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a b s t r a c t

The problem of bending waves localized near the free edge of a transversely isotropic

plate is investigated using the Ambartsumian higher-order plate theory which takes

account of the transverse shears generated by flexural deformation. Unlike the first-

order Reissner–Mindlin theory, which also takes account of transverse shears,

plane during bending. Within this analysis the existence of localized bending waves in

transversely isotropic plates is established, and solutions of the dispersion equation

obtained for different values of the elastic parameters.

The analysis of frequencies of localized bending waves shows that for thick plates

the effect of anisotropy can be considerable. For the particular case of vibrations of a

narrow plate, from the long wave approximation a new beam vibration equation of the

Timoshenko type is obtained for a transversally isotropic plate.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A recent development of sophisticated new devices using thin walled flexible waveguides has motivated a growing number of
investigations concerning localized bending waves in thin walled structures. The performance of such devices can be significantly
affected by the influence of localized bending waves near free edges, or at the interface between two structures composed of
different materials. The analysis of localized bending waves in thin elastic plates, used as components in many modern
engineering structures, can also play a significant role in the detection of imperfections, cracks or inclusions in those structures.

The study of localized bending waves propagating along the free edge of a semi-infinite isotropic elastic thin plate was
originally introduced by Konenkov [1]. The analysis, carried out within the framework of the classical Kirchhoff theory of
elastic plates, demonstrated the existence of waves similar to those of Rayleigh waves with an amplitude decaying
exponentially with distance from the edge of the plate. Similar studies were subsequently carried out within western
scientific circles by McKenna et al. [2], Thurston and McKenna [3]. In recent years the existence and propagation of such
waves in anisotropic plates with cubic and orthotropic symmetries, again within the framework of Kirchhoff plate theory,
has been investigated in Bagdasaryan et al. [4], Norris [5], Belubekyan and Engibaryan [6], Thompson et al. [7], Zakharov
and Becker [8], Fu [9], and Mkrtchyan [10].

Similar methodologies have been used to analyze bending waves localized near the junction of two plates made of
different materials [11,12], and edge and interfacial bending vibrations in elastic shells with cylindrical symmetry have
been discussed in Kaplunov et al. [13], Kaplunov and Wilde [14,15] and Gulgazaryan et al.[16]. Using the exact solution for
three-dimensional vibrations of a semi-infinite elastic plate [17] and [18] confirmed Konenkov’s result [1] concerning the
existence of localized bending edge waves within Kirchhoff’s theory. The analysis of some essential properties of the edge
bending waves in a thin isotropic plate based on asymptotical analysis of 3D elasticity equations is given in Zakharov [19].
ll rights reserved.
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The magnetoelastic problem of localized vibrations of a conductive plate immersed in a longitudinal magnetic field
parallel to the plate’s middle surface have been considered in Belubekyan et al. [20], where it was shown that localized
waves could be eliminated by changing the intensity and orientation of the magnetic field. Studies of the extent to which
localized bending waves in thin orthotropic elastic plates can be suppressed using reinforcing ribs have been carried out in
Belubekyan et al. [21]. Within classical thin plate theory the existence of bending waves confined to the free edge of a fluid
loaded plate is established in Abrahams and Norris [22].

It is well known that the classical plate theory, which assumes that plane cross-sections of the plate normal to the
middle plane before deformation remains plane and normal to the middle plane after deformation, underestimates
deflections and overestimates natural frequencies when the plate thickness to length ratio is greater than 1/20. This is due
to neglect of transverse shear and rotatory inertia that become significant for thick plates. Refined plate theories that take
account of transverse shears were introduced by Reissner [23], Mindlin [24], Ambartsumian [25] and Levinson [26]. In
contrast to the first order Reissner–Mindlin theory, which assumes that plane cross-sections remain plane (though not
necessarily normal), Ambartsumian and later Levinson developed high order plate theories which allow some distortion of
these cross-sections. For isotropic plates Norris et al. [27] demonstrated the existence of flexural edge waves in a semi-
infinite elastic plate within the context of Mindlin plate theory, and similar analyses have been carried out by Belubekyan
[28] within the context of Ambartsumian’s thick isotropic plate.

It is known that Kirchhoff’s plate theory and the first order Mindlin theory are not sensitive to the anisotropic properties
of a transversally isotropic plate. The effect of anisotropy in such a plate may be revealed only in the framework of the
Reissner and higher order refined plate theories. The main purpose of the present paper is to reveal the effect of anisotropy
in the problem of localized bending waves in a semi-infinite transversely isotropic plate, in the framework of the higher
order Ambartsumian theory. A further purpose is to obtain an analytical expression for the dispersion equation of localized
wave frequencies with respect to the plate thickness and the anisotropy parameter (characterized by the transversal shear
modulus). Furthermore, the Timoshenko equation for vibrations of a transversally anisotropic beam is obtained by
considering the long wave approximation for a narrow plate with all edges free from loads.

2. Statement of the problem

We consider the problem of localized bending waves propagating along the free edge of a semi-infinite elastic transversely
isotropic plate free of mechanical loads. Employing Cartesian coordinates ðx,y,zÞ chosen so that the plate initially occupies the
region �1oxo1, 0ryo1, �hozoh (where 2h is the thickness of the plate), within the framework of the high order
Ambartsumian and first-order Reissner–Mindlin refined plate theories the displacements ux,uy,uz may be presented as follows.
1.
 Ambartsumian plate theory [20]:

uxðx,y,z,tÞ ¼ z�
z3

3h2

� �
jðx,y,tÞ�z

@w

@x
, (1)

uyðx,y,z,tÞ ¼ z�
z3

3h2

� �
cðx,y,tÞ�z

@w

@y
, (2)

uzðx,y,z,tÞ ¼wðx,y,tÞ, (3)

where jðx,y,tÞ and cðx,y,tÞ are functions defining transversal shears, and wðx,y,tÞ is the transversal displacement of the
middle plane of the plate.
2.
 Reissner–Mindlin plate theory [23,24]:

uxðx,y,z,tÞ ¼ zyxðx,y,tÞ, (4)

uyðx,y,z,tÞ ¼ zyyðx,y,tÞ, (5)

uzðx,y,z,tÞ ¼wðx,y,tÞ, (6)

where yxðx,y,tÞ and yyðx,y,tÞ are functions characterizing the rotation of the normal cross sections.

Writing

yx ¼j�
@w

@x
and yy ¼c�

@w

@y
: (7)

The Reissner–Mindlin equations can be rewritten

uxðx,y,z,tÞ ¼ zjðx,y,tÞ�z
@w

@x
, (8)

uyðx,y,z,tÞ ¼ zcðx,y,tÞ�z
@w

@y
: (9)
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Both models can thus be presented in the form

uxðx,y,z,tÞ ¼ f ðzÞjðx,y,tÞ�z
@w

@x
, (10)

uyðx,y,z,tÞ ¼ f ðzÞcðx,y,tÞ�z
@w

@y
, (11)

uzðx,y,z,tÞ ¼wðx,y,tÞ, (12)

where f ðzÞ is a simple linear function in the Reissner–Mindlin theory and a cubic function in the Ambartsumian theory.
Levinson [26] also proposed a high order theory in which the displacement field is given as

uxðx,y,z,tÞ ¼ z yxðx,y,tÞ�
1

3

z2

h2
yxðx,y,tÞþ

@w

@x

� �� �
, (13)

uyðx,y,z,tÞ ¼ z yyðx,y,tÞ�
1

3

z2

h2
yyðx,y,tÞþ

@w

@y

� �� �
, (14)

uzðx,y,z,tÞ ¼wðx,y,tÞ: (15)

Using the substitution (7) Levinson’s equations reduce to those of Ambartsumian.
The constitutive equations for a transversely isotropic plate have the form:

sxx

syy

szz

syz

sxz

sxy

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 2c44 0 0

0 0 0 0 2c44 0

0 0 0 0 0 c11�c12

0
BBBBBBBBB@

1
CCCCCCCCCA

exx

eyy

ezz

eyz

exz

exy

0
BBBBBBBBB@

1
CCCCCCCCCA

(16)

where the cij (i,j=1,y,6) are elastic constants, the sab (a,b=x,y,z) are stresses, and the eab are elastic strains given by

eab ¼
1

2

@ua
@b
þ
@ub

@a

� �
:

It is assumed in the above theories that the normal stresses in the direction transverse to the plate middle plane can be
disregarded so that szz ¼ 0, whence

ezz ¼�
c13

c33
ðexxþeyyÞ:

Substituting into (16) results in the following relations:

sxx ¼ c1
@ux

@x
þc2

@uy

@y
, syy ¼ c2

@ux

@x
þc1

@uy

@y
, sxy ¼

ðc1�c2Þ

2

@ux

@y
þ
@uy

@x

� �
, (17)

where

c1 ¼ c11�
c2

13

c33
, c2 ¼ c12�

c2
13

c33
: (18)

The shear stresses sxz and syz given by the equations

sxz ¼ c44jðx,yÞf 0ðzÞ, syz ¼ c44cðx,yÞf 0ðzÞ,

should normally satisfy the boundary conditions

sxzðx,y,7hÞ ¼ 0, syzðx,y,7hÞ ¼ 0,

over the top and bottom surfaces of the plate. These conditions are satisfied by Ambartsumian’s theory, in which the
equations for the transverse shear stresses reduce to

sxz ¼ c44jðx,yÞ 1�
z2

h2

� �
, syz ¼ c44cðx,yÞ 1�

z2

h2

� �
, (19)

but not by the Reissner–Mindlin theory. We deduce from these equations that the stress–strain relation in the plate is
determined by the three independent elastic constants. Two of these, the in-plane elastic moduli c1 and c2, determine the
plane stresses sxx, syy and sxy. The third, the transversal shear modulus c44, determines the transverse shear stresses sxz

and syz. The in-plane moduli c1 and c2 are often replaced by elastic constants E and n, where

c1 ¼
E

1�n2
and c2 ¼ nc1:
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For an isotropic plate where there are just two elastic constants

c1 ¼
E

1�n2
, c2 ¼ nc1 and c44 ¼

E

2ð1þnÞ
: (20)

Assuming no external mechanical loads, it follows from the equations of motion that the bending moments Mx and My,
the twisting moment Mxy, and the resultant transverse shear forces Qx and Qy satisfy the dynamical equations

@Mx

@x
þ
@Mxy

@y
�Qx ¼ r

Z h

�h
z
@2ux

@t2
dz, (21)

@My

@y
þ
@Mxy

@x
�Qy ¼ r

Z h

�h
z
@2uy

@t2
dz, (22)

@Qx

@x
þ
@Qy

@y
¼ 2rh

@2w

@t2
, (23)

where

Mx ¼

Z þh

�h
zsxx dz, My ¼

Z þh

�h
zsyy dz, Mxy ¼

Z h

�h
zsxy dz, (24)

Qx ¼

Z h

�h
sxz dz, Qy ¼

Z h

�h
syz dz, (25)

and r is the mass density. Boundary conditions at the free edge y=0 are

My ¼Mxy ¼Qy ¼ 0: (26)

Substituting Eqs. (10)–(13), (17) and (19) into these equations and writing W ¼ ðbc44Þ
�1w yields the differential equations

g r @
2j
@t2
þ

c1ð1þnÞ
2

@2c
@x@y

þ
c1ð1�nÞ

2

@2j
@y2
þc1

@2j
@x2

� �
�

2h3

3
r @

3W

@x@t2
þc1

@3W

@x@y2
þ
@3W

@x3

� �� �
¼j, (27)

g r @
2c
@t2
þ

c1ð1þnÞ
2

@2j
@x@y

þ
c1ð1�nÞ

2

@2c
@x2
þc1

@2c
@y2

� �
�

2h3

3
r @

3W

@y@t2
þc1

@3W

@y@x2
þ
@3W

@y3

� �� �
¼c, (28)

2rh
@2W

@t2
þ

@j
@x
þ
@c
@y

� �
¼ 0, (29)

for j, c and W, and the boundary conditions

g @c
@y
þn @j

@x

� �
�

2h3

3

@2W

@y2
þn @

2W

@x2

� �
¼ 0, (30)

g @2j
@y2
þ
@2c
@x2

� �
�2

@2W

@x@y
¼ 0, c¼ 0, (31)

where

b¼ f ðhÞ�f ð�hÞ and g¼
R h
�h zf ðzÞdz

c44½f ðhÞ�f ð�hÞ�
: (32)

Noting that for the Ambartsumian plate theory

f ðzÞ ¼ z 1�
z2

3h2

� �
, g¼ gA ¼

2h2

5c44
,

whilst for the Reissner–Mindlin theory

f ðzÞ ¼ z, g¼ gRM ¼
h2

3c44
,

since gRM ¼ 5gA=6, the governing equations for the Reissner–Mindlin plate theory can be obtained from those for the
Ambartsumian plate theory by multiplying the parameter g by the factor 5/6. Levinson [21] noted that the equation of
motion in his higher order plate theory is the same as that given by Mindlin [19] if the shear modulus is multiplied by the
same factor. A more detailed study of the relationship between the Ambartsumian and Reissner–Mindlin theories of elastic
plates is given in Belubekyan [28].
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3. Solution of the problem

We look for edge wave solutions of the governing Eqs. (27)–(31) in the form of plane periodic waves:

j¼ ikj0 exp½iðot�kxÞ�kpy�, (33)

c¼ kc0 exp½iðot�kxÞ�kpy�, (34)

w¼w0 exp½iðot�kxÞ�kpy�, (35)

where o is the frequency, k the wavenumber, and p is a parameter to be determined. Substituting (33)–(35) into (27)–(29)
gives a system of equations for determining the unknown amplitudes j0,c0 and w0. From the solvability condition we
obtain the following characteristic equation for the parameter p:

½ðp2�1þZaÞðp2�1þZayÞ�Z�½2þay½ð1�nÞð1�p2Þ�2Za�� ¼ 0, (36)

Z¼ ro2

ac1k2
, a¼

1

3
h2k2, (37)

and y¼ 6c1=5c44 in the case of Ambartsumian plate theory and y¼ c1=c44 in the case of Reissner–Mindlin theory. Eq. (36)
has 6 solutions pj (j=1,y,6). The roots are real for any ao1 if ZrZ0, where

Z0 ¼
2

1þaþayþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2ð1�yÞ2þ2að1þyÞ

q , (38)

and in this case can be written

p1&p4 ¼

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Zað1þyÞ� ffiffiffiZp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Za2ð1�yÞ2þ4
qr

ffiffiffi
2
p , (39)

p2&p5 ¼

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Zað1þyÞþ ffiffiffiZp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Za2ð1�yÞ2þ4
qr

ffiffiffi
2
p , (40)

p3&p6 ¼7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2Za

1�v
þ

2

yað1�vÞ

s
: (41)

In order to satisfy the attenuation condition that the displacement should vanish as y-1 we take only the positive roots
p1, p2, p3 and now write the solution to (27)–(29) as

j¼
X3

j ¼ 1

Cjj00ðpjÞexp½iðot�kxÞ�kpjy�, (42)

c¼
X3

j ¼ 1

Cjc00ðpjÞexp½iðot�kxÞ�kpjy�, (43)

w¼
X3

j ¼ 1

Cjw00ðpjÞexp½iðot�kxÞ�kpjy�, (44)

where Cj are arbitrary constants and the functions j00ðpÞ, c00ðpÞ, w00ðpÞ have the form:

j00ðpÞ ¼ p½2ðp2�1ÞþZað2þyþyvÞ�, (45)

c00ðpÞ ¼ 2Z�½2ð1�ZaÞð1�ZayÞ�p2ð2þZayð1�vÞÞ�, (46)

w00ðpÞ ¼ p½2þayð1�2Za�p2ð1�vÞ�vÞ�: (47)
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Substituting these solutions into the boundary conditions (30) and (31) we obtain the following system of algebraic
equations for the unknown coefficients C1, C2 and C3:

C1B1ðp1ÞþC2B1ðp2ÞþC3B1ðp3Þ ¼ 0, (48)

C1B2ðp1ÞþC2B2ðp2ÞþC3B2ðp3Þ ¼ 0, (49)

C1B3ðp1ÞþC2B3ðp2ÞþC3B3ðp3Þ ¼ 0, (50)

where

B1ðpÞ ¼ pð2aZyþap4yðn�1Þ�2n�ayðaZy�1Þð2aZþnþn2�2Þþp2ð2þayðaZðyðn�1Þ�2Þ�ðn�1Þð3þnÞÞÞÞ, (51)

B2ðpÞ ¼ ayðZ�ðaZ�1ÞðaZy�1ÞÞþap4ynþp2ð2þayð1�nþaZðyn�1ÞÞÞ, (52)

B3ðpÞ ¼ ð2Z�2ðaZ�1ÞðaZy�1Þþp2ð2þaZyðn�1ÞÞÞ: (53)

The corresponding dispersion equation defining the phase velocity Z is given by the expression

FðZ,nÞ ¼ 0, (54)

where

FðZ,nÞ ¼�ap2p3yðn�1Þð2ðp2
1�aZÞð1þa2Z2y�Zð1þaþayÞÞþ2p2

1ðaZy�1Þn2Þ�ap1p3yðn�1Þð2ðp2
2�aZÞð1þa2Z2y

�Zð1þaþayÞÞþ2p2
2ðaZy�1Þn2Þþ2p1p2ð2�2Z�a2Z2yðn�5Þ�2n2þayðaZy�1Þða2Z2ðn�3Þ�ðn�1Þ2ð1þnÞ

�2aZðnþn2�2ÞÞþaZðyðnþ2n2�3Þ�2ÞÞ�2ððaZ�1ÞðaZy�1Þ�ZÞða3Z2yðyðn�1Þ�2Þ

�ðv�1Þðayðn2�1Þ�4ÞþaZð2�yðn�1Þð1þ2að2þnÞÞÞÞ: (55)

Expanding this expression as a power series in a gives a first approximation to the dispersion equation in the form:

F0ðZÞ ¼ 2ð1�nÞ
ffiffiffiffiffiffiffiffiffiffi
1�Z

p
þ1�Z�n2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayð1�nÞ

p
ð1�Z�n2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffi
1�Z

pq
¼ 0, (56)

with attenuation condition Zo1, instead of ZoZ0. When na0, since

F0ð0Þ ¼ ð1�nÞ½ð3þnÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ayð1�nÞ

p
ð1þnÞ�40

and

F0ð1Þ ¼�n2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayð1�nÞ

p
Þo0,

the Eq. (56) must have a root in the interval 0oZo1. When n¼ 0 (56) reduces toffiffiffiffiffiffiffiffiffiffi
1�Z

p
½2þ

ffiffiffiffiffiffiffiffiffiffi
1�Z

p
ð1þ

ffiffiffiffiffiffi
ay
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffi
1�Z

pq
Þ� ¼ 0:

This equation has no solution satisfying the condition Zo1. It follows that with no Poisson contraction effect there are no
solutions corresponding to a localized wave.

Setting y=0 (55) takes the form

½2ð1�nÞ�aZ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1þaÞZ

p
�Z�n2þ1�Za¼ 0, (57)

for edge wave propagation within Kirchhoff theory taking account of rotatory inertia.
When a=0 Eq. (55) reduces to Konenkov’s equation [1]

2ð1�nÞ
ffiffiffiffiffiffiffiffiffiffi
1�Z

p
þ1�Z�n2 ¼ 0, (58)

for the propagation of edge waves within the context of Kirchhoff theory for thick plates.
As it follows from (56) in problems of localized vibrations Kirchhoff theory approximation can be obtained by

neglecting the relative thickness
ffiffiffi
a
p

of a plate, whereas in problems of vibrations of a simply supported plate neglecting
the square of the plate thickness gives Kirchhoff’s plate theory approximation [28].

Calculations illustrating these results are shown in Table 1 which compares wave frequencies for a transversely
isotropic plate using Ambartsumian’s theory with those calculated using classical Kirchhoff theory, both for a simply
supported elongated plate and for a plate with free edge. In Table 1 os and ol are respectively the minimal frequency of a
simply supported elongated plate and the frequency of localized vibration calculated in the framework of Ambartsumian’s
refined theory, oos and ool are the minimal frequency of the simply supported plate and the frequency of the localized
vibration respectively calculated via the classical plate theory. Ambartsumian [29] has shown that for a simply supported
plate the minimal natural bending frequencies os and oso are related by the formula

os ¼
oosffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þay=4
p :
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Table 1
Comparison of wave frequencies for Ambartsumian’s theory with those calculated using classical Kirchhoff’s theory.

hk os/oos ol/ool

y=1 y=4 y=10 y=20 y=1 y=4 y=10 y=20

0.05 0.999 0.999 0.998 0.997 0.993 0.992 0.992 0.991

0.10 0.999 0.998 0.995 0.991 0.989 0.985 0.976 0.962

0.20 0.998 0.993 0.983 0.968 0.979 0.963 0.931 0.885

0.30 0.996 0.985 0.964 0.932 0.964 0.924 0.867 0.789

0.50 0.989 0.960 0.908 0.841 0.918 0.837 0.721 0.605

G.T. Piliposian et al. / Journal of Sound and Vibration 329 (2010) 3596–36053602
The results show that whereas the classical theory provides a good approximation to the higher order theory for natural
frequencies of simply supported plates, for thick plates the classical theory may significantly overestimate the frequencies
of localized edge waves.

The above analysis can be relatively easily modified to provide solutions for localized bending waves along the free
edges of a long narrow plate. We represent the plate as occupying the region �1oxo1, �LryrL and �hrzrh, and
suppose that the edges y¼ 7L are free from mechanical loads. Because of the symmetry of the boundary conditions at
these edges two modes of vibrations will occur: a symmetric mode and an anti-symmetric mode. For the symmetric mode
we can write the general solution as

jðyÞ ¼
X3

j ¼ 1

Cjj00ðpjÞexp½iðot�kxÞ�cosh½kpjy�, (59)

cðyÞ ¼
X3

j ¼ 1

Cjc00ðpjÞexp½iðot�kxÞ�cosh½kpjy�, (60)

wðyÞ ¼
X3

j ¼ 1

Cjw00ðpjÞexp½iðot�kxÞ�sinh½kpjy�: (61)

For the anti-symmetric mode we can write

jðyÞ ¼
X3

j ¼ 1

Cjj00ðpjÞexp½iðot�kxÞ�sinh½kpjy�, (62)

cðyÞ ¼
X3

j ¼ 1

Cjc00ðpjÞexp½iðot�kxÞ�sinh½kpjy�, (63)

wðyÞ ¼
X3

j ¼ 1

Cjw00ðpjÞexp½iðot�kxÞ�cosh½kpjy�: (64)

From the boundary conditions (30) and (31) at free edges we again obtain the system of Eqs. (48)–(50), where in the
symmetrical case B1ðpÞ is the same as in (51), B2ðpÞ in (52) is replaced by B2ðpÞtanhðpkLÞ, and B3ðpÞ in (53) is replaced by
B3ðpÞtanhðpkLÞ.

In the anti-symmetrical case B1ðpÞ in (51) is replaced by B1ðpÞtanhðpkLÞ, B2ðpÞ in (52) is replaced by B2ðpÞtanhðpkLÞ and
B3ðpÞ in (53) remains the same.

For a narrow plate, since kL51, and so tanhðpkLÞ � pkL, the dispersion equation for both the symmetric and
anti-symmetric cases reduces to

1þa2Z2y�Zð1þaþayÞ ¼ 0: (65)

Note that by letting io-�ð@=@tÞ and ik-@=@x we can rewrite this equation as

D
@4w

@x4
þ2rh

@2

@t2
w�
ð1þyÞh2

3

@2w

@x2

� �
þ

4h3ð1�n2Þy
3E

@4w

@t4
¼ 0: (66)

Considering a rectangular beam of unit width and depth 2h, with cross-sectional area S=2h and second moment of area
I¼ 2h2=3, the beam vibration equation can be written as

E0I
@4w

@x4
þrS

@2w

@t2
�rIð1þyÞ

@4w

@x2@t2
þ
r2Iy
E0

@4w

@t4
¼ 0, (67)
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where E0 ¼ E=ð1�n2Þ. Taking into account that for an isotropic plate y¼ 6E0=5G, where G is the shear modulus, we can note
that this equation coincides with Timoshenko beam equation [30] (where the numerical coefficient characterizing the form
of cross-section is 5/6) and with equation of the Levinson’s beam, when the Poisson ratio vanishes.

4. Analysis of the dispersion equation

The dispersion function FðZ,nÞ given by (55) has the following properties:

ð1Þ Fð0,nÞ ¼ 4ð1�nÞ 3þnþayð1�n2Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2

ayð1�nÞ

s !" #
40, (68)

ð2Þ FðZ0,0Þ ¼ 0, (69)

ð3Þ FðZ0,nÞo0 for any n 2 ½0,1=2�, (70)

ð4Þ FðZ,n1ÞoFðZ,n2Þ if n2on1, n 2 ½0,1=2�, Z 2 ½0,Z0�: (71)

It follows from properties (68)–(71) that for any value of the anisotropy parameter y Eq. (55) always has a root, and
hence that, since the Poisson coefficient n is always non-zero, localized bending waves always exist. This result coincides
with the corresponding results for the Kirchhoff plate [1]. Based on numerical ‘‘experimentation’’ of the dispersion
equation the same result has been obtained in [27] for the isotropic Mindlin plate.
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Fig. 1. Dispersion curves for different values of y when n=2/5.
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Fig. 2. Logarithmic plot of the attenuation coefficient p1 ¼minZ½p1ðZÞ,p2ðZÞ,p3ðZÞ�. Solid lines are for n=1/5 and dashed lines for n=2/5.
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The solutions of the dispersion Eq. (55) are shown in Figs. 1–3 which plot values of the dimensionless localized
frequencies

ffiffiffiZp , the attenuation coefficient log p1 and the phase velocity of the localized waves normalized to the bulk
shear in-plane wave velocity versus the thickness parameter kh. The ordinates of all plots in Figs. 1–3 at kh=0 correspond
to the solutions for the Kirchhoff plate [1].

Dispersion curves for different values of the anisotropy coefficient y are shown in Fig. 1 for n=2/5. According to
formulae (20) y=4 corresponds to the isotropic plate. The numerical calculations show that for thin plates the effect of the
anisotropy is unnoticeable. With the plate thickness increasing the effect of anisotropy grows and for y=20 reaches to
nearly 20 percent.

Fig. 2 shows that the change of the attenuation coefficient is in the order of 10 from n=1/5 to n=2/5. For a thick plate
with much stronger elastic properties in the transversal direction than elastic properties in the longitudinal direction the
attenuation coefficient increases by another order. This means that localization of waves for thick plates increases i.e. the
waves are attenuating faster from the free edge of the plate.

Note also that the difference between the values of the bending frequencies for the Ambartsumian plate and the
Kirchhoff plate for thick plates is more than the corresponding difference between values of phase velocities b and b0

(Fig. 3).
5. Conclusion

Localized bending waves have been studied in an elastic transversely isotropic thick plate using the high order refined
theories of elastic plates. The dispersion equation has been obtained and analyzed for the existence of a localized wave at
the free edge. It is noted that the dispersion equation of a simply supported plate of the Kirchhoff plate theory is obtained
by neglecting the square of the plate thickness in the corresponding dispersion equation that takes account of shear
stresses. In the problem of localized vibrations the Kirchhoff plate theory approximation is obtained by neglecting to first
order the relative thickness of the plate. This shows that classical plate theory is more suitable for simply supported plate
than for a plate with free edges. If an acceptable limit for an error is estimated to be in the order of 10 percent then
Kirchhoff’s plate theory will not be applicable for thick transversely isotropic plates.

It has been shown that there are no qualitative differences between results given by the first order Reissner–Mindlin
and the high order Ambartsumian’s theories. The correlation coefficient for shear coefficient is 5/6 the same as between the
high order Levinson’s and Mindlin’s theories. Analysis of frequencies of localized bending waves show that for thick plates
the effect of anisotropy grows up to 20 percent.

A case of a narrow plate has been also considered. It is shown that Timoshenko’s beam equation can be obtained from a
dispersion equation of a narrow plate with free edges.
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