in the supercritical regime.
4.2. Natural frequencies of the partial-differential equation

Omitting nonlinear terms of Eq. (23) yield

v,ttþ2gv,xtþ g2�1�
3

2
k2

1v̂
7 02

� �
v,xxþk2

f v,xxxx ¼ k2
1v̂

7
00

v,xv̂
7 0

(48)

After substituting Eq. (39) into Eq. (48), the Galerkin procedure leads to the following set of second-order ordinary
differential equations:

Xn

j ¼ 1

Mij €qjðtÞþ
Xn

j ¼ 1

Cij _qjðtÞþ
Xn

j ¼ 1

KijqjðtÞ ¼ 0 (49)

where Mij and Cij, respectively, satisfy Eqs. (41) and (42), and Kij satisfy

Kij ¼

Z 1

0
k2

f j2p2�g2þ1þ
3

2
k2

1v̂
7 02

� �
ðjpÞ2 sinðjpxÞ�3k2

1v̂
7 0

v̂
7
00

jp cosðjpxÞ

� �
sinðipxÞdx (50)

Eq. (49) also can be written in matrix-vector form as Eq. (44) whereK¼ ½Kij�. Therefore, the natural frequencies o can be
obtained from Eq. (47).

Fig. 5 shows the results of the first two natural frequencies of 2-term Galerkin truncation, 4-term Galerkin truncation
and 8-term Galerkin truncation for Eq. (48) with k1=100 and kf=0.8. In Fig. 5, the dash-dot lines, the solid lines and the
dots, respectively, stand for 2-term, 4-term and 8-term Galerkin truncation. Fig. 5 demonstrates the same results as Fig. 4.
That is to say, the 4-term Galerkin method for the first two natural frequencies of axially moving beams yields rather
accurate results in the supercritical regime.
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Fig. 6. The natural frequency calculated from Eqs. (24), (38) and (48) for kf=0.6: (a) the first natural frequency and (b) the second natural frequency.

Fig. 7. The natural frequency calculated from Eqs. (24), (38) and (48) for kf=0.8: (a) the first natural frequency and (b) the second natural frequency.

Fig. 5. Comparison between 2-term, 4-term and 8-term Galerkin truncation results: (a) the first natural frequency and (b) the second natural frequency.
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Fig. 8. The natural frequency calculated from Eqs. (24), (38) and (48) for kf=1: (a) the first natural frequency and (b) the second natural frequency.
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4.3. Comparisons

The natural frequencies are numerical calculated based on 4-trem Galerkin truncation. Based on the natural frequency
of Eqs. (24), (38) and (48), the differences between the models can be investigated via the natural frequencies in the
supercritical regime. Figs. 6, 7 and 8, respectively, illustrate the natural frequencies for the flexural stiffness kf=0.6, 0.8
and 1 with fixed nonlinear coefficient k1=100. In Figs. 6, 7 and 8, the dots, the solid lines and the dash-dot lines,
respectively, stand for the numerical solutions to Eqs. (24), (38) and (48). The numerical results demonstrate that three
nonlinear models qualitatively predict the same tendencies with the changing flexural stiffness kf in the supercritical
regime, while quantitatively, there are certain differences and the difference increase with the axial speed, and Eq. (48) are
closer to Eq. (24), especially for the first natural frequency. Like the conclusions in the subcritical transport speed ranges, in
the view of the natural frequencies in the supercritical regime, while all three models of axially moving beams compared
predicted same qualitative behavior, there are differences between them quantitatively.
5. Conclusions

Axially moving systems are present in a wide class of engineering problems. The axial speed greatly affects the dynamic
behavior of the system. This paper examines the natural frequency of planar vibration of axially moving elastic beams in the
supercritical regime. The planar vibration is governed by a set of coupled nonlinear partial-differential equations can reduce to a
nonlinear partial-differential equation and a nonlinear integro-partial-differential equation of transverse vibration. The non-trivial
equilibrium equations of three nonlinear models are, respectively, solved via the differential quadrature scheme. For motion
about each bifurcated solution, those equations are cast in the standard form of continuous gyroscopic systems by introducing a
coordinate transform. The natural frequencies are computationally studied for the linear equations correspondingly those
standard form via the Galerkin method under the simple support boundary. The investigation leads to the following conclusions:
(1)
 In the supercritical regime, the natural frequencies for axially moving beams increase with the growth of axial speed,
and the nonlinear coefficient has little effects on the natural frequency.
(2)
 The 2-term Galerkin truncation for the natural frequency for axially moving beams in the supercritical range is bigger
than the 4-term ones and the difference increase with the growth of axial speed, and the 4-term Galerkin method
yields rather accurate results.
(3)
 Qualitatively, the three models predict the same tendencies of the natural frequencies with the changing flexural
stiffness, especially for the first natural frequency.
(4)
 Quantitatively, there are certain differences. In the view of the natural frequencies, the nonlinear integro-partial-
differential equation yields the results closer to those from the coupled equations. For the first natural frequency, the
differences between the coupled equation and the partial-differential equation decrease with the flexural stiffness.
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