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a b s t r a c t

Dynamics and chaotification of a system consisting of an induction motor activating a

mobile plate (with variable contents) fixed to a spring are studied. The dynamical model

of the device is presented and the electromechanical equations are formulated. The

oscillations of the plate are analyzed through variations of the following reliable control

mass of the plate. The dynamics of the system near the fundamental resonance region

presents jump phenomenon. Mapping of the control parameters planes in terms of

types of motion reveals period-n motion, quasi-periodicity and chaos. Anti-control of

chaos of the induction motor is also obtained using the field-oriented control associated

to the time delay feedback control.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Asynchronous motor (AS motor) named against induction motors is a class of electromechanical system where nonlinear
dynamics is very interesting. They are widely used in various industrial modern processes due to their relatively low cost,
low maintenance, high robustness and reliability. In order to avoid the undesirable phenomena such as locking, coughs and
sputters in the AS motors and to regulate its main variables (current, flux, speed and torque) to their reference values, many
investigations have been recently carried out based on the vectorial control strategy [1–4], on the control by input–output
linearization [5–8] and on the direct torque control [9]. From the beginning of 1990s, a number of researches on chaos in
vibrational systems have been undertaken: on identification of chaos [10–13], on the avoidance of chaos [14,15],
stabilization and synchronization [16,17], control and anti-control of chaos [18–20], control of vibration [21]. Nonlinear
dynamics of electromechanical systems with translational or pendulum-arm has been studied extensively in recently
[22–24]. These studies have been guided by the fact that chaos is useful and beneficial in some niche applications such as
chaotic industrial shakers [25], chaotic monitoring and compaction [26,27], and industrial mixing processes [28,29].

The electromechanical system proposed in this paper is an extension of one use in [12,30]. It consists of a mobile plate with
variable contents, fixed to a spring and activated by an induction motor. Knowing that the AS motor is inherently nonlinear in
its natural functioning, the purpose of this work is to capitalize that nonlinearity and the other ones in the device for
generation of several interesting phenomena such as jump, period-n, quasi-periodicity and chaotic motions. Moreover, we
generate the desired chaos in the system using the field-oriented control associated to the time delay feedback control. The
technological interest of this study is to optimize the efficiency of the device designing it with a large range of desired
dynamical behaviors obtained varying control parameters. The device can be used in various branches of electromechanical
engineering for domestic appliances, industrial food processing, mining and sandpit in sieving or sifting processes.
ll rights reserved.
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Section 2 presents the description of the model and its electromechanical equations. Section 3 analyses the dynamical
behavior of the system, Section 4 is devoted to anti-control of chaos in the device and Section 5 concludes the work.

2. Electromechanical device and equations

The device in Fig. 1 consists of a mobile plate with variable contents fixed to a spring and activated by an induction
motor. The AS motor used is a three-phase one with two parts: a stator (inductor) and a rotor mobile around a revolution
axis. The electromagnetic torque which is produced by the electromotor is transmitted to the plate by the connecting-track
rod system which is mechanically fixed to the rotor. The system parameters values are given in Tables 1 and 2.

In the continuation, the following assumptions will be considered: unsaturated magnetic circuit, negligible magnetic
hysteresis, negligible magnetic flux leak, negligible torque due to dry frictions and negligible variation of the rotor
resistance. The three-phase AS motor is generally modeled in the turning reference frame (d–q) where d is the direct axis
and q the quadrature axis or in the stator fixed frame (a–b) (see Fig. 2a) [4]. The electromechanical equations of AS motor
are written here in the frame (d–q) because it is most general. The reference frame transformation and the dynamical
equivalent diagram of AS motor in the frame (d–q) are given in Figs. 2a and 2b.

In Fig. 2a, ys and yr are the electrical angles in the frames (as–d) and (ar–d), respectively. y is the angular displacement of
rotor and o its mechanical velocity. os is the angular velocity of d, q-axis in the stator reference frame. The stator and rotor
voltage equations given by Kirchhoff’s law (see Fig. 2b) are written as

us ¼ Rsisþd
fs

dt
þ j

dys

dt
fs (1a)

ur ¼ 0¼ Rrir þd
fr

dt
þ j

dyr

dt
fr (1b)
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Fig. 1. Electromechanical device.

Table 1
Parameters of the AS motor system.

Parameter Value Unit

Stator resistance: Rs 9.65 O
Rotor resistance: Rr 4.3047 O
Stator inductance: Ls 0.4718 H

Rotor inductance: Lr 0.4718 H

Mutual inductance: Lsr 0.4475 H

Rotor inertia: Jr 0.00293 kg m2

Viscous friction coefficient: CV 0.038 N m s/rad

Number of pole pairs: np 2

Table 2
Parameters of the plate and spring.

Parameter Value Unit

Mass of the plate: mp Variable kg

Viscous damping: l 25.0 N s/m

Stiffness coefficient: k 3500.0 N/m
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Fig. 2. (a) Reference frame transformation and (b) dynamical equivalent diagram of AS Motor in the frame (d–q).
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where j is the imaginary number:

fs ¼ LsisþLsrir (2a)

fr ¼ Lrir þLsris (2b)

and

dyr

dt
¼

dys

dt
�

dy
dt
¼os�npo (3)

The projection of Eqs. (1) and (2) on d, q-axis in a synchronous frame give the stator and rotor voltage equations of the
induction motor which can be expressed as follows:

usd ¼ Rsisdþ
dfsd

dt
�osfsq (4a)

usq ¼ Rsisqþ
dfsq

dt
þosfsd (4b)

urd ¼ 0¼ Rrirdþ
dfrd

dt
�ðos�npoÞfrq (4c)

urq ¼ 0¼ Rrirqþ
dfrq

dt
þðos�npoÞfrd (4d)

with

fsd ¼ LsisdþLsrird (5a)

fsq ¼ LsisqþLsrirq (5b)

frd ¼ LrirdþLsrisd (5c)

frq ¼ LrirqþLsrisq (5d)
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where isq and isd are the stator armature currents, usq and usd the stator voltages and frq and frd the rotor fluxes, on the
q- and d-axis reference frame, respectively. Eqs. (4) can be written taking into account Eqs. (5) as follows:

sLs
disd

dt
þ Rsþ

L2
sr

TrLr

� �
isd�ossLsisq�

Lsr

TrLr
frd�np

Lsr

Lr
ofrq ¼ usd (6a)

sLs
disq

dt
þossLsisdþ Rsþ

L2
sr

TrLr

� �
isqþnp

Lsr

Lr
ofrd�

Lsr

TrLr
frq ¼ usq (6b)

dfrd

dt
þ

1

Tr
frd�

Lsr

Tr
isd�ðos�npoÞfrq ¼ 0 (6c)

dfrq

dt
þ

1

Tr
frq�

Lsr

Tr
isqþðos�npoÞfrd ¼ 0 (6d)

where Tr ¼ Lr=Rr is the rotor time constant, s¼ 1�ðL2
sr=LrLsÞ the dispersion coefficient. When the AS motor is connected to a

three phases power system of frequency f and phase voltage amplitude v, the corresponding usd and usq, applying Park’s
transformation, are expressed as [4,31]

usd ¼ v
ffiffiffi
3
p

cosð2pft�ysÞ (7a)

usq ¼ v
ffiffiffi
3
p

sinð2pft�ysÞ (7b)

where ys ¼
R
os dt and os ¼ 2pf=np.

The dynamical equation of the rotor is

Jr
do
dt
þCvo¼ TeþTL (8)

where Te is the electromagnetic torque due to the Laplace force and TL the load torque.
The electromagnetic torque developed by the induction motor is expressed as [2,4,31]

Te ¼ np
Lsr

Lr
ðfrdisq�frqisdÞ (9)

The relationship between TL and Fr (resistance force of the plate) is written as

TL dy¼�Fr dx (10)

and the load torque can be expressed as

TL ¼�Fr
a cosy

1�e sin y
(11)

where Fr ¼ lðdx=dtÞþkx and e¼ a=ðxþcÞwhich is generally a small quantity due to the fact that a and x are smaller than c. a

is the track rod length, x the displacement of the plate and c the distance between points 0 and 01. The dynamical equation
of the plate is written as

mp
d2x

dt2
¼�FrþFm (12)

where mp is the mass of the plate and Fm the motive force induced by the electromotor. The motive force Fm is expressed as

Fm ¼ l
dw
dt
þkw¼ nplao cosyþka sin y (13)

Eq. (12) can be written taking into account Eq. (13) as follows:

mp
d2x

dt2
þl

dx

dt
þkx�nplao cosy�ka siny¼ 0 (14)

Denote

� ¼
d

dt
, � � ¼

d2

dt2
, o0 ¼

ffiffiffiffiffiffiffi
k

mp

s
¼ 2pf0, t¼o0t, y1 ¼

isd

i0

y2 ¼
isq

i0
, F1 ¼

frd

j0

, F2 ¼
frq

j0

, O¼
o
o0

, z¼
x

a
, $¼

2pf

o0
¼

f

f0
(15)

and

g¼ Rs

sLs
þ

L2
sr

sTrLsLr
, k¼ Lsr

sLsLr
, a1 ¼

g
o0

, a2 ¼
kj0

Tro0i0
, a3 ¼

1

o0Tr
, a4 ¼

Lsri0
o0j0Tr
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E¼
v
ffiffiffi
3
p

sLso0i0
, wE ¼

kj0

i0
, wT ¼

npLsrj0i0
LrJro2

0

, Z¼ l
mpo0

, Z1 ¼
la2

Jro0
, Z2 ¼

ka2

Jro2
0

, m¼ CV

Jro0
(16)

Replacing Eqs. (15) and (16) into Eqs. (6), (8) and (14), taking into account Eqs. (7), (9), (11) and (14), one obtains the
following set of dimensionless differential equations:

_y1þa1y1�y2$=np�a2F1�npwEOF2 ¼ E cosð$ð1�1=npÞtÞ (17a)

_y2þa1y2þy1$=np�a2F2þnpwEOF1 ¼ E sinð$ð1�1=npÞtÞ (17b)

_F1þa3F1�a4y1�ð$=np�npOÞF2 ¼ 0 (17c)

_F2þa3
_F2�a4y2þð$=np�npOÞF1 ¼ 0 (17d)

_y ¼ npO (17e)

_OþmO¼ wT ðF1y2�F2y1Þ�ðZ1
_zþZ2zÞ

cosy
1�e siny

(17f)

€zþZ_zþz�npZO cosy�siny¼ 0 (17g)

3. Dynamical behavior of the device

3.1. Oscillatory states

Eqs. (17) present in the absence of the input voltage a single stationary point ðx1,x2,y1,y2,F1,F2,y,O, _z,zÞ ¼
ð0,0,0,0,0,0,0,0Þ which is asymptotically stable. The aim of this subsection is to use the fourth order Runge–Kutta
algorithm with constant time step to solve numerically the non-dimensional differential equations (17) to find the
behavior of the dimensionless maximum amplitude of plate vibration. In Fig. 3, the frequency–response diagram [12] is
plotted in terms of the dimensionless displacement z and the control parameter is the dimensionless frequency of the three
phases power system $. This resonance curve shows similar results when the normalized frequency of the three phases
power system $ is slowly increased or decreased. As $ increases from 0 to 5.0, the maximum response amplitude
increases from 1.0 to 1.15 and then decreases to 1.04 and increases again to 1.278. Then it jumps from 1.28 to 2.94,
decreases and increases further to a maximum value 3.887 and then decreases to 0.54.

3.2. Chaotic behavior

As the plate content could vary, the mass mp is taken as a reliable control parameter in this subsection. The aim here is
to use the fourth order Runge–Kutta algorithm to solve numerically Eqs. (17) and mark the regions where the system
shows period-n motion, quasi-periodicity and chaos. For identifying these states, the dynamical behavior is derived using
the bifurcation diagram varying the frequency f at a fixed phase amplitude v (frequency scanning) at one hand, and varying
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the amplitude v at a fixed mass of the plate mp (amplitude scanning) on the other hand. Resulting phase diagrams in the
v� f plane and in the mp�v plane are shown in Figs. 4a and b, respectively. One observes that the device exhibits some
large domains of periodic oscillations and chaotic motions. However, there are small windows of quasi-periodicity motion
and period-nT (2rnr10) oscillations. In Fig. 4a, for low v values o5.72 V and f values in the region 0r fr50 Hz, period-
nT (4rnr10) oscillations occur. When v increases (v45.72 V), the transition from period-nT oscillations to chaos occurs.
As the forcing parameter v increases further, the system exhibits quasi-periodicity and chaotic motions, period-2T and
period-3T oscillations. When the value of v exceeds a certain value (v495.0 V) the dynamics of the system is periodic for
higher f values (fZ13.5 Hz). In Fig. 4b, for low mp values o1.5 kg and v values in the region 0rvr115.0 V, the system
oscillates with period-1T. However, it exhibits period-3T and quasi-periodicity motion within a very narrow v region.
When mp increases (mp41.5 kg) and vr90.0 V, the transition from periodic to chaos occurs. As mp increases further
(mp44.0 kg), the transition from chaos to periodic oscillations takes place. As 4.5rmpr5.0 kg and 0rvr60.0 V, the
system exhibits period-nT (2rnr3) and then the transition from period-nT (6rnr7) to chaotic motions takes place for
v460.0 V.

In Fig. 5, the bifurcation diagram (see Fig. 5a) is plotted in terms of the displacement x and the control parameter is
the mass mp of the plate at fixed parameter v. As mp increases from 0 to 1.725 kg, the device exhibits period-1 oscillation.
As mp increases further, a sudden transition to chaos occurs leading to a first chaotic window from mp=2.95 to 3.125 kg
where chaos disappears and appears through period division and doubling sequences, respectively. Chaos reappears for
mp=3.15–4.275 kg and leads to period-1 at mp=4.3 kg. We note, however, that this is just an example of transitions that can
differ if one changes the values of the system parameters.
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Those behaviors are confirmed in Fig. 5b showing the variation of the Lyapunov exponent against mp at fixed parameter v.
The Lyapunov exponent is defined here as

Lya¼ lim
t-1

lnðDðtÞÞ
t

(18)

where DðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy2

1þDy2
2þDF

2
1þDF

2
2þDy

2
þDO2

þD_z2
þDz2

q
This figure shows chaos for 1:725ompo2:95 kg and 3:15rmpr4:3 kg. Fig. 6 shows different phase portraits of the

plate motion plotted for different steady states.

4. Anticontrol of chaos

From Section 3, numerical simulations show that, for certain values of control parameters, the system does not exhibit
chaotic motions. The aim of this section is to generate desired chaos in the system independently of its intrinsic parameter
values. Anti-control is done here using the field-oriented control (FOC) associated to the time delay feedback control. This
consists of controlling the stator currents represented by a vector. This control is based on projections which transform a
three-phase time and speed dependent system into a two coordinates (d and q-coordinates) time invariant system. These
projections lead to a structure similar to that of a DC machine control. As field orientated control is based on projections,
the control structure handles instantaneous electrical quantities. This makes the control accurate in every working
operation (steady state and transient) and independent of the limited bandwidth mathematical model. Field orientated
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controlled machines need two constants as input references: the torque component (aligned with the q-coordinate) and
the flux component (aligned with d-coordinate). Hence, the q-axis rotor flux becomes zero [2,4,31] and Eq. (6d) gives

os ¼ npoþ
Lsrisq

Trfrq

(19)

Consider the following feedback nonlinear state where ud and uq are auxiliary control input voltages [2]:

usd ¼�
Lsr

TrLr
frd�npsLsoisq�

Lsr

Tr

i2sq

frd

sLsþud (20a)

usq ¼ npo
Lsr

Lr
frdþnposLsisdþ

Lsr

Tr

isdisq

frd

sLsþuq (20b)

Replacing Eq. (19) into Eqs. (17) and taking into account Eq. (20), one obtains a simple subsystem with the dynamics of the
module of linear flux [2]:

disd

dt
þgisd ¼ x � ud (21a)

dfrd

dt
þ

1

Tr
frd ¼

Lsr

Tr
isd (21b)

where the constant x=1/sLs. One can control the dynamics of the amplitude of the flux by ud via the proportional-integral
(PI) regulators H(s) shown in Figs. 7a and b with [5,32]

HðsÞ ¼ kpþkI=s (22a)

i�sd ¼H1ðsÞðfref�frdÞ (22b)
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ud ¼H2ðsÞði
�
sd�isdÞ (22c)

where i�sd and fref represent respectively the reference stator current and the reference rotor flux, in the d-axis. When the
amplitude of the rotor flux frd reaches its reference, which is constant, the dynamics rotor speed becomes linear too. The
following second subsystem is:

disq

dt
þgisq ¼ x � uq (23a)

Jr
do
dt
þCvo¼ np

Lsr

Lr
fref isqþTL (23b)

Eq. (23) can model the PMDC motors systems [27] where in this particular case, uq represents the DC input voltage. To
generate the desired chaos in this subsystem, one can take uq as a controlled auxiliary excitation obtained using the time
delay feedback control [33]. Fig. 8 shows the block diagram of the proposed control system.

Hence, the controlled auxiliary excitation on the q-axis can be expressed as

uq ¼ u0 sin
r
o0

oðt�dÞ
� �

þðoref�roÞ (24)

where d is the time delay parameter, r the proportional constant of the mechanical velocity, oref is the mechanical velocity
reference and u0 the amplitude of the controlled excitation. Therefore, Eqs. (23) and (17g) give, taking into account Eq. (24)

_y2þa1y2 ¼ u sinðrOðt�dÞÞþðOref�rOÞ (25a)

_y ¼ npO (25b)

_OþmO¼ wTFref y2�ðZ1
_zþZ2zÞ

cosy
1�e siny

(25c)

€zþZ_zþz�npZO cosy�siny¼ 0 (25d)

where Oref ¼oref =o0 is the dimensionless mechanical velocity reference, Fref the dimensionless flux reference and
u¼ u0=sLso0i0 the dimensionless amplitude of the controlled excitation. The set of Eq. (25) is solved numerically using the
Runge–Kutta algorithm to mark the region where the system appears chaotic. This appears in the phase diagram plotted in the
r�u plane (see Fig. 9). One finds that the device exhibits chaotic motion and period-nT oscillations. At fixed value of the delay
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Fig. 11. (a) Electromechanical diagram of y2�O and (b) phase portrait diagram of ðz, _zÞ plane, with the parameters of Fig. 11 and r=0.05.
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(d=1.0 s), for low r in the range 0.0rrr1 and u values in the range 0.1rur20.0, the device exhibits chaotic motion. As
0.1orr0.75 and 0.1rur5.0, the device appears chaotic and then exhibits period-nT oscillation when u is varied from 5.05 to
20.0. As r increases further (r40.75), the system exhibits chaotic motion for any value of the parameter u.

In Fig. 10, the bifurcation diagram (see Fig. 10a) is plotted in terms of the dimensionless displacement z and the control
parameter is the proportional constant of the mechanical velocity r at fixed parameter u. It appears the sudden
disappearance and appearance of chaos as r varies.

These behaviors are confirmed in Fig. 10b showing the variation of the Lyapunov exponent against r at the fixed
parameter u. Chaos is thus present for 0rrr0.1 and 0.68rrr1.

Fig. 11 shows the phase portraits of the plate motion and the electromechanical diagram of AS motor plotted in one
chaotic region.
5. Conclusion

In this paper, we have considered the dynamics and anti-control of chaos of an electromechanical device consisting of
an induction motor which activates a mobile plate with variable contents fixed to a spring. The numerical results show
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complex dynamical behaviors such as jump phenomenon, period-n motion, quasi-periodicity and chaos. Anti-control of
chaos of the induction motor has been made using the field-oriented control associated to the time delay feedback control
to generate the desired chaos in that device.

These results are interesting since they give the parameter ranges where the devices can be used either in the regular
dynamics or in the chaotic states. Although most of the applications indicated in the introduction are presently functioning
in the oscillatory state, the case of chaos is also of interest if one gets in mind that many researches are conducted
nowadays with the ultimate goal of using chaotic dynamics to improve the efficiency of various robots activities such as
mixing, sieving, sifting and shaking. In that spirit, one uses electromechanical, electrical and mechanical nonlinear
components to design and fabricate high chaotic power mixers, sieves, sifters and shakers. However, the efficiency of this
idea will be fully developed only after an experimental study to corroborate the theoretical finding and comparison with
the rate of devices working periodically.
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Canada, 2007. (Model of predictive nonlinear command for asynchronous motor, Doctorate in Engineering, University of Quebec, Chicoutimi,
Canada, 2007).

[5] R. Marino, S. Peresada, P. Valigi, Adaptive input–output linearizing control of induction motors, IEEE Transactions on Automatic Control 38 (1993)
208–221.

[6] T.K. Boukas, T.G. Habetler, High-performance induction motor speed control using exact feedback linearization with state and state derivative
feedback, IEEE Transactions on Power Electronics 19 (2004) 1022–1028.

[7] M.K. Maaziz, P. Boucher, D. Dumur, A new control strategy for induction motor based on nonlinear predictive control and feedback linearization,
International Journal of Adaptive Control and Signal Processing 14 (2000) 313–329.

[8] D.L. Sobczuk, Feedback linearization control of inverter fed induction motor—DSP implementation, IEEE International Symposium on Industrial
Electronics 2 (2002) 678–682.

[9] I. Takahashi, T. Noguchi, A new quick-response and high-efficiency control strategy of an induction motor, IEEE Transactions on Industry Applications
22 (1986) 820–827.

[10] S.-C. Chang, P.-C. Tung, Identification of a nonlinear electromagnetic system: an experimental study, Journal of Sound and Vibration 214 (1998)
853–871.

[11] S.-C. Chang, H.-P. Lin, Nonlinear dynamics and chaos control for an electromagnetic system, Journal of Sound and Vibration 279 (2005) 327–344.
[12] D. Belato, H.I. Weber, J.M. Balthazar, D.T. Mook, Chaotic vibrations of nonideal electromechanical system, International Journal of Solids and Structures

38 (2001) 1699–1706.
[13] J. Awrejcewicz, Yu. Pyryev, Influence of tribological processes on a chaotic motion of a bush in a cylinder–bush system, Meccanica 38 (2003)

749–761.
[14] Y. Gao, K.T. Chau, Design of permanent magnets to avoid chaos in doubly salient PM machines, IEEE Transactions on Magnetics 40 (2004) 3048–3050.
[15] N.N. Verichev, S.N. Verichev, V.I. Erofeyev, Chaotic dynamics of simple vibrational systems, Journal of Sound and Vibration 310 (2008) 755–767.
[16] Z.-M. Ge, J.-M. Cheng, Y.-S. Chen, Chaos anticontrol and synchronization of three time scales brushless DC motor system, Chaos, Solitons and Fractals

22 (2004) 1165–1182.
[17] Z.-M. Ge, C.-I. Lee, Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay, Chaos, Solitons

and Fractals 22 (2005) 1855–1864.
[18] A. EL-Gohary, Optimal control of rigid body motion with the help of rotors using stereographic coordinates, Chaos, Solitons and Fractals 25 (2005)

1229–1244.
[19] Z.-M. Ge, C.-M. Chen, Y.-S. Chang, Anticontrol of chaos of single time scale brushless DC motors and chaos synchronization of different order system,

Chaos, Solitons, and Fractals 27 (2006) 1298–1315.
[20] X.F. Wang, G. Chen, X. Yu, Anticontrol of chaos in continuous-time systems via time delay feedback, Chaos 10 (2000) 771–779.
[21] J.L.P. Felix, J.M. Balthazar, Comments on a nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer, Nonlinear

Dynamics 55 (2009) 1–11.
[22] R. Yamapi, P. Woafo, Nonlinear electromechanical devices: dynamics and synchronization, in: R.C. Sapri (Ed.), Mechanical Vibrations: Measurement,

Effects and Control, Nova Publishers, New York, 2009.
[23] C.A. Kitio Kwuimy, P. Woafo, Dynamics of a self-sustained electromechanical system with flexible arm and cubic coupling, Communication in

Nonlinear Science and Numerical Simulation 12 (2007) 1504–1517.
[24] C.A. Kitio Kwuimy, Theoretical and Experimental Studies of the Dynamics of Nonlinear Electromechanical Systems with Flexible Arms, Ph.D. Thesis,

Faculty of Science, University of Yaoundé 1, Cameroon, 2008.
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