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1. Introduction

Plates reinforced by beams or ribs represent a class of structural components that are widely used in many applications
such as hull decks, bridges, land and space vehicles, and buildings. Reinforcement schemes are often of direct interest in
structural designs. Vibrations of stiffened plates have been extensively studied using various analytical and numerical
techniques, as comprehensively reviewed in Refs. [1-3].

Orthotropic plate and grillage approximations are two common models used in the early literature [2]. While the
former treats the stiffened plate as an equivalent orthotropic plate by smearing the stiffeners into the plate, the latter
approximates the stiffeners as a grid attached to the plate. Other approaches, such as, wave propagation approaches [4-8],
transfer matrix methods [9], Rayleigh-Ritz methods [10-14], and the finite difference methods [15,16], have also been
developed to investigate various aspects of vibrations of stiffened plates.

With the rapid progress of computer technologies, the finite element methods (FEMs) have nowadays become a
standard tool for the dynamic analyses of complex structures. Although the FEM is capable of predicting the vibrations of
complex structures with fairly good accuracy, its deficiencies have also become evident, which include, for example, a
requirement of the perfect match between the two-dimensional (2-D) mesh for a plate and a number of one-dimensional
(1-D) meshes for beams. These problems have prompted researchers to seek alternative approaches for the vibration
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Nomenclature L Lagrangian operator
Ly beam length
A vector of Fourier coefficients L; lgngth of the it.h beam
AP . BPn, Ch,. Fourier expansion coefficients of plate Lo I, directional cosines of a beam
Ab ., B, Fourier coefficients of transverse displacement ~ M, N truncation numbers of the plate Fourier
of beam expansion series
Ab . BY, Fourier coefficients of axial displacement of  Mp mass matrix of the plate
beam M, mass matrix of the beams
Ab . BY, Fourier coefficients of torsional displacement  Np number of beam stiffeners
' " of beam Si cross-section area of the ith beam
a length of plate T total kinetic energy
al., b, cl, d, el fl Fourier expansion coefficients of  Th.i kinetic energy of the ith beam
plate T, kinetic energy of the plate
b width of plate Up,Vp, W, in-plane and flexural displacements of plate
Dpy i» Dpy; bending rigidity of beam up,Wp, axial and flexural displacements, respectively,
D, bending rigidity of plate of beam
E, Ep; Young’s modulus, respectively, of plate and ith ~ Up, Vj,, W), coefficient vectors of in-plane and flexural
beam - displacements of plate
Gp extensional rigidity b Who. W, coefficient vectors of longitudinal and
Gp shear modulus of the ith beam flexural disglacements of the ith beam
h thickness of plate Vv total potential energy
Ibi torsional stiffness of the ith beam Vi_out» Vp_in Strain energies due to bending, respectively,
Kp stiffness matrix of the plate and in-plane motion
Kp stiffness matrix of the beam % potential energy stored in boundary springs of
Kpp stiffness matrix due to the coupling between the plate
the plate and beams Vb.i strain energies of the ith beam
K%y, K2 (Kb, KP)) stiffnesses for rotational springs, Vinp  potential energies due to couplings between
respectively, at x=0 and a (y=0 and b) the ith beam and plate
K;’,b*, KEP', KPP stiffnesses for rotational coupling spring A Poisson’s ratio
between the ith beam and plate Pp» Ppi  Mass density of the plate and the ith beam
KB, kb, KB stiffnesses of linear coupling spring @ frequency in radian
between the ith beam and plate Op torsional displacement of the beam
k}'; o kjE; ; (k}’yo, k}’ﬂ ) stiffnesses  for flexural springs, o, coefﬁci.ent vector of rotational displacements
respectively, at x=0 and a (y=0 and b) of.the ith beam
Ko» Kby (Kpo kip) stiffnesses of longitudinal springs, ¢ orientation angle of the beam
respectively, at x=0 and a (y=0 and b) Q (wb?/m?),/p,h/Dy, frequency parameter
Koo Kby (K80, K&,1) stiffnesses  for  the tangential
springs, respectively, at x=0 and a (y=0 and b)

analysis of stiffened plates. Doze and Ricciardi [17] proposed a combined analytical-numerical method to predict
eigenpairs of rib-stiffened plates. In their study, the assumed modes method is used to derive equations of motions of the
plate and rib separately, leading to sparse stiffness and mass matrices. The differential quadrature method was utilized by
Zeng and Bert [18] for studying the free vibration of eccentrically stiffened plates. In order to avoid the FEM difficulties
encountered in the meshing process, Peng et al. [19] employed a mesh-free Galerkin method for the free vibration and
stability analysis of stiffened plates. Because there is no mesh used in this method, the stiffeners can be placed anywhere
on the plate. A hybrid formulation by combination of the conventional FEA with energy FEA (EFEA) was presented by Hong
et al. [20] to study flexible vibrations of plates with spot-welded stiffening beams. The flexible plate and stiffening beams
are modeled by the EFEA and conventional FEA, respectively.

In recent studies, a plate and its stiffeners are often treated as separate elements, and the interaction forces in the
governing equations are determined from the compatibility conditions on the interfaces. The connections between the
plate and stiffeners are typically viewed as rigid coupling to easily satisfy the continuity conditions [10,13,16-19].
However, this simple treatment is not always appropriate in real-world applications. In practice, the stiffeners are often
spot-welded or fixed to a plate through screws, rivets, and so on. Therefore, the coupling conditions between the plate and
stiffeners are not known exactly. This uncertainty may be one of the causes for scattering of vibrational responses. To
better model the coupling conditions, Zalizniak et al. [8] and Arruda et al. [21] treated the plate-beam connections as
elastic joints in their studies of wave transmissions between plate and beams.

Various aspects of the reinforcing arrangements have been studied by many researchers [10-12,22-25] in terms of their
impacts on dynamic characteristics of the resulting plate-beam systems. For example, Liew et al. [10] and Wu and Liy [12]
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investigated how the natural frequencies of the combined structure will be affected by the aspect ratio of the plate and
properties of the stiffeners. Torsional vibrations of the stiffeners were taken into account in Ref. [10]. Bhat [11] studied the
effects of non-uniform stiffener spacing. Using FEM models, Nair and Rao [22] examined the impact on natural frequencies
of the length of a stiffener. Although reinforcing beams are typically placed evenly in a parallel or orthogonal pattern in
most cases, the orientations of stiffeners are found to play an important role in affecting the response of and power flows in
the composite system [23]. Ouisse and Guyader [24] investigated the influence of beam placement angle on the dynamic
behavior of coupled systems. Using the finite element method, Shastry and Venkateswara [25] examined the fundamental
frequencies of rectangular plates for several different orientation arrangements of stiffeners. Other approaches were also
used to investigate the structural characteristics of stiffened plates [26-29].

Although vibrations of stiffened plates have been extensively studied for decades, most of the reported investigations
are based on the condition that plates are simply supported along, at least, a pair of opposite edges. In comparison, there is
little attention paid to vibrations of stiffened plates under other boundary conditions and/or non-rigid coupling conditions
between a plate and beams. This investigation is aimed at filling these analytical gaps and understanding the effects
on modal properties of various (plate and beam) support conditions, general coupling conditions, and reinforcing
arrangements with respect to the number, orientations, and lengths of attached beams.

2. Theoretical formulations
2.1. Descriptions of the coupled stiffened plate structure

Fig. 1 shows a rectangular plate reinforced by a number of stiffeners (or beams) with arbitrary placement angles (only
one stiffener is shown in Fig. 1 for clarity). Vibrations of both the plate and stiffeners are generally considered as three-
dimensional: the plate has three independent (one transverse and two in-plane) displacements, and each of the stiffeners
has four independent (one axial, one rotational, and two transverse) displacements. The plate with length a, width b, and
thickness h is assumed to lie in the x-y plane. The boundary conditions for the plate are generally specified, along each
edge, as elastic restraints, which are described in terms of four sets of uniformly distributed springs of arbitrary stiffnesses
(refer to Fig. 1).

Suppose a beam with length L,, width w, and thickness t is attached to the plate with an arbitrary angle ¢. For
convenience, vibrations of the beam are described in a local coordinate system (x’,y’,z’), as shown in Fig. 1. Unlike in many
studies the beam, which starts from (Ly, Ly») and ends at (L, Lye), is not necessarily placed flush with the edges of the
plate. The plate-beam connection is here treated as a line joint described by a set of six springs. At this junction, beam
bending about z’-axis (or torsion about x'-axis) is directly coupled with in-plane (or transverse) vibrations of the plate.
In many cases, it is possible to divide the plate and beam displacements into two independent groups and solve them
separately based on the premise that in-plane and longitudinal modes tend to have much higher natural frequencies.
However since this assertion is not readily verified a priori, and in- and out-of-plane vibrations are no longer decoupled for
two plates connected at an angle, all the displacements for the plate and beams will be considered here as being coupled
together, and determined simultaneously by solving the final combined system.

In order to be able to account for the general coupling conditions between the plate and beams, six types of distributed
elastic springs are specified along the line junction. The orientations of the springs are individually defined with reference
to the local coordinate system attached to each beam. The familiar rigid coupling condition in a direction can be easily
created by setting the stiffness for the corresponding spring to be equal to infinity. For simplicity, it is assumed here that
the coupling and restraining springs have a uniform stiffness distribution along a line. However, it can be shown that any
non-uniform coupling conditions, such as partial and point connections, can be easily included in the formulation in the
same way as dealing with non-uniform boundary supports [30].

Fig. 1. Elastically restrained rectangular plate reinforced by arbitrarily orientated beams.
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2.2. Series representations of the displacement functions

As previously done for a single plate, the transverse displacement will be expressed as [31]

wp(x,y) = Z Z AP COS J.amX COS Apny + Z <C,,(y) Z al, cos Aamx+Ch(x) Z b, cos /lbny> (1)
m=0n= =1
and the in-plane displacements as [32]
Up(X,y) = Z Z B, COS ZamX €OS Apny + Z <éb(y) > chcos damx+E(x) > dh cos ibny> (2)
m=0n= m=0 n=0
2 0 o
Vp(x,y) = Z Z n COS ZamX COS Zpny+ > <é§,(y) > el cos amx+E4x) Y ficos ).bny) (3)
m=0n= =1 m=0 n=20
where Zgn=mnfa and Aq,=n7n/b; Ab,, Bhn, ..., e, and f} denote the Fourier coefficients of Fourier series expansions. The

supplementary functions Cf,(y), C’u(x), éf,(y), and &,(x) are defined in Appendix A. These supplementary functions are used
to deal with possible discontinuities (at the edges) potentially exhibited by a displacement function and its derivatives
when they are periodically extended onto the entire x-y plane as directly implied by a Fourier expansion. It can be proved
mathematically that the series expansion in Eq. (1) (or Egs. (2) and (3)) is able to expand and uniformly converge to any
function f{x,y)eC> (or g(x,y)eC!) ¥(x,y)eD: ([0,a]®[0, b]). It should be noted that since the in-plane displacements are
required to belong only to C!, a single supplementary function is adequate at each edge to remove potential discontinuities
with the first derivative.
The flexural, longitudinal, and torsional displacements of a beam can be similarly expressed as

Wy, = Z AP cOS AmX+ Z B?, sin Anx (4)

= n=1

M 2

up= > A} COSimX+ > Bb,sini.x (5)

m=0 n=1

and

0p = Z A, €OS X+ Z B, sin Znx (6)

= n=1

where A,,=mm/Lp, and the subscript r (=z' or y’) denotes the bending displacement about the z'- or y’-axis.

Unlike in the 2-D plate cases, the supplementary functions for beam displacements are alternatively chosen as sine
functions for simplicity. Theoretically, there exist an infinite number of possible choices for the supplementary functions;
any set of closed-form functions that are linearly independent and sufficiently smooth over the solution domain can be a
candidate. It is important to point out that the selection of the supplementary functions is not directly dictated by
boundary conditions, which makes the current approach more attractive and powerful.

2.3. Solution for the coupled beam-plate system

As mentioned before, the current Fourier series expansion can be properly constructed to expand and uniformly
converge to any function or solution with desired smoothness. Thus, it represents an exact (or strong form of) solution if
the unknown Fourier coefficients are determined in such a way that the governing differential equation (s) and boundary
conditions are exactly satisfied on a point-wise basis as done in the previous studies [31-34]. Such a solution process,
however, tends to become less attractive for built-up structures since it leads to a system with fully populated stiffness and
mass matrices. Thus, the Rayleigh-Ritz method will be employed here instead.

The Lagrangian L for the beam-plate coupling system can be generally expressed as

L=V-T (7)

where V and T, respectively, denote the total potential and kinetic energies, which are defined as
N
V=Vpour+Vp in+Vhc+ > (Vii+ VB (8)
i
and

N
T:Tp+ ZTb'i (9)
i
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where N is the total number of stiffeners; V, o, and Vj,_;, represent the strain energies due to the bending and in-plane
motions, respectively, V& deSIgnates the potential energy stored in the boundary springs of the plate, V,,; denotes the
strain energy of the ith beam, Vcoup accounts for the potential energies associated with coupling springs between the ith
beam and the plate, and T;; and T}, are the kinetic energies corresponding to the vibrations of the ith beam and the plate,
respectively.

Specifically, the potential and kinetic energies of the plate can be written as

Vp_out = ) / / [ pxx +Wpyy +2UWp xxWp,yy +2(1— 1) pxy]dXdy (10)
) (1 w
Vp_in= (pr‘H/py) 2= upxVpy+—— (upy‘H/px) dxdy (11)

VB = 2/ [(kRoWj +KEoWy x +KhoUs + Koo Up)x — 0+ (ke W + KB Wi o 4+ KD up + KD 1)y _ 1dy

+§/0 [(Kf, oWy + KWy kb p+I<p0v§)y:0+(l<}’y1w§+I<pw y KL, uy+k8,,vp)y _ pldx (12)

and

1 a rb
T,,:j/O /0 pphlwy +uz +1u71dx dy (13)

where D,=E,h?/12(1— p?) is the flexible rigidity of the plate; E,, G, i, p,, and h are Young's modulus, extensional rigidity,
Poisson’s ratio, mass density, and thickness of the plate, respectively. Definitions for the boundary springs have been given
in the nomenclature.

The potential and kinetic energies of the ith beam can be expressed as

1 LI / / /
Vai= 5 /0 (Dpy Wy e AX + D s W2, e X+ Ep it + Gy 610X (14)
1 /b ,
Tyi= 5 /0 PyISW, +Siwd, + S +6%]dx (15)

where Dyy i, Dy i, Jin Ep,i Gb,i» Pb,ir Siv and L; are, respectively, the bending rigidities in the x’—z" and x' —y’ planes, torsional
rigidity, Young’s modulus, shear modulus, mass density, cross-sectional area, and length of the ith beam.

The coupling between the plate and a stiffener is treated as an elastic line connection along the beam, which is
described by a set of six distributed springs. The potential energies stored in the coupling springs can be written as

1 /L ) . ) .
vPbi = 5 /0 (kP (Wp— Wi, ) +k§,b'(v,, €OS P—1lp SN P—Wpy, )2 +kEP (v, Sin ¢+, COS @ —p)?]dX’

1 /5 /1 2 _ ,
+35 /0 {Kﬂbl (Wpx Wy x)* +K5b‘ <§ (Vp,x—”p.y)—Wby’,x’> +K5b‘ (Wp,y —9)2} dx (16)

where Kf,b‘, KPPi KPP jebbi, kﬁb*, and kB’ respectively, denote the stiffnesses of the coupling springs (refer to nomenclature),
and @ is the orientation angle of the beam with respect to the plate. In Eq. (16), the potential energy associated with the
beam-plate couplings is expressed in terms of the local (beam) coordinates (x,y’,z'), which are defined such that the
x'-axis always lies on the beam and z'=z, as shown in Fig. 2. The derivatives with respect to the local coordinates can be
determined from

owp owp owp owp
Wp = — —P2L 4+ & l, Wpy=— o L+ 2y I (17,18)

where I,=sin ¢ and [,=cos ¢ are the direction cosines of the beam axis.
y
Ly,

L
L
)
y ¥
P ;
be Lxe x

Fig. 2. Schematic of an arbitrarily placed beam and its local coordinate system.
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Substituting Egs. (8)-(16) into (7) and minimizing Lagrangian against all the unknown Fourier coefficients, one obtains
a system of linear equations in the matrix form as

K, K, M 0
HK;, 1(,,} @ { 0 M,,]}A—O (19)
where K, K;, and K, are the stiffness matrices, respectively, corresponding to the plate, the beams, and the coupling
between them; M, and M, denote the mass matrices for the plate and the beams, respectively. Detailed expressions for

these matrices are given later in Appendix B.
The coefficient vector A in Eq. (19) is defined as

Az[wp U V, ... W, W,, U 6 ] (20)

where subscripts p and b, respectively, indicate an quantity related to the plate and beams, and superscript i to the ith
beam. Component vectors in Eq. (20) are given by

_ (AP AP p AP p p 1 1 2 2
Wy, = {Ago Agts -+ Ao Amts -+ Aimes o0 Ay Gigr -+ -5 Qi Bigs -0 Aipps
3 3 4 4 1 1 32 2 13 3 14 4
@Gor -0 Gipps Gigs -+ Qi Digw -0 Diny Bigs -+ biny Doy o0 By bigw -+ BN} (21)
_(pP RP D pp p pu 1 1.2 2 £l 1 2 2
Up ={Bjo, Byy» ---» Bhgs Bogs - Biyws -2 Biyns €500 -+ -0 € €500 - 5 €ippfior - o fine S - fim) (22)

vV, = {Cgov Cgl' Cgmv anv o G - Cﬁ/mv gil,o- s gz}M' gz‘2,0v : ---giz,M'hi],Ov R hi],M’ hiz,o- s h%M} (23)

b = {A?z'.o o Al BLy B, BlLs B, }T (24)
by = {A?yuo o Ay Bha Bo B Bi }T (25)
;, = {A?u,o T Af’u,M' B?u,l B?u,z }T (26)
2 = {A?G,O T A?H,M‘ B?@,] B?e,z }T (27)

It is clear from Eq. (19) that the natural frequencies and eigenvectors for the stiffened plate can now be directly
obtained by solving a standard matrix eigenvalue problem. For a given natural frequency, the corresponding eigenvector
actually contains all the Fourier coefficients, which can be subsequently used to construct the mode shape according to
Egs. (1)-(6). Although this investigation is focused only on the free vibration of a stiffened plate, the response of the system
to an applied load can be readily considered by simply including the work done by this load in the Lagrangian, which will
eventually lead to a force term on the right side of Eq. (19). Once the displacements are determined for the plate and
beams, other quantities of interest such as reaction forces and power flows can be calculated directly from the appropriate
mathematical operations on the analytical form of the displacement solutions, which can be done only when the solutions
are constructed as sufficiently smooth as required in the strong formulations, and the series expansions are uniformly
convergent to the highest involved derivatives (e.g., the third derivatives in shear force expressions).

3. Results and discussion

A number of numerical examples will be given in this section. Fig. 3 shows a rectangular plate orthogonally stiffened by
a number of beams. In the following calculations, it is assumed that the plate and its stiffeners are made of the same
material: E,=207GPa, p,=7800kg/m>?, 1u=0.3, G,=E,/2(1+u) for the stiffeners, and G,=E,h/(1—p?) for the plate.
The geometric properties of the stiffeners with a rectangular cross-section are taken as those previously used in
Ref. [10] for the purpose of comparison. The boundary conditions of the plate are described by four capital letters; for
instance, SCFC means that the plate is simply supported at x=0, clamped at y=b, free at x=a, and clamped at y=0.

To check the correctness and accuracy of the present solution, we will first consider a configuration previously studied
in Refs. [10,17]; a plate has only one stiffener lying parallel to x-axis at y=b/2 with the following parameters: aspect ratio
a/b=1, ratio of thickness to width h/b=0.01, width ratio w/b=0.01, and height ratio t/h=1. The calculated first six frequency

parameters, Q = (wb?/7?), /pph/Dp, are shown in Table 1 together with three sets of reference data for a CCCC plate with

the stiffener rigidly attached to it. A clamped edge is a special case of the elastic supports when the stiffnesses for the
restraining springs all become infinitely large (which is represented by a very large number, 1.0 x 10!, in the actual
calculations). The rigid coupling between the beam and plate is treated in the same way. A good comparison is observed
between the current and other reference results. The results in Table 1 also show good convergence characteristics when
different truncation numbers are used in the series expansions. Since the solution converges adequately fast, the series
expansions will be simply truncated to M=N=9 in all the subsequent calculations.
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Fig. 3. Illustration of plate and beam positions and reinforcement plans.

Table 1
Frequency parameters, Q = (wb?/7?), /pyh/Dp, for a CCCC square plate with one x-wise stiffening beam placed at b/2.

W=y Q= (wb*/n?),/p,h/D,

1 2 3 4 5 6
7 3.7802 7.4433 7.8140 10.9811 13.2505 14.3334
9 3.7781 7.4430 7.8088 10.9803 13.2486 14.3327
12 3.7732 7.4428 7.8073 10.9801 13.2481 14.3310
13 3.7721 7.4428 7.8060 10.9800 13.2478 14.3298
14 3.7720 7.4428 7.8060 10.9790 13.2473 14.3298
3.8136° 7.4276 8.0853 11.0444 13.3380 14.6492
3.7947° 7.4771 7.9970 10.9490 13.2376 14.4261
3.7859°¢ 7.4426 7.8193 10.9663 13.2496 14.3384

¢ Results from Ref. [17].
b Results from Ref. [10].
¢ Results from ANSYS with 200 x 200 elements.

In the next example, by changing the aspect ratio to a/b=2, the frequency parameters are calculated for two different
height ratios, t/h=1 and 1.5. The results are shown in Table 2 for three different boundary conditions: SSSS, SCSC, and FFFF.
To understand the impact of the stiffener height ratio, the frequency parameters corresponding to the first mode in the
FFFF case are highlighted in Table 3. The current results match well with those obtained using other techniques in all these
cases. However, it should be pointed out that unlike the other techniques the current method does not require any
modification to the formulations or solution procedures in dealing with different boundary conditions; modifying a
boundary condition is as simple as changing a material or geometrical parameter such as Young’s modulus or mass density.

Other reinforcement configurations involving more stiffeners are also considered here. Table 4 shows the frequency
parameters for an SSSS square plate with a pair of perpendicular stiffeners symmetrically placed with respect to the plate
center. Given in Table 5 are the results for a plate stiffened by two evenly distributed beams in the x-direction, and two in
the y-direction (as illustrated by the dash lines in Fig. 3). The next example involves a non-symmetric reinforcement
configuration in which two beams are placed along two edges at y=0 and x=0. The related model parameters are chosen as
follows: a=0.6 m, b=0.4m, h=0.008 m, w/b=0.01, and t/h=1. Listed in Table 6 are the frequency parameters for the plate
with six different boundary conditions: FCSF, FFCF, FSSF, FCCF, SFFC, and SFFS. Since these cases were not studied
previously, the current results are compared only with the FEM data. Even though the conventional Rayleigh-Ritz solutions
based on the “corresponding” beam functions are not presented, it can be speculated that they are most likely to become
less accurate for this kind of problems because the stiffeners located along one or more plate edges tend to have some
meaningful effects on the actual boundary conditions for the plate.

All the boundary conditions thus far considered still fall into the category of the “classical” ones for which the beam
functions have been well established. In many real applications, one may have to consider a more complicated class (or the
mixed type) of boundary conditions, which are specified in terms of elastic restraints at an edge. As an example, we
consider a plate having one x-direction stiffener at y=2b/3. Each of its four edges is now elastically restrained by the
transverse and rotational springs with stiffness 10°N/m and 10*Nm/rad, respectively. In addition, a pair of in-plane
springs with the same stiffness, 10°N/m, is applied to edge y=0. All other parameters are kept the same as in the previous
example. The calculated frequency parameters are given in Table 7 together with the FEM results.
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Table 2
Frequency parameters, Q = (wb?/7?), /pyh/Dp, for a rectangular plate stiffened by one x-wise stiffening beam at b/2 with different boundary conditions

and stiffener height ratios.

BC t/h Q= (wh? /7?) /ﬂph/Dp

1 2 3 4 5 6
SSSS 1 1.2401 2.0373 3.3898 4.2500 5.0124 5.3027
1.2435? 2.0379 3.3941 4.2512 5.0045 5.3040
1.2411° 2.0146 3.3768 4.2517 5.0072 5.2766
1.5 1.2447 2.1089 3.5984 4.2553 5.0251 5.6653
1.2457° 2.1066 3.6067 4.2524 5.0093 5.7115
1.2456° 2.1060 3.6040 4.2555 5.0228 5.7029
SCSC 1 2.3869 2.9465 4.0854 5.8468 6.4378 7.0273
2.3873° 29513 4.1096 5.9104 6.4386 7.0320
2.3722° 2.9281 4.0643 5.8265 6.4370 7.0301
1.5 2.3777 2.9949 4.2800 6.2276 6.4392 7.0332
2.3781° 3.0022 4.3262 6.3773 6.4396 7.0373
2.3776° 2.9954 4.2960 6.2969 6.4400 7.0471
FFFF 1 0.5726 0.6707 1.4822 1.5962 2.2270 2.5734
0.5737° 0.6750 1.4853 1.5852 2.2204 2.5771
1.5 0.6152 0.6748 1.4892 1.6840 2.2193 2.5787
0.6153° 0.6786 1.4929 1.6851 2.2183 2.5877

2 Results from Ref. [17].
b Results from ANSYS with 200 x 200 elements.

Table 3
The first frequency parameter, Q; = (w1b?/7?),/ pph/Dp, for an FFFF rectangular plate with significantly different stiffener height ratios.

t/h=1 t/h=2 tlh=4 t/h=6 t/h=8 t/h=10
0.5726 0.6744 0.7148 0.7851 0.8550 0.9067
0.5737° 0.6774 0.7206 0.7926 0.8635 0.9179

@ Results from ANSYS with 200 x 200 elements.

Table 4
Frequency parameters, Q = (wb?/7?), /pph/Dp, for an SSSS square plate with one central x- wise beam and one central y-wise beam.

Q= (wb?/n%),/p,h/Dp

1 2 3 4 5) 6

2.2093 5.6924 5.7006 8.0514 11.1823 11.5398
2.2027¢ 5.7195 5.7195 8.0469 11.2071 11.6966
2.2017° 5.7167 5.7167 8.0552 11.1909 11.6785
2.1996°¢ 5.6933 5.6933 8.0511 11.1824 11.6492

2 Results from Ref. [17].
P Results from Ref. [10].
¢ Results from ANSYS with 200 x 200 elements.

While the unifying nature of the current method has been adequately demonstrated through various boundary
conditions, its capability cannot be fully recognized without examining some nonconventional reinforcement
configurations. In most investigations, the coupling between the plate and its stiffeners are simply considered as
completely rigid, which is typically enforced in terms of the compatibility conditions between the displacements for the
plate and stiffeners. In many modern structures, stiffeners are often glued, bolted, or spot-welded to plates, thus allowing
separations between plates and stiffeners at the interfaces. In other cases, even though the coupling is substantially strong
between some degrees of freedom (e.g., between flexural displacements), the bonding may actually be quite weak between
others (e.g., between rotational displacements). Thus, it is of practical interest to understand the effects of the coupling
conditions on the modal characteristics of a stiffened plate. Take an FSSS plate with one y-direction beam at x=0 for
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Table 5
Frequency parameters, Q = (wb?/n?), /pph/Dy, for a rectangular plate stiffened by two x-wise and two y-wise evenly distributed beams with different

boundary conditions and stiffener height ratios.

BC t/h Q= (wb?/1%)\/p,h/Dp

1 2 3 4 5 6
SSSS 1 1.2874 2.0784 3.4670 4.4583 5.0993 5.4345
1.2992 2.0845 3.4689 4.4657 5.1837 5.4341
1.2990° 2.0840 3.4677 4.4627 5.1801 5.4291
1.5 1.3808 2.2000 3.7674 4.7877 5.3029 5.9622
1.3852 2.2291 3.7852 4.7950 5.4760 6.0493
1.3855° 2.2296 3.7863 4.7935 5.4764 6.0444
SCSC 1 2.5213 2.9772 4.1325 5.9331 6.6582 7.1526
2.5411° 3.0777 4.1455 6.0176 6.7364 7.2821
2.5387° 3.0713 4.1283 5.9881 6.7250 7.2693
1.5 2.7298 3.2712 4.3987 6.6347 7.0756 7.6353
2.7426° 3.3015 4.4135 6.6563 7.1881 7.6484
2.7404° 3.2969 4.4024 6.6374 7.1780 7.6403
CCcc 1 2.6155 3.4339 4.8172 6.7269 6.9395 7.5273
2.6347° 3.4660 4.8544 6.8068 7.0342 7.6675
2.6315° 3.4474 4.8306 6.7908 7.0014 7.5801
1.5 2.8309 3.7683 5.2257 7.1831 7.7656 8.0681
2.8522° 3.8090 5.2872 7.2543 7.8368 8.2815
2.8528° 3.7893 5.2683 7.2651 7.8194 8.1636

¢ Results from Ref. [17].
b Results from Ref. [10].

Table 6
Frequency parameters, Q = (wb? /7?) pph/Dp, for a rectangular plate stiffened by one x-wise beam at y=0 and one y-wise beam at x=0 with various
boundary conditions.

BC Q= (wb?/m%)\/p,h/Dp

1 2 3 4 5 6
FCSF 0.4575 1.1730 2.4084 2.8168 3.3847 5.1699
0.4599° 1.1776 24154 2.8182 3.3822 5.1625
FFCF 0.1607 0.5297 1.0016 1.8239 2.5373 2.8387
0.1613¢° 0.5303 1.0046 1.8299 2.5387 2.8432
FSSF 0.2300 1.0353 1.7754 2.7122 2.8521 4.7314
0.2269% 1.0303 1.7722 2.7046 2.8280 4.6932
FCCF 0.5186 1.4243 2.4457 3.2962 3.5552 5.5365
0.5255% 1.4371 2.4561 3.3119 3.5673 5.5482
SFFC 0.4511 1.1131 2.3258 2.6060 3.3046 4.9401
0.4501* 1.1109 2.3245 2.6006 3.2946 4.9181
SFFS 0.2320 0.9830 1.7014 2.5096 2.7780 4.5401
0.2302% 0.9765 1.6970 2.5006 2.7544 4.4983

@ Results from ANSYS with 200 x 200 elements.

Table 7
Frequency parameters, Q = (wb?/7?), /pph/Dp, for a rectangular elastically restrained plate stiffened by one x-wise beam at y=2b/3.

Q= (wb?/m*)\/p,h/Dp

1 2 3 4 5 6 7 8
0.1484 0.2558 0.3741 0.9861 1.1383 2.1625 2.4032 2.8245
0.1498° 0.2587 0.3776 0.9892 1.1424 2.1667 2.4073 2.828

2 Results from ANSYS with 200 x 200 elements.
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example. The geometric parameters are specified as a/b=1, h/b=0.02, w/b=0.02, and t/h=1. The calculated frequency
parameters are listed in Table 8 for a wide range of coupling stiffnesses from k,=k,=k,=10°>N/m to 10° N/m. For simplicity,
the couplings through rotational springs are ignored here; that is, K,=K,=K,=0. The results clearly show that the coupling
conditions can significantly affect the dynamic characteristics of the combined system.

As mentioned earlier, it is required in an FEA model that a 2-D mesh for the plate has to match seamlessly with 1-D
meshes for beams. This cumbersome requirement will become more evident from this final example, which is used to
examine the effects of orientation of a stiffening beam. Assume a square plate with the following geometric parameters:
h/b=0.01, w/b=0.01, and t/h=10. Only a single beam of length b is rigidly attached to it for a number of configurations;
while one end is fixed to (0, 0), the other end is placed at various angles from 0° to 90°, as illustrated in Fig. 4. Four different
boundary conditions are considered for the plate: FFFS, SFFS, SSFS, and SSSS. Table 9 shows the calculated frequency
parameters of the first mode versus the orientation angle of the stiffening beam. The first six frequency parameters are
plotted in Fig. 5 as functions of the orientation angle of the stiffening beam. It can be seen that the frequency parameters
vary significantly with the orientation angle, and the shapes of these curves strongly depend on the boundary conditions.
As illustrated in Fig. 5, the curves are symmetric about 45°for the two symmetric boundary conditions, SFFS and SSSS.
In comparison, the curves exhibit an “irregular” shape toward the other two boundary conditions, FFFS and SSFS. The first

Table 8
Frequency parameters, Q = (wb?/7?), /pph/Dp, for an FSSS square plate stiffened by one y-wise beam at x=0 with various coupling spring stiffness.

kx, ky, kz Q = (wb?/7?) /pph/Dp

1 2 3 4 5 6 7 8
10° 0.2326 0.2327 0.2327 0.2331 0.2372 1.1874 2.175 2.8258
0.2305% 0.2307 0.2327 0.2346 0.2347 1.1846 2.1745 2.8126
10* 0.7297 0.7359 0.7359 0.736 0.737 1.1965 2.2843 2.8292
0.7253* 0.7295 0.7359 0.7392 0.7423 1.1937 2.2839 2.816
10° 1.1797 2.2893 23113 2.3271 2.3272 2.3272 2912 3.1768
1.1768* 2.276 2.3061 2.3197 2.3271 2.3464 2.9011 3.1776
108 1.234 2.8102 4.1895 5.9011 6.0351 7.3583 7.3589 7.3591
1.231°7 2.7962 4.1846 5.8756 6.0165 7.2673 7.3584 7.398
107 1.2831 2.8427 4.4088 6.1903 6.1964 9.4004 9.6477 11.2829
1.2799°? 2.8283 4.4035 6.1639 6.1766 9.3917 9.5995 11.2412
108 1.2948 2.8499 4.5311 6.204 6.3591 9.6736 9.7737 11.544
1.2916* 2.8355 4.5256 6.1839 6.333 9.6645 9.7249 11.520
10° 1.2968 2.8517 4.5551 6.206 6.3974 9.7377 9.8015 11.5502
1.2938* 2.8369 4.5501 6.1848 6.3738 9.7286 9.7543 11.520

2 Results from ANSYS with 200 x 200 elements.

>¢

»X

Fig. 4. Beam orientation angle varies from 0° to 90°.

Table 9
Frequency parameters for the first mode, Q = (wb?/7?), /pph/Dp, of a square plate with a stiffener placed in different angles.

BC Q= (b?/?),/p,h/Dy

0° 15° 30° 45° 60° 75° 90°
FFFS 0.7582 0.9212 1.0502 1.0081 0.8877 0.7709 0.6711
SFFS 0.4078 0.4816 0.5912 0.6596 0.5912 0.4816 0.4078
SSFS 1.2684 1.3455 1.3461 1.3614 1.4079 1.3414 1.2110

SSSS 2.0941 2.5562 2.8022 2.6768 2.8022 2.6130 2.0941
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(b)

(d)

Fig. 6. First mode shape for an SSSS plate stiffened by one beam with various orientations: (a) ¢=0°, (b) ¢=15° (c) ¢=30° and (d) ¢ =45°.

mode for the SSSS plate is shown in Fig. 6 for four different stiffener orientation angles. When the stiffener lies along the
x-axis (@p=0°), its presence is manifested only in the restraining effect against the rotation along edge y=0. The first
frequency parameter, 2.09, is thus slightly higher than 2.0 for a simply supported plate, and lower than 2.18 for the case
where a uniform rotational restraint Ka/D=1 is added to each edge of the simply supported plate [31]. The increase of
frequency parameter for other orientation angles, which peaks near 28° (see Fig. 5(a)), can be understood as the outcome of
reducing the effective sizes of the plate due to the reinforcement. These results clearly show that the dynamic behaviors of
a stiffened plate can be meaningfully manipulated through modifications of reinforcement configurations.

The frequency parameters can be quite sensitive to a minor change of the beam placement angle. High sensitivity zones
are dependent on the frequency parameters and boundary conditions. Take the simply supported case for example. The
high sensitivity zones are approximately located at 0-20°, 20-30°, 25-35°, 40-45°, 30-45°, and 25-35° for these first six
frequencies, respectively. While these characterizations are specifically related to the selected set of model parameters and
boundary conditions, similar behaviors are expected to be also observable on other systems. Such information can be of
practical importance to structural design and noise and vibration control; in the high sensitivity zones, even a slight
deviation of the stiffener orientation can result in significant modifications to modal characteristics of the system.

4. Conclusions

A general analytical method has been developed for the vibration analysis of a plate arbitrarily reinforced by beams of
any lengths. All the flexural and in-plane (or axial and torsional) displacements are included in the plate and beam models
to accurately take into account the possible cross-couplings at the plate-beam interfaces. The boundary conditions for the
plate and beams, and the coupling conditions between them, are all generally specified in terms of elastic springs, thus
allowing the creation of a unified solution method. Since each displacement component is invariably expressed as a
modified Fourier series, the current method has effectively avoided many of the problems and difficulties resulting from
the use of “appropriate” beam functions as typically required in other techniques. All the unknown expansion coefficients
are treated equally as generalized coordinates and determined from the Rayleigh-Ritz method. Since the constructed
displacement functions are sufficiently smooth throughout the entire solution domains, secondary variables such as
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bending moments and shear forces (involving the second and third derivatives) can be directly calculated from
corresponding mathematical operations of the displacement functions. The accuracy and reliability of the proposed
solution have been repeatedly demonstrated through numerical examples, which involve various boundary conditions,
coupling conditions, and reinforcement configurations. Even though this study is specifically focused on free vibrations of
stiffened plates, the present method can be directly extended to vibrations of more complicated built-up structures
consisting of a number of beams and plates.
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Appendix A. Supplementary functions used in Egs. (1)-(3)

The supplementary functions used in the transverse and in-plane displacement expressions of the plate in x-direction
are defined as

Lax) = sm(;TZ) %sin (é—?) (A1)
e () 2
= o))
S S
ém(X)=><(g—1)2 and éza(X)=§(2—1) (A5, A6)

The corresponding supplementary functions in y-direction can be obtained from the above equations by simply
replacing subscript a and variable x with b and y, respectively.

Appendix B. System matrix definitions

The stiffness matrix K, in Eq. (19) is the summation of 1(2 and K;, respectively, representing the contributions from the
plate and the plate-beam coupling. The expressions for Kg are available in Ref. [35], and will not be repeated here for

conciseness. The stiffness matrix KIC, is the summation of matrices resulting from the coupling between the plate and the ith
beam, that is

. K,, 0 0

Ks=>"| 0 K., K, (B1)
i=1
! 0 (KHPUP)T K

VpVp

where components of sub-matrices K, , , K\, . , K. , and I(vap are, respectively, given by
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where s=m(N+1)+n+1 and t=m’/(N+1)+n'+1. . o .
The expressions for i,j=2,4 can be obtained from the above equations by replacing «,, and A with f, %, and A,

respectively.
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and
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The plate-beam coupling stiffness matrix is express as
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The components of sub-matrices in Eqs. (B30)-(B32) are given by
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{K“ Ys.om 41 = ki;’fblexmn I—IAm,n,bm' +Kgb/1m/1bm'&mnIZIAm,n,bm’

VpWyy

i+ 1)1 b AG & by s AS A gl T
K+ b 1,bm +1 =(k§r lbeiAm,bmrAcc +K5 /hm/me’KbiAm,bm/Ass)H Xm

UpWhy

i+1)2 b AG & by A & mTor
{K(Hr ) }m+1.bn’+] = (kjp,, IXK:biAm,bn’ACS_KE /Im/bbn' KbiAm,bn/ASC)H Xm

VpWpy

G

i+3)1 b A
{K(l+ ) }n+1,bm’+1 = (kf; l'xKaiAn_bm/

VpWy

. ACe o~ . ~Cx ~ T
K2y w1 = (K LA oy Acs + K2 Ay R iy AcoH 28

VW,

11 b A 12 b oA
{Kupub }s,bm'+1 = kg' lxamnHAm,n,bm’- {Kupub }s,bn’ +1= kﬁr lxocmnHAm,n,bn’

i+1)1 b AG A fGlr i+1)2 b AG x mlor
{K(H ) Ym+1,bm 41 =k§, lXKbiAm,bm’ACCH Am» {K(l+ : Ym+1,bn 41 =k§, lXKbiArn,bn’ACS]—l Am

UplUp Uplp

and

; LG« T ; SG oz T .
{K“+3)1}n+1,bm’+l = kﬁfblx’caiAn_bmfAccH ){5 and {l((1+3)2}n+1,bn'+1 = kﬂfblxKaiAn‘bnrAcsH XE ij=12)

Uplly Uplly

where s=m(N+1)+n+1and t=m'(N+1)+n'+1.
The stiffness matrix K, is given by

K& 0o o0 o

K, =
S

K 0 o

0
KY

. . aCx o« T
Acc_Kgbﬂbm’KaiAn,bm/ACs)H Xz

(B46)

(B47)

(B48)

(B49)

(B50)

(B51)

(B52)

(B53)

(B54)

(B55)

(B56)

(B57, B58)

(B59, B60)

(B61, B62)

(B63)

where K} =K} +K}°; the stiffness matrix of the ith beam Kj, is the summation of K};° and Kj‘, respectively, defined as

[0
Ksz’ Whe 0
P
S
and
-I(svbz’ Wiy 0
, K, w,,
I(lb,C — y Y’
S

0
0
K°

Uplp

0
0
K

UpUp

0
0
0

K9,

0
0
0

(4
1(09 ]

Components of sub-matrices K;® and K;¢ have the common form as follows:

G103 — KO,AB )T KO,BB G103 —

0102 G102 0102

AA 0,AB AA AB
0 Kg] o, Kal o) d K Kgn o, Kfn I
( and K (KGAB )T KCBB

0102

] (01, 02 = Wy, Wy, 0, Up)

(B64)

(B65)

(B66, B67)
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Dby/l SmmLy+kE o+KE (=1)™™, mm' =0

Ko = : B68
Whe Wz Y m,m’ Dby//um(smm'%+k§/,o+kggL(—l)m+m‘ m,m’#0 ( )

0 m=n
0,AB _ ’
Ky b = {Dby,iﬁqiﬁan((—l)m”—l)/n(mz—nz), m#n (B69)

Anw (kb 0 +kb/ L(_-l)n+n’)‘ nn =0

KO-BB _ B70
Wi Dby/145,,n +ndnw (KD o+ K (=D)), nn’#0 (®70)

One can obtain l(‘?v w,,, from K}, ., in Eqs. (B68)-(B70) by replacing Dy, K, and Kb, with Dy,, Kb o, and K&,
respectively.
kb o+ Kb (=)™, mm =0
KoAA , B71
W o = EbS)%qémm,Lz—b+kﬁ.0+kﬁ'L(—1)m+m, m,m’ #0 (B71)
m=n
0,AB g
Ky ) n { —EpSiminmLy(=1)"*"—1)/m(m2—n?), m##n (B72)
and
Ly, nn =0
0,BB _
Kiyu, nw = {Ebsﬂzénn 2 ' £0 (B73)
One can obtain Kj, from K , in Eqs. (B71)-(B73) by replacing E,S, K2, and K}, with G,J, K3,, and K%, respectively.
KPPL,, mm =0
KEAA _ B74
T o = 6 Lz—b(k"b+l<"b ), mm #0 (B74)
KCAB ’ m=n
(LSS . Ly((= )" "=1)/7e(m2 —n2)(nkEP —m A i I(p ), m#n (B75)
and
0, nn =0
c,BB
{Ksz sz - S ij(kpb-FKpb)F) nn+£0 (B76)
One can obtain stby/wb from Kj, ., . in Egs. (B74)-(B76) by replacing k‘z’,band1<5b with kﬁ?’andKf,b, respectively.
KPbL,, m,m’ =0
c,AA _
{ ubub}m.m’ - 5mm'lé—bk§P. m,m #0 (B77)
KCAB 0 m=n B78
Wi b = KEPnL,((—1)"*"—1)/n(m2—n?), m#n (B78)
and
0, nn =0
c,BB
{Kubub}n n kpbénn 2 , nn'#0 (B79)
One can obtain K§, from Kj, ., by replacing kpb with Kpb in Egs. (B77)-(B79).
The beam mass matrices are given by
M}, 0 0 O
MZ
O I (B30)



3776 H. Xu et al. / Journal of Sound and Vibration 329 (2010) 3759-3779

where
Msz’sz’ 0 0 0
) : My, w,, 0 0
i _ by’ Wby
M, = : : M, 0 (B81)
S <o My
The components of My, ,w,, , Mu,, w,, » Mugu,, and My, have a common form as given below:
Mg, Mg
M = ;2 G (01,02 =Wy, Wy, ., 0, Up) (B82)
{(Mm M, o
PpSLp, mm =0
{Mmo'z}mm 5mm’pbsL7b, m'm/;éo (883)
AB 0, m=n 4
Moo, mn =\ p,SnLy((— )M+ —1)/n(m2—n2), m=n (B84)
and
0, nn' =0
BB
{Mtﬁffz}nn { pr(Snn/ ij, n,n #0 (BSS)
Appendix C. Definitions of matrixes used in Appendix B
-1 X X' 3 4
{,= [cos(zbly+/1plx> cos(Zbly Aplx> Sm(Zb ly+/1plx> sm ly A lx x}
/ 37-[ / H /
cos ly+AplX cos Ely—),plx X sin 2b ly+)plx sm ly )Lplx
{ yb+Apbe) sm( Lyp— Apbe> cos( yb+)~pbe) cos 2b Lyp—ApLyp }
37n ,
a":{ in (Zb Lyp+2p be> ( Lyy— ipbe) COS( yb+Apbe> cos( Lyp—2pLy b)]
B; {COS(zb Lyy+4p be> ( yb—Ap xb) —s1n(2b yb+Apbe) snn(ﬂp Xb——Ly,,”
-2 3 . T
ﬁp: {cos <2b yb+Apbe> ( yb—}pbe) —sm( vb -HPLX,,) sin (/lpbe—szyb)}
0= [Zp } B,= {Bp Bp}, and %, =%, %] (C1-C9)

{pg= { cos(plp+ Aglg)X  cos(Aplpy—igl)x  sin(ply +Aglg)x’  sin(Aply—Aqly)¥’ }
tpg = { cos(ApLp+Aglg) €os(hpLy—Agly) —sin(Aply+7Aqly) sin(lqlg—ApLp) }
Upg = { sin(ApLp+/gLlg) sin(ApLy—Aiqlg) cos(plp+Aqlg) €OS(ApLp—iqly) }
Gpg = { —cos(pLy+Aqlg) cOsUply—Aglg) sin(ApLy+Aqlq) sin(Aqu—Apr)} @, q=m,m,nn) (C10-C13)

_[9 a _[ % _a _[e & _[ ¢ @
TWM=\2r "12nf T\ T4 T 12nf ST \@® 3@ T T8 T3
N 9 1 . 9 1 . a? a? . a? a?
Tﬂlz{g —g}, ‘L'azz{g g}, 1032{—27[2 __27'52}’ and Ta4:{—2n2 _27'[2} (C14*C21)

"Ly T _ Ly P ~ Ly 1 _ ¢ Ly 1 ,
- ;T _ ) _ ;= _ 7
P1.P2.q1.02 = 0 CpipaCara, X Epipygy = / CpipyCay AX'Epy g = / G lqdé, By g = b {p, COSAg, dx

&)
=

Eps = / Cp sinlg, dx'  (p1,p2,91,92 =m,m’,n,n’;  q3 =bm,bm’,bn,bn’) (C22—C26)
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1
ka2 = 5 { Bylwo—@) —hlw(2a+3Ly) EGLe-a) F} (c27)
fea = alz { Lo(@~4aLo+313,) K(6Ly—4a) 3E ) (C28)
and

1 )
Kazzﬁ{beBbe—Za) 1(6Ly,—20) 31X} (C29)
A={1 x ¥ ¥ x* ¥ 8}, G={1 x ¥ B}, and Cy={1 x x*} (C30-C32)

sinAL,/A

(AL, sin AL, +cos AL,—1)/A?
[(A2L2—2)sin ALy + 2AL, cos ALp] /A3
Jb €0 cos AX dx = [AL,(A2L2—6)sin AL, + 3(A2L2—2)cos AL, + 6]/A*
[(A*L2—12A212 +24)sin AL, + 4AL,(A? 12 —6)c0s AL,] /A5
[AL,(A*L2—20A212 4 120)sin AL, + 5(A*L4 — 124212 + 24)cos AL, + 120] /AS
[(ASLS —30A*L{ + 360A212—720)sin AL, +6AL, (A*Li —20A2L2 +120)cos AL, /A7

(cosALy)/A
(sinAL, +ALy, cos ALy) /A%
[2AL, sin AL, + (2—A212)cos AL, —2]/A3
/Lb C0sinAx dx’ = [3A%LZ sin AL,—6sin AL,—AL(A%L2 —6)cos ALp] /A% (C33, C34)
0 [4L,(A?12—6)sin AL, —(A*L2—12A2L2 4 24)cos AL, + 24] /A
[—ALy(A4L4—20A?L2 +120)c0s AL, + 5(A*LE—12A2L2 +24)sin AL, /A
[6AL,(A*LS—20A2L2 +120)sin AL,—(ASLS—30A*L{ -+ 360A2L2—720)cos ALy] /A?

COS(),q] l’»h +)‘QZ l‘b +’1'313 143 )X’ ! COS(;“Q] lth _)“Clz ltb +/1613 ltb )X/ !
. €oS(Aq, lg, + gy lg, —Agslgs )X 2 €oS(Aq, lg, — gy lg, —Ags lgs )X
Caranas = sin(/ 11 1+/1 21 2+A 3l 3)x’ and &, . .= sin(. ll Li Zl 2+) 31 3)x’ (C35, C36)
“q1'q1 q2°q2 CERUE] q1°q1 q2°q2 “q3'q3
Sin(Aq, lg, + Aq,lg, — Aqs s )X’ Sin(Aq, lg; — gy lgy — Aqs 1gs )X’
COS()‘QI Llh +)'lh Llh +)“LJ3 Llh) ! 505()%11 Lth _;“Lh Llh +)“Q3 L‘h) !
W1 _ COS(’“Q] Lth +AQ2L£12 _;“431‘(13) and 2 _ COS(}LQ] Lth _;“112LQZ _;L(13L(I3) (C37 C38)
Yarazas = —sin(4q,Lq, +4q,Lg, +2g;Lg;) Yanara = —sin(4q, Lg, —Ag,Lg, + 24, Lgy) '
_Sin(;“fh th + ;“112 LQ2 _;“113 L‘h ) _Sin(;“th th _;“th LQ2 _;“th LQ3 )
Sin()"h Lﬂh +)“lh LQZ +)“Q3 LLB) ! Sin()“thl‘th _’IQZ qu +/1Q3 LQ3) !
1 _ Sln(/lthCh +;LQZ qu 7143 L‘h) and 2 _ Sin()‘ih L‘h 71‘12 LQ2 71“13 th) ((39 C40)
700020 =\ €0S(Aq, Lg, + AgyLay + AasLas) V410205 =\ c0s(2q, Ly — s Lay + 245 Las) :
—C0S(4q, Lq, +2q,Lq, — g Lgy) —C0S(4q,Lg, g, Lq, — g5 Lgs)
—COS(},q] L‘h +)"'-12 qu +;“'-13 LCI3) ! _COS()“Lh Lth _)“th Llh +;“LI3 Llh) !
a1 _ COS(}.(h th +)“QZ Lﬁh 7}“113 LCI3) and 52 _ COS()qu th 7)“612 L‘Iz 7)“613 L!h) (C41 C42)
/01.02.03 B Sin(/lthl‘fh +/lquqz +)‘qsL‘h) /ql'qz'qg B Sin(}“ih Llh 7)%]2[4)2 +)LQ3LQ3) '
—sin(4q, Lg, +2q,Lq,—Ag;Lg,) —sin(4q, Lg, —4g,Lq, = 24sLqs)
_Sin(j'fh LQI +J‘Q2L¢h +)"Q3LQ3) ! Sin(;“‘]l Llh _;‘QZLqZ +;“‘J3L113) !
~1 _ Sil’l(}ququ jL}"llquz 7)‘(131'()3) and ~1 _ 7Sin(}“ql LCh 7)“‘12[‘(12 7)“613[‘(13) (C43 C44)
Va2 = —C0S(4q,Lg, +2q,Lg, +Ag;Lg,) Varaza = €0S(Aq,Lg, —7g,Lg, + g Lgy) '
€0S(Aq,Lg, +2q,Lq, —2q; Lg5) —C0S(4q,Lg, —2g,Lg, — g5 Lg5)

_ 1 —2 1 2 — 1 2
5‘7%02-% = { éth)zﬂz fth,qz,qs } Ya1.q2.05 = { V410205 Var02.05 } and Vq1.q2.93 = { Y0025 701,205 } (C45-C47)
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N ~1 ~2 ~ ~1 ~2
Vql.qz,qa = { qulz,(h yql,Qz,(h } and yq,,qz,q3 = { /mmm /lthwh } (C48' C49)
P b e / AP1.P2.P3 b T. ,
Aql‘%q3 = A P {q1.0.q; X and Aq]‘qz = A (P1P3)(P2Sq, g,)dX (C50, C51)
A Ly = ’ g Ly TZ /
Aqyanas = /0 0 ndX and Al = /0 P&, dx (€52, C53)
Eqa = { C0S(Ag, lg, +4g,)X" €COS(Aq, lg, —Ag,)X SiN(Aq, lg, +4g,)X" SIN(Ag, lg, —Ag,)X' } (C54)
ko Gi23=mm’ Lo qiaz=mm
where qq, G, gz=m,n,m’,n’,bm’,bn’, lg,,, =4 by @123=n1", andlLg,,={ Ly, Gaz=nn .
], d123 = bn,bn/ 1, d1,23 = le,le/
Transformation matrices are defined as follows:
11 0O0O0O0O0O 1 -1 0 0 0 0 O O
He 000O0O1T1O0O0 H 0O 0 0 01 -1 0 O
0011000 0} /0o 01 -1 0 0 0 O
00 0 O0O0O0OT11 0O 0 0 0 0O 0 1 -1
1 -1 0 O 0O 0 0 o
- o 0o 0 0 -11 0 O A 11110000 o 11 00 (C55—C59)
/o o1 -1 0 0 0 oOof _00001111}’ _{0011}
0O 0 0 o 0 0 -1 1

A=diag[1 =1 1 -1 1 -1 1 -1], A=diag[-1 1 -1 1 -1 1 -1 1]
Ac=diag[1 1 -1 -1], As=diag[1 -1 1 -1]
As=diag[1 1 1 1] and Ag=diagl-1 1 1 -1] (C60—C65)
Gp=diag@,] and B, =diag(B,] (C66, C67)
Xp:{cos(ipr) sin(/lpr)} (C68)
where
Lpx, p=mm’
":{L,,y, p—nn (C69)
Ly 1 . ) o _
/ Cc0S(A1X+ B1)cos(AXx+ By)dx = j[sm(AL,,+B)—smB+sm(ALb+B)—sm 1
0
L
/ ’ sin(A1 X+ B1)cos(A,x+ B;)dx = —%[cos(ALb +B)—cosB+cos(AL, +B)—cosB]
0
L
/ ’ sin(A1X+B1)sin(A;x + By )dx = — % [sin(ALy, +B)—sinB—sin(AL, + B)+sinB] (C70-C72)
0

where A1, A,, By, and B, are constants, and A=A; +A,,A =A;—A,, B=B;+B,, and B=B;—B;.
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