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The collective dynamic response of microbeam arrays is governed by nonlinear effects,

which have not yet been fully investigated and understood. This work employs a

nonlinear continuum-based model in order to investigate the nonlinear dynamic

behavior of an array of N nonlinearly coupled micro-electromechanical beams that are

one-to-one internal resonance regime, which is generated for low or zero DC voltages.

The dynamic equations of motion of a two-element system are solved analytically using

the asymptotic multiple-scales method for the weakly nonlinear system. Analytically

obtained results are verified numerically and complemented by a numerical analysis of

a three-beam array. The dynamic responses of the two- and three-beam systems reveal

coexisting periodic and aperiodic solutions. The stability analysis enables construction

of a detailed bifurcation structure, which reveals coexisting stable periodic and

aperiodic solutions. For zero DC voltage only quasi-periodic and no evidence for the

existence of chaotic solutions are observed. This study of small size microbeam arrays

yields design criteria, complements the understanding of nonlinear nearest-neighbor

interactions, and sheds light on the fundamental understanding of the collective

behavior of finite-size arrays.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Micro- and nano-resonators are small flexible electromechanical structures, such as plates, beams and wires that are
excited by external electrodynamic or magnetic fields. Arrays of such resonators [1–4] consist of a multitude of coupled
elements in configurations where their collective behavior enables a striking enhancement that is not attainable with the
individual element performance. In the past decade, microbeam arrays have been successfully used as storage devices [5],
as micro-cantilever biosensors [6,7], as opto-mechanical signal processing devices [8], for fast mapping of surfaces via
atomic force microscopy [9–11], and recently for protein printing [12]. The dynamic response of these arrays is governed
by nonlinear effects [8,1,13–16] which directly influence their performance, but have not yet been fully investigated and
understood. The primary focus of microbeam array investigation has been experimental [17,8,12]. To date, documented
theoretical models consist of lumped-mass, reduced-order and finite-element approaches. While lumped-mass models
[18,14,19] are useful for a qualitative understanding of the system response, it does not resolve the nonlinear spatio-
temporal interaction of the individual elements in the array. Finite-element models [9,20], to the other extreme with
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respect to complexity, while adequate for dynamic simulations, are computationally expensive, and do not readily reveal
the system’s bifurcation structure governed by coexisting stable and unstable solutions. The third approach is that of a
reduced-order modeling [21,22] which has gained significant attention for single-element micro-electromechanical
systems (MEMS), yet leaves an open amount of fundamental questions when applied to MEMS arrays. While the dynamic
behavior of single-resonator MEMS has been studied extensively in literature [23–29],little is known so far for array
devices [30,21,8,18] and the collective behavior of interacting members. To the best of our knowledge, no published work
to date systematically investigates the complex bifurcation structure of nonlinear MEMS arrays.

Buks and Roukes (BR) [8] employed optical diffraction to study the mechanical properties of an electrically tunable
array of suspended doubly-clamped beams which were parametrically excited at primary resonance. The experiments
depicted complex multi-valued periodic response for a bias DC voltage range from 0 to 20 V and a very small periodic AC
input of 50 mV. Motivated by their work, Lifshitz and Cross (LC) [18] proposed a set of coupled lumped-mass Duffing-type
equations of motion for an array excited at its principal parametric resonance and were able to qualitatively explain some
of the documented experimental phenomena. Their analytical steady-state asymptotic analysis revealed coexisting stable
and unstable periodic solutions for a large bias DC-voltage and a very small AC-voltage excitation. The qualitative
agreement between LC and BR includes several abrupt drops in the large size array response as the frequency was swept
upwards and downwards.

We note that the data acquisition in BR’s experiment [8] did not include a time series but a mean optical measure of
intensity that was sampled via a spectrum analyzer. Thus, there is no evaluation of possible coexisting bistable solution or
of any possible quasi-periodic or chaotic solution of individual elements in the array. Furthermore, while the analysis of the
lumped-mass Duffing array included several coexisting stable and unstable periodic solutions [18], the asymptotic analysis
did not reveal, in their slowly varying evolution equations, the existence of any Hopf-related bifurcations that would imply
the loss of periodicity culminating with quasi-periodic and chaotic solutions, that have been demonstrated in literature for
similar coupled Duffing-like systems [31,32]. However, in a recently performed related study of two coupled nanobeams
that were externally excited, Karabalin et al. [33] demonstrated experimentally what appeared to be chaotic like dynamics
portrayed by a wide banded spectra and a dense phase plane. They were able to identify parameters of a lumped-mass
model based on the equations derived by LC and numerically obtain an excellent comparison with experiment.

In the present work, a dynamical analysis for zero DC voltage is carried out, which reveals an excitation of the system in
its one-to-one internal resonance. Investigations are based on a continuum-based nonlinear modal dynamical system. The
emphasis is laid on studying the bifurcation structure of small-size arrays, identifying solution types and investigating
their stability according to the magnitude of design parameters, such as the grating (that defines the distance between the
array elements [34]), a limiting value of input voltage (that will drive two adjacent beams together), and the relationship
between linear and nonlinear elastic coefficients (which are not independent [32]). Although the analysis of the present
model does not allow for a quantitative comparison to previous experimentally observed results by BR [8], it sheds light on
the fundamental understanding of the array behavior and provides significant insights regarding the implementation of
future experiments.

The manuscript is organized as follows: In Section 2.1 we formulate the initial-boundary-value problem (IBVP) for the
array including both localized nonlinear electrodynamic actuation and dissipation. In the same section the IBVP is reduced
to a modal dynamical system via a Galerkin approach which then is investigated analytically in Section 3 employing
multiple-scale asymptotics in the vicinity of the system principal parametric resonance. Section 3 also includes stability
investigations for the single- and two-beam systems. Numerical validations of the single- and two-beam systems are
presented in Section 4.1, followed by numerical simulations of distinct quasi-periodic solutions of the two-beam system in
Section 4.2. Section 4.3 presents numerical results of the three-beam system including its frequency response which
incorporates periodic as well as distinct aperiodic solutions. This three-element analysis is carried out numerically by
means of a numerical continuation method [35,36]. We summarize our findings in Section 5.
2. Model

2.1. Initial-boundary-value problem

We consider an array of N clamped–clamped silicon beams (see Fig. 1). All microbeams (length L, width B, height H,
respectively) are assumed to have identical material properties. The equations of motion for a single clamped–clamped
Fig. 1. Definition sketch of the micromechanical array; actuation and dissipative forces applied at midspan of each beam.
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nonlinear beam can be found in literature, [32]. We assume a linear stress–strain law and that plane sections remain in the
plane. Unlike in BR’s experiment, our model considers the electrodynamic interactions as concentrated loads at midspan of
each microbeam, which is proportional to the inverse second power of the relative displacement, [34]. Similar to the
actuation, we introduce electrodynamical dissipation at midspan of each resonator. Note that the localized parallel plate
model employed here is valid for all odd modes of the array elements. The nondimensional field equation of an individual
resonator in an array of N beams is

wntt ¼ Qnðwn;wnþ1;wn�1;wnt ;wnþ1t ;wn�1t ; tÞ�RnðwnÞ�Snðwn;wnt Þ; (1)

where the length and the time scales are the length of the beam L and the standard frequency o2
s ¼ EI=ðRAL4

Þ, respectively.
The actuation term (Qn) is composed of the electrodynamic actuation (Qn

E), which is proportional to the quadratic ratio
between the input voltage and the relative grating of the array [24,34], and the nonlinear electrodynamic damping force
(Qn

D). Qn
D is deduced from a quadratic Rayleigh dissipation function [37], which is motivated by experimental observations

[8], that reported on a sharp increase in damping with an increase in input voltage. Thus, we assume that damping occurs
predominantly as a function of the bias voltage. The restoring force (Rn) is that of a standard Euler–Bernoulli beam with
immovable boundary conditions that includes the effect of residual stresses and nonlinear membrane stiffness [32]. We
consider here both, a linear viscous and a Kelvin–Voigt visco-elastic damping model [38,39]. The detailed derivations of the
dimensional set of equations of motion are presented in [22]. The elastic restoring force Rn, the structural damping force Sn,
the generalized dissipation force Qn

D, and the electrodynamic excitation Qn
E for each beam are

RnðwnÞ ¼wnssssþwnss k1�k3

Z 1

0
w2

ns
ds

" #
; (2)

Snðwn;wnt Þ ¼ m̂1wntþ m̂2wnsssst ; (3)

QD
n ðwn;wnþ1;wn�1;wnt ;wnþ1t ;wn�1t Þ ¼ d s�

1

2

� �
m̂3 �

ðwnþ1�wnÞ
2
ðwðnþ1Þt�wnt Þ

ðgþwnþ1�wnÞ
2

�
ðwn�wn�1Þ

2
ðwnt�wðn�1Þt Þ

ðgþwn�wn�1Þ
2

" #
; (4)

QE
n ðwn;wnþ1;wn�1; tÞ ¼ d s�

1

2

� �
ĜV2

ACcos2Ôt � 1

ðgþwnþ1�wnÞ
2
�

1

ðgþwn�wn�1Þ
2

" #
: (5)

Subscripts in (1)–(5) denote partial derivatives with respect to scaled time t and the coordinate s along the length of the
beam. The nondimensional parameters in (2)–(5) are

m̂1 ¼D1=ðRAosÞ, m̂2 ¼D2=ðRAosL
4Þ, m̂3 ¼D3=ðRAosL

2Þ;

k1 ¼N0L2=ðEIÞ, k3 ¼ 6ðL=BÞ2, g¼ g=L;

Ĝ ¼ 6e0L=ðEBH2
Þ, Ô ¼OAC=os: (6)

e0, E, I, r, A, g, N0, Dj for j=[1 : :3], and OAC are the dimensional quantities: electric constant (vacuum permittivity), Young’s
modulus, moment of inertia, density, cross sectional area, array grating (gap between resonators), pretensional force,
damping coefficients, and excitation frequency, respectively. The nondimensional boundary conditions are wnð0,tÞ ¼ 0,
wnð1,tÞ ¼ 0 and wns ð0,tÞ ¼ 0, wns ð1,tÞ ¼ 0 while the first and last beams of the array are prevented from undergoing any
motions, i.e. w0ðs,tÞ ¼wNþ1ðs,tÞ ¼ 0.
2.2. Modal dynamical system

The dynamic response can be approximated in terms of a linear combination of a finite number of orthonormal spatial
basis functions with time dependent amplitudes. Thus, the deflections of each microbeam are expressed as the sum of
spatial modeshapes with time dependent amplitudes, wnðs,tÞ ¼

P
ðmÞ qn,mðtÞFmðsÞ, of which the modeshapes FmðsÞ, which

are the eigenmodes associated to the linear undamped homogeneous system of (1), satisfy the b.c. exactly [40,41]. Due to
maintained symmetry of the parallel plate model a first-mode discretization captures the nonlinear behavior sufficiently. A
brief discussion on this assumption is added in Appendix A. The separation ansatz is substituted into Eqs. (1)–(5) and
employing Galerkin’s method by multiplication of F and integration over the length of the beam (from 0 to 1) yields

J1qn;ttþðJ4þk1J2Þqn�k3J3q3
nþðm̂1J1þ m̂2J4Þqn;t ¼ m̂3F

4
�
ðqnþ1�qnÞ

2
ðqnþ1;t�qn;tÞ

ðgþqnþ1F�qnFÞ2
�
ðqn�qn�1Þ

2
ðqn;t�qn�1;tÞ

ðgþqnF�qn�1FÞ2

" #

þFĜV2
ACcos2Ôt 1

ðgþqnþ1F�qnFÞ2
�

1

ðgþqnF�qn�1FÞ2

" #
; (7)
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with F ¼Fð1=2Þ and

J1 ¼

Z 1

0
F2 ds; J2 ¼

Z 1

0
FFss ds;

J3 ¼

Z 1

0
FFss

Z 1

0
ðFsÞ

2 ds

" #
ds; J4 ¼

Z 1

0
FFssss ds¼ z4

1J1:

We rescale the resulting ordinary differential equations by xn ¼Fqn=g and t� ¼ z2
1t (z1 � 4:73 for k1 ¼ 0) to yield the final

modal dynamical system:

€xnþaxnþbx3
nþmL

_xn� ~mNL

ðxnþ1�xnÞ
2
ð _xnþ1� _xnÞ

ð1þxnþ1�xnÞ
2
�
ðxn�xn�1Þ

2
ð _xn� _xn�1Þ

ð1þxn�xn�1Þ
2

" #
¼ Z2

ACcos2Ot�
1

ð1þxnþ1�xnÞ
2
�

1

ð1þxn�xn�1Þ
2

" #
;

(8)

whereas parameters are defined as

a¼ 1�
k1jJ2j

J1z4
1

; b¼
k3g2

z4
1F

2

jJ3j

J1
;

mL ¼
m̂1

z2
1

þ
m̂2

z2
1

J4

J1
; ~mNL ¼

m̂3F
2

J1z2
1

;

Z2
AC ¼ Ĝ

�
V2

AC ; Ĝ
�
¼

ĜF
2

g3J1z4
1

; O¼
Ô
z2

1

:

Derivatives in (8) are with respect to t�. The gap parameter g appears in the parameters of cubic stiffness b and excitation
ZAC . The actuation term Z2

ACcos2Ot� in (8) can be rewritten as Z2
AC ð1þcosð2Ot�ÞÞ=2 of which the harmonic part reveals the

parametric excitation. Thus, the principal and fundamental parametric resonance frequencies occur at O¼
ffiffiffi
a
p

and
O¼

ffiffiffi
a
p

=2, respectively. We note that the dynamical system in (8) readily reduces to the coupled Duffing-like system
proposed by LC [18] with the IBVP derivation revealing coupling between parameters.

3. Asymptotic analysis

3.1. Single-beam system

Considerable work has been done for the single-beam system under the same [41] or similar [42] electrode
configuration as studied in this work. However, we include the analysis of the single-beam system for the sake of
completion. The equations of motion for the single-beam system, given in (8), reduce to

€xþaxþbx3þmL
_xþmNL

x2ð1þx2Þ

ð1�x2Þ
2
_x ¼

1

2
Z2ð1þcos2Ot�Þ

x

ð1�x2Þ
2

(9)

in which, and henceforth, the following parameters are redefined to mNL ¼ 2 ~mNL and Z¼ 2ZAC . Before carrying out the
asymptotic multiple-scales method, (9) is pre-multiplied by the denominator of the forcing term. The dynamical response
of the beam is represented by three different time scales that are distinguished by the small parameter e. Scales and small
parameters for the multiple-scales technique have to be chosen according to parameter and resonance regions of the
system. Considering the dynamical analysis carried out in the one-to-one internal resonance region (small to zero DC
voltage), the alternating AC-voltage parameter can take on larger values. However, it is still assumed to be a small
parameter of order e and thus, Z¼ eZ. Furthermore, the linear damping coefficients in MEMS devises (in general) are
usually low due to large quality factors. Therefore also the linear damping parameter is treated as a small parameter,
mL ¼ e2mL. Due to low damping and excitation the solution can be decomposed into fast- and slow-varying components.
The contribution of nonlinear terms in (9), which are assumed to be small, causes a deviation from the solution of the
purely linear problem. This deviation is expressed by a variation of the amplitude and phase based on the slow time scale
T2 ¼ e2t�. The displacement is extended into a power series in e: x¼

P3
j ¼ 1 ejxjðT0,T1,T2, . . .ÞþOðe4Þ. The coefficients of each

order of e are collected and form the following set of equations:

Oðe1Þ : D2
0x1þo2x1 ¼ 0; (10)

Oðe2Þ : D2
0x2þo2x2 ¼�2D0D1x1; (11)

Oðe3Þ : D2
0x3þo2x3 ¼�2D0D1x2�D2

1x1�2D0D2x1�bx3
1�mLD0x1�mNLx2

1D0x1þ2x2
1ðD

2
0x1þo2x1Þþ

1

2
Z2
ð1þcosð2Ot�ÞÞx1

(12)
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with o2 ¼ a. The derivatives Dm for m=[0 : :2] are defined as Dm ¼ q=qTm. The solution of the Oðe1Þ equation is

x1 ¼ AðT1; T2ÞexpðioT0ÞþAðT1; T2Þexpð�ioT0Þ: (13)

Substitution of (13) into (11) leads to D1A(T1,T2)=0 which means that A is independent of the time scale T1. The particular
solution of (11) vanishes and the homogeneous solution is identical to the solution of (10), i.e. x2=x1. Substitutions of
solutions x1 and x2 into (12) with D1x1=D1x2=0 yield

D2
0x3þo2x3 ¼ �ioð2D2AþmLAþmNLA2AÞ�3bA2Aþ

1

2
Z2Aþ

1

4
Z2Aexpð2isT1Þ

� �
expðioT0Þ

þ �bA3�iomNLA3þ
1

4
Z2Aexpð2isT1Þ

� �
expð3ioT0Þþcc:; (14)

where the detuning is e2s¼O�o and cc. represents the conjugate complex part of the above presented terms. Elimination
of secular terms in (14) yields

�ioð2D2AþmLAþmNLA2AÞ�3bA2Aþ
1

2
Z2Aþ

1

4
Z2Aexpð2isT1Þ ¼ 0: (15)

Substituting the polar coordinates A¼ aexpðiyÞ=2 into (15) and separating imaginary and real terms results in the following
slowly varying evolution equations

a0 ¼
1

2
dexsin2c�zL

� �
a�zNLa3; (16)

ac0 ¼
1

2
dexcos2cþsþdex

� �
a�

1

2
d3a3; (17)

with c¼ 2sT2�2y, zL ¼ mL=2, zNL ¼ mNL=8, dex ¼ Z2=ð4oÞ and d3 ¼ 3b=ð4oÞ. Derivatives in (16) and (17) are with respect
to T2.

In steady-state operation any changes with respect to time vanish, i.e. a
0

and c0 in (16) and (17) are equal to zero. One
solution of (16) and (17) is the trivial solution a=0. In order to find the solutions for the nontrivial case the harmonic terms
in (16) and (17) are eliminated by solving the equations of the same, respectively, then squaring each of the equation and
adding them, which results in

d2
ex ¼ ð2zLþ2zNLa2Þ

2
þðd3a2�2s�2dexÞ

2: (18)

Multiplying (18) by e4 and re-substituting unscaled parameters and detuning e2s¼O�o yields the frequency response
function ðea¼ eaðOÞÞ:

O1;2 ¼
1

2
d3e2a2�

Z2

4o7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z4

16o2
� mLþ

mNL

4
e2a2

� �2
r

þo: (19)

Detailed steps for deriving (19) from (18) can be found in Appendix B. Fig. 2 depicts the hardening frequency response
characteristic for the given set of parameters a¼ 2:8982, b¼ 11:5091, Q=500, mNL ¼ 0:6, and Z¼ 0:1636, which corresponds
to the turning point of the m2=0 curve in the stability diagram in Fig. 3b (marked by the dashed line). Although much
Fig. 2. Frequency response characteristic of the single-beam system; a¼ 2:8982, b¼ 11:5091, Q=500, Z¼ 0:1636, thick lines: stable, thin lines: unstable,

solid lines: mNL ¼ 0:6, dashed lines: mNL ¼ 0, triangles: numerical verifications.
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higher quality factors can occur in MEMS devices, a quality factor of Q=500 is chosen for all simulations in this paper in
order to allow for a relatively fast vanishing of transient oscillations, especially for quasi- and aperiodic vibration
responses. For the nonlinear damping parameter equal to zero, the curves do not close and thus amplitudes become
infinite. The stability of the nontrivial steady-state solutions is determined by analyzing the eigenvalue problem of the
Jacobian of the system (Eqs. (16) and (17)) for mNL ¼ 0. The characteristic equation is l2

þm1lþm2 ¼ 0 with m1 ¼ mL40
and m2 ¼ ea2d3ð�2ðO�oÞ�2Z2=oþd3ea2Þ. The trivial solution is stable in regions I and III (+IV), see Fig. 2. The upper
branch in Fig. 2, presented by the solid line, is stable while the lower (dashed line) is unstable. Fig. 3 presents the stability
criteria of the nontrivial steady-state solutions of the single-beam system for mNL ¼ 0. The horizontal grey dashed-dashed
line represents the AC-value for which the response in Fig. 2 is portrayed.

There exists a critical excitation value (Z- threshold) for which the amplitude square a2 is equal to zero. Below this value
there is no solution other than the trivial solution. This Z- value is presented by the dashed-dotted lines in Fig. 3. The solid
(Fig. 3a) and the dashed lines (Fig. 3b) present the critical lines m2=0, respectively. They are identical to the threshold
beyond which the amplitudes become negative.

3.2. Two-beam system

The equations of motion for a two-beam array in (8) reduce to

€x1þax1þbx3
1þmL

_x1� ~mNL

ðx2�x1Þ
2
ð _x2� _x1Þ

ð1þx2�x1Þ
2
�

x2
1
_x1

ð1þx1Þ
2

" #
¼

1

2
Z2

ACð1þcos2Ot�Þ
1

ð1þx2�x1Þ
2
�

1

ð1þx1Þ
2

" #
; (20)

€x2þax2þbx3
2þmL

_x2� ~mNL

ð�x2Þ
2
ð� _x2Þ

ð1�x2Þ
2
�
ðx2�x1Þ

2
ð _x2� _x1Þ

ð1þx2�x1Þ
2

" #
¼

1

2
Z2

AC ð1þcos2Ot�Þ
1

ð1�x2Þ
2
�

1

ð1þx2�x1Þ
2

" #
: (21)

In analogy to the single-beam system Eqs. (20) and (21) are pre-multiplied by the denominator of the forcing terms,
respectively. The method of multiple scales is applied again, whereas the displacements for the two beams are
xn ¼

P3
j ¼ 1 ejxnjðT0,T1,T2, . . .ÞþOðe4Þ. The same scaling for the linear damping coefficient and the AC-voltage parameter as in

the case of the single-beam system is applied. Substitution of the solution form, including the scaling of the AC-parameter
and the linear damping coefficient and then collecting the terms of different orders in e, results in the following set of
equations:

Oðe1Þ : D2
0xn1þo2xn1 ¼ 0; (22)

Oðe2Þ : D2
0xn2þo2xn2 ¼ fn2; (23)

Oðe3Þ : D2
0xn3þo2xn3 ¼ fn3; (24)
Fig. 3. Stability diagram of the nontrivial solution of the single-beam system; (a) stability regions for upper branch, (b) stability regions for lower branch;

dash-dotted lines: AC-threshold, grey dashed lines: marker for Z¼ 0:1636 (Fig. 2).
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with o2 ¼ a and

fn2 ¼�2D0D1xn1�2xm1ðD
2
0xn1þaxn1Þ; (25)

fn3 ¼�D2
1xn1�2D0D2xn1�2D0D1xn2�bx3

n1�mLD0xn1þð�1Þn2xm1ð2D0D1x11þD2
0xn2þaxn2Þ

þð�x2
m1þ2x2

n1�2x11x21þð�1Þn2xm2Þ � ðD
2
0xn1þaxn1Þ�ð�1ÞnmNLð�x2

m1ðD0x11�D0x21Þ

þ2x11x21ðD0x11�D0x21Þþð�1Þnx2
n1ð2D0xn1�D0xm1ÞÞþ

1

2
Z2
ð1þcos2Ot�Þ � ð2xn1�xm1Þ; (26)

where m=�1n + 1+n. Note that the occurrences of the terms containing D2
0xn1þaxn1 (n=[1,2]), respectively, on the right-

hand side of Eqs. (23) and (24) have their origin in the pre-multiplication of the denominators of the forcing terms in Eqs.
(20) and (21). Such terms exhibit the terms involved in the same technique but, instead of a pre-multiplication of the
denominator, having expanded the forcing terms into a Taylor series.

A single mode representation of the solution

xn1 ¼ AnðT1; T2ÞexpðioT0ÞþAnðT1; T2Þexpð�ioT0Þ (27)

is chosen, which upon substitution into (23) leads to

D2
0xn2þo2xn2 ¼�2ioD1AnðT1; T2ÞexpðioT0Þþcc: (28)

The only secular terms in (28) are �2ioD1An for n=[1,2], respectively. All other (nonsecular) terms cancel out. D1An=0 in
(28) mean that the An(T1,T2) are independent of the time scale T1 and thus terms in (24) containing D1

n vanish. Furthermore,
the solution of (23) is equal to the solution of (22), and thus xn 2=xn 1. The detuning remains the same as in the case of the
single-beam system. Substitutions of solutions xn 1 and xn 2 into (24) and elimination of secular terms yield the following
slowly varying complex evolution equations:

�2ioD2A1þ
1

2
iomNLA2

1A2�
1

4
Z2A2� mLio�1

2
Z2

� �
A1þ

1

4
Z2expði2sT2ÞA1þmNLioA1A1A2þ

1

2
mNLioA2

2A2�mNLioA1A2A2

�
1

2
mNLioA2

2A1�ð3bþmNLioÞA2
1A1�

1

8
Z2expði2sT2ÞA2 ¼ 0 (29)

and

�2ioD2A2�
1

2
iomNLA2

1A2�
1

4
Z2A1� mLio�1

2
Z2

� �
A2þ

1

4
Z2expði2sT2ÞA2þmNLioA1A2A2þ

1

2
mNLioA2

2A1�mNLioA1A2A1

þ
1

2
mNLioA2

1A1�ð3bþmNLioÞA2
2A2�

1

8
Z2expði2sT2ÞA1 ¼ 0: (30)

Substituting the polar coordinates An ¼ anexpðiynÞ=2 into Eqs. (29) and (30) and separating imaginary and real terms yields
the set of slowly varying evolution equations

a01 ¼ zNL �a3
1þ

1

2
þcosc1

� �
a2

1a2� 1þ
1

2
cosc1

� �
a1a2

2þ
1

2
cosc1 a3

2

� �
� zLþ

1

2
dexsinðc1�c2Þ

� �
a1þ

1

2
dex sinc1�

1

2
sinc2

� �
a2;

(31)

a1ðc
0

1�c
0

2Þ ¼ d3 a3
1�zNLsinc1½2a2

1a2�a1a2
2þa3

2��2 dex 1þ
1

2
cosðc1�c2Þ

� �
þs

� �
a1þdex cosc1þ

1

2
cosc2

� �
a2; (32)

a02 ¼ zNL
1

2
cosc1a3

1� 1þ
1

2
cosc1

� �
a2

1a2þ
1

2
þcosc1

� �
a1a2

2�a3
2

� �
�

1

2
dex sinc1þ

1

2
sinc2

� �
a1þ �zLþ

1

2
dexsinðc1þc2Þ

� �
a2;

(33)

a2ðc
0

1þc
0

2Þ ¼�zNLsinc1½a
3
1�a2

1a2þ2a1a2
2��dex cosc1þ

1

2
cosc2

� �
a1�d3a3

2þ2 dex 1þ
1

2
cosðc1þc2Þ

� �
þs

� �
a2; (34)

where c1 ¼ y1�y2 and c2 ¼ 2sT2�y1�y2 and d3, dex, zL and zNL as defined previously.
Fixing one of the beams by setting either a1 or a2 equal to zero, results in a set of two equations which are identical to the set of

equations of the single-beam system (cf. (16) and (17)). Steady state is deduced from Eqs. (31)–(34) by setting a
0

n and c0n (n=1,2)
equal to zero. There exist three nontrivial solutions for the two-beam system in addition to the trivial solution (a1=a2=0):

(i) The first nontrivial solution is derived from the case when both beams vibrate in-phase and with same amplitudes,
a1=a2. The phase angle c1 ¼ y1�y2 becomes 0þ2kp (k is an integer). a and c correspond to either of the beams and thus
denote an and c2 ¼ 2sT2�2yn. a1=a2=a satisfies Eqs. (31)–(34) along with

sinc1 ¼ 0; cosc1 ¼ 1;

sinc2 ¼ 2
zNLa2þ2zL

dex
; cosc2 ¼ 2

d3a2�2s�dex

dex
:
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Substitution of this solution into (31) results in the amplitude–frequency relationship for the in-phase (IP) case

d2
ex ¼ ð4zLþ2zNLa2Þ

2
þð2d3a2�4s�2dexÞ

2: (35)
Fig. 4. Frequency response characteristics for the two-beam system; dashed lines: OOP (x1=�x2), solid lines: IP (x1=x2), dash-dotted lines: IP ðx1ax2Þ;

a¼ 2:8982, b¼ 11:5091, Q=500, mNL ¼ 2:4; (a) Z¼ 0:1831, (b) Z¼ 0:2092, (c) Z¼ 0:2171, (d) Z¼ 0:3138.
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(ii) The second steady-state solution is deduced from the case when both beams vibrate with the same amplitude but
out-of-phase. The phase angle c1 ¼ y1�y2 then becomes pþ2kp. This along with

a1 ¼ a2 ¼ a; sinc1 ¼ 0; cosc1 ¼�1;

sinc2 ¼�
2

3

5zNLa2þ2zL

dex
; cosc2 ¼�

2

3

d3a2�2s�3dex

dex

satisfies Eqs. (31)–(34). Substitution of this solution into (31) results in the amplitude–frequency relationship for the out-
of-phase (OOP) case

9d2
ex ¼ ð4zLþ10zNLa2Þ

2
þð2d3a2�4s�6dexÞ

2: (36)

(iii) The third steady-state solution is found by solving the algebraic set of equations (deduced from Eqs. (31)–(34))
numerically. This solution incorporates unequal amplitudes ða1aa2Þ and corresponds to an in-phase mode.

The IP (35) and OOP (36) solutions are biquadratic equations in a, respectively. The condition for which the amplitude
square, a2, is greater than zero is determined from solutions (35) and (36), respectively, by differentiating the same
with respect to s and setting da=ds equal to zero. Substituting the local extremum sE into (35) and (36), and solving
Fig. 5. Frequency response characteristic for the two-beam system; a¼ 2:8982, b¼ 11:5091, Q=500, mNL ¼ 0; (a) Z¼ 0:2354, (b) Z¼ 0:3138; bold black

lines: stable, thin grey lines: unstable, markers denote numerical simulations, hollow: periodic response, solid: quasi-periodic response, diamonds and

stars: IP, triangles: OOP; solutions: (0) trivial (indicated but not explicitly shown), (1), (2) OOP, (3), (4) and (5), (6) IP.
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for a2 yields

a2
minZ

dex�4zL

2z3
ðIPÞ and (37)

a2
minZ

3dex�4zL

10z3
ðOOPÞ: (38)

A step-by-step derivation of (37) and (38) can be found in Appendix C. Thus, (37) and (38) yield the conditions for the lower
bounds of the AC-voltage:

ZZ

ffiffiffiffi
8

Q

s
o ðIPÞ and (39)
Fig. 6. Stability map for the solution branches of the two-beam system (0)–(5) (see Fig. 5); bold solid lines and bold black dots: m4=0, bold dash-dotted

lines: AC-threshold for existing solutions, black dashed line: m3=0, grey dotted lines and grey bold dots: Hopf criteria D3 ¼m3ðm1m2�m0m3Þ�m2
1m4 ¼ 0,

shaded area: Hopf isle (D3 o0), grey dashed lines: markers for Z¼ 0:2354 and 0.3138.
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ZZ

ffiffiffiffiffiffiffi
8

3Q

s
o ðOOPÞ: (40)

For a Q-factor of Q=500 AC-thresholds obtained from (39) and (40) are Z¼ 0:2153 (IP) and Z¼ 0:1243 (OOP), respectively.
The AC-threshold of the solution for which the two beams vibrate in-phase with unequal amplitudes is determined
numerically to be Z¼ 0:1935.

Fig. 4 presents all three nontrivial steady-state solutions for the given set of parameters a¼ 2:8982, b¼ 11:5091, Q=500,
mNL ¼ 2:4, and four different AC-voltage values. Fig. 4a shows the frequency response of the two-beam system for an
AC-value above the OOP-mode and below the IP-mode thresholds ð0:1243oZo0:1935Þ and thus, the two IP solutions do
not appear. The dynamic response in Fig. 4b is plotted for an AC-voltage parameter between the two IP-mode thresholds
ð0:1935oZo0:2153Þ and thus, the IP solution with unequal amplitudes exists while the other with equal amplitudes does
Fig. 7. Simulation in region II of Fig. 5b (O¼ 0:99o); (a) time series, solid line: x1, dashed line: x2, (b) phase plane with Poincaré points, solid line: _x12x1-

plane, dashed line: _x22x2- plane, triangles: Poincaré points.

Fig. 8. Simulation in region IV of Fig. 5b (o¼ 0:995o); (a) time series, solid line: x1, dashed line: x2 (b) phase plane with Poincaré points, solid line:
_x12x1- plane, dashed line: _x22x2- plane (identical and thus invisible), diamonds: Poincaré points.
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not. In Fig. 4c and d, which are plotted for AC-values above all thresholds, all solutions, OOP and two IP, exist. Note that up
to another critical AC-value, the IP solution with unequal amplitudes includes two separate closed branches. Only for
values of Z¼ 0:2236 and above the characteristic curves are joined to yield continuous branches. Fig. 5 depicts the three
steady-state solutions for a¼ 2:8982, b¼ 11:5091, Q=500, mNL ¼ 0 and (a) Z¼ 0:2354 and (b) Z¼ 0:3138, including the OOP
(branches (1) and (2)), and the two IP solutions (branches (3), (4) and (5), (6)).

In the following we investigate in the stability of the solutions in each region of Fig. 5. Stability analysis is carried
out for the system with zero nonlinear damping ðmNL ¼ 0Þ. The nonlinear damping closes the curves and thus sets a bound
to the maximum amplitudes. However, in the bifurcation domain the influence of the nonlinear damping with respect
to the bifurcation structure occurs to be small. Zero nonlinear damping allows for a formulation of the stability criteria in
closed form. Eqs. (31)–(34) are rewritten into the form x0 ¼ f ðxÞ with x¼ ½a1,c1,a2,c2�

T. Stability analysis of the trivial
steady-state solution is done using the Cartesian form of Eqs. (31)–(34), whereas stability of the nontrivial steady-state
solutions make use of the polar form. The eigenvalue problem for the Jacobian of the system is analyzed using the quartic
characteristic equation l4

þm1l
3
þm2l

2
þm3lþm4 ¼ 0, where m1 is always greater than zero for all solution branches

throughout all regions. Fig. 6 depicts the bifurcation characteristics of the AC-voltage parameter Z over the scaled
Fig. 9. Simulation in region VII of Fig. 5b (o¼ 1:01o); (a) time series, solid line: x1, dashed line: x2 (b) phase plane with Poincaré points, solid line: _x12x1-

plane, dashed line: _x22x2- plane (identical and thus invisible), diamonds: Poincaré points.

Fig. 10. Simulation in region VII of Fig. 5a (O¼ 0:9988o); (a) time series, (b) Poincaré points.
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excitation frequency O=o. For clarity, only distinct lines (in most cases m4=0) are plotted in order to mark the
borders between stable and unstable regions. Other distinct lines like m3=0 or D3 ¼m3ðm1m2�m0m3Þ�m2

1m4 ¼ 0
(criteria for Hopf bifurcation), unless relevant for stability, are not depicted. m4=0-lines denote a zero eigenvalue
ðlj ¼ 0Þ and thus, determine pitchfork bifurcation points with respect to a specific AC-voltage value. In reviewing(39)
and (40), there exists a critical AC-voltage value for each solution for which the amplitude square, an

2, is equal to zero.
This AC-value is represented for each solution by the bold dashed-dotted lines in Fig. 6, respectively. The stability of
each solution branch and AC-voltage parameter is investigated by following the grey thin dashed lines in the bifurcation
diagrams Fig. 6(0)–(5), respectively. (Fig. 6(0) determines the stability of the trivial solution, which is also indicated by (0)
in Fig. 5 but not shown.)

In region I of Fig. 5a there exists one stable trivial solution. In region II (beyond the pitchfork bifurcation) there are two
solution branches, the unstable trivial and the stable OOP solution (1) (compare with Fig. 6-1). At the transition from
regions II to III, another pitchfork bifurcation point occurs. The unstable trivial solution becomes stable again and an
additional unstable branch (2) (which belongs to the OOP-mode) bifurcates from there. The stability of branches (1) and (2)
remain unchanged throughout all remaining regions (see Fig. 5a regions I–IX and III–IX, respectively). In region IV the
trivial solution is unstable and, in addition to the previous three solutions, a fourth solution exists which corresponds to
Fig. 11. Simulation in region VII of Fig. 5a (O¼ 0:9994o); (a) time series, (b) Poincaré points.

Fig. 12. Simulation in region VIII of Fig. 5a (O¼o); (a) time series, (b) Poincaré points.
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the IP mode. Fig. 6-3 reveals that this solution is stable until it loses stability at the transition to region V. Another pitchfork
bifurcation point occurs at which the stable IP solution ((3) in region IV) loses stability and two stable branches (mk40 for
k=[1: :4], D340) emerge ((5) in region V). The trivial solution is unstable in region V. In region VI an additional solution
branch (4) appears corresponding to the unstable IP solution. The stability diagram (Fig. 5-4) reveals its instability
throughout the remains of all regions. The trivial solution is stable and remains stable throughout region IX. The transition
point along solution branch (5) from regions VI to VII is a Hopf bifurcation point, i.e. a pure imaginary set of eigenvalues
(lj ¼ 7 iz) exist. It corresponds to that point in Fig. 6-5, when following the dashed line of Z¼ 0:2354, of entering the
shaded area (Hopf isle) for D3o0 8mk40. Stability analysis of this IP-mode solution is determined from Fig. 6-5, which
depicts the stability regions in the domain of Z¼ ½0:1,0:4�. Bold grey dots mark distinctive points on the line representing
D3 ¼ 0 and bold black dots denote the line of m4=0. Within the small Hopf isle solutions other than the so far periodic
solutions, namely aperiodic solutions, of Eqs. (31)–(34) are expected. At the transition from regions VII to VIII the unstable
IP branch (4) intersects with the branch (6). Branch (6) is and remains unstable throughout the remaining regions (VIII–IX).
Region IX begins with the second Hopf bifurcation point of solution branch (5). It corresponds to that point in Fig. 6-5 of
exiting the Hopf isle again. In region IX solution (5) retains the stability of the limit cycle again.

For larger AC-input values the number of regions in the bifurcation diagram decreases to seven. The observed Hopf
points are absent for larger AC-voltage values. A frequency response curve for Z¼ 0:3138 is presented in Fig. 5b. Note that
regions I through V remain the same regardless of occurrence or absence of Hopf bifurcation points.
Fig. 13. Frequency response for the three-beam system; a¼ 2:8982, b¼ 11:5091, Q=500, mNL ¼ 0, Z¼ 0:3138; hollow markers and bold solid lines:

periodic response, solid markers and bold dashed lines: aperiodic response; markers are numerical validations: triangles, circles, squares, diamonds, stars

and crosses denote different solution types (for periodic responses see Figs. 15 and 16). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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4. Numerical analysis

4.1. Validation of periodic asymptotic solutions

In this section the results of the weakly nonlinear asymptotic analysis are validated by numerical integration of 8. Figs. 2
and 5 depict numerical results of the single- and two-beam system. Typical simulations, including time series and
phase-plane diagrams with Poincaré points are presented for several initial conditions and regions [43]. Fig. 7a depicts a
distinct period doubled response of region II in Fig. 5b, where x1 and x2 vibrate with a phase shift of pþ2kp. The two Poincaré
points in Fig. 7b correspond to principal parametric resonance. Fig. 8 depicts a period doubled response of region IV in Fig. 5b,
where the two beams are shown to vibrate with same amplitudes and precisely in-phase. Fig. 9 shows a selected period
doubled response of region VII in Fig. 5b, where the two beams vibrate in-phase but with unequal amplitudes.
4.2. Quasi-periodic response of the two-beam system

Figs. 10–12 depict distinct quasi-periodic solutions from regions VII and VIII in Fig. 5a—one towards the beginning, one
in the middle and one towards the end of the region. The degree of complexity of the Poincaré figures increases towards
the middle of this region. The complex double-loop tori evolve from the two Poincaré points (stable limit cycles) in region
VI (Fig. 5a) over single-loop and simpler double-loop tori and back to single-loop tori and two Poincaré points in region IX.
We point out that although the fast-frequency signals xn vibrate in IP-mode, the slow-frequency beats appear to be in
Fig. 14. Frequency response as in Fig. 13; black lines: OOP mode, red lines: IP mode, blue lines: trivial solution; crosses, squares and circles denote

bifurcation points: Bi branch points (pitchfork bifurcation), Li limit points (saddle nodes), Ni Neimark–Sacker (secondary Hopf bifurcation points). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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OOP-mode. We conjecture that this is independent of the degree of response complexity but in sync with the one-to-one
internal resonance phenomenon of having two vibration modes correspond to one natural frequency.

4.3. Periodic and aperiodic responses of the three-beam system

We now investigate in the dynamic response of a three-beam system by using the numerical continuation method available
with the Cl-Matcont package for Matlab [36]. All solution branches were validated by numerically integrating the equations of
motion (8) for N=3. The frequency response of the three beams for an AC-value of Z¼ 0:3138 (and a¼ 2:8982, b¼ 11:5091,
Q=500, mNL ¼ 0) is presented in Figs. 13 and 14. Figs. 13 and 14 are identical, but emphasize different findings (denoted by
different colors, line styles and the like). While Fig. 13 communicates the number and different types of solutions, Fig. 14
focuses on the bifurcation structure and stability of the same. In the numerical analysis of the three-beam array a total number
Fig. 15. Time series (steady state) of typical periodic solution types corresponding to Fig. 13; lines: thin black—x1, bold black—x2, bold grey—x3.

Fig. 16. Phase planes (steady state) of typical periodic solution types corresponding to Figs. 13 and 15; lines: thin black—x1, bold black—x2, bold grey—x3.



ARTICLE IN PRESS

S. Gutschmidt, O. Gottlieb / Journal of Sound and Vibration 329 (2010) 3835–3855 3851
of seven solutions are identified, including the trivial, five periodic and one aperiodic solution. The different markers (and
colors) in Fig. 13—n, 3, &, B, %, �—denote various types of solutions, of which periodic responses are depicted in Figs. 15
and 16 (time series and phase plane diagrams, respectively). Hollow markers in Fig. 13 denote periodic and solid markers
aperiodic responses, respectively. We find three OOP-mode (n, 3, &) and two IP-mode (B, %) periodic solutions.
ðnÞ
 This solution branch corresponds to the periodic OOP response (see Figs. 15 and 16) and is already known from the
two-beam system. It is stable until amplitudes reach a critical amplitude jxnjo0:5 (for O� 1:105o). Recall that, in the
OOP mode, amplitudes of jxnjZ0:5 correspond to penetration of neighbor beams and thus, render the dynamical
system invalid.
ð3Þ
 This solution branch is the second periodic OOP response, where beams vibrate with unequal amplitudes.

ð&Þ
 This third periodic OOP solution is characterized by the OOP motion of the two outer beams (same amplitudes) while

the motion of the middle beam (smaller amplitude) is phase-shifted in time by p=2.

ðBÞ
 This solution presents one of the two periodic in-phase responses. The two outer beams vibrate with similar

amplitudes while the middle beam carries on with a smaller amplitude.

ð%Þ
 The second IP solution is characterized by the vibration of all beams with a similar amplitude and a slight phase shift.
Fig. 17. Simulation of the aperiodic %- solution (of Fig. 13) at O¼ 1:003o, (a) Poincaré points, (b) power spectrum.

Fig. 18. Simulation of the aperiodic � -solution (of Fig. 13) at O¼ 1:01o, (a) Poincaré points, (b) power spectrum.
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selected simulation of this vibration mode at O¼ 1:003o is depicted in Fig. 17. Its response is quasi-periodic. Another

While the % solution is periodic in regions V and VI (see Fig. 13), the limit cycles lose stability in regions VII and following. A

solution is identified in the three-beam analysis, which corresponds to a quasi-periodic solution, denoted by � in Fig. 13.
A selected simulation at O¼ 1:01o is shown in Fig. 18. The largest amplitude corresponds to one of the outer beams,
followed by the middle and a yet smaller amplitude for the third beam.

Fig. 14 depicts the bifurcation structure of the three-beam system and the stability of solutions. The previously analyzed
bifurcation types of the two-beam system are also identified in the analysis of the three-beam array. Crosses, squares and
circles in Fig. 14 denote branch, limit and Neimark–Sacker point bifurcations, respectively. The branch point bifurcations
(indicated by Bi for i=1,2,y) are pitchfork bifurcation points, at which solutions intersect. A limit point (Li) in the
Cl-Matcont continuation solver denotes that which is a saddle-node bifurcation of the equilibrium while a Neimark–Sacker
point (Ni) corresponds to a secondary Hopf bifurcation (which is a Hopf point in the slowly varying evolution equations).
The number of bifurcation points determines the different types of array behavior (divided by regions I–X in Fig. 14). Note
that only bifurcation points which reveal a change in behavior (and are validated by simulations) have been labeled. Bold
blue, black and red solid lines in Fig. 14 denote the stable trivial and the periodic OOP- and IP-mode solution branches,
respectively, while bold dashed lines indicate quasi-periodic solutions (compare with Figs. 13, 17, 18). For the two- as well
as three-beam array, aperiodic responses occur for the IP-mode solution(s). The three-beam analysis (in the presented
domain) of the � solution reveals that this aperiodic solution does neither evolve from nor to a periodic solution like in
the case of the two-beam system.

5. Conclusions

In this paper we have derived a nonlinear multi-element dynamical system for a microbeam array subject to
electrodynamic parametric excitation. The reduced-order model is derived from a consistent continuum-based
formulation which assures the assignment of all linear and nonlinear parameters to physical meanings of the real
microbeam array. An asymptotic multiple-scales analysis for a two-element system near the one-to-one internal
resonance reveals the existence of multiple coexisting periodic in- and out-of-phase solutions with equal and unequal
amplitudes as well as quasi-periodic solutions that emerge when a periodic in-phase response loses stability. A
comprehensive stability analysis enables derivation of the system bifurcation structure which incorporates multiple
distinct regions with different behavior. The governing parameters controlling the bifurcation structure are the
nondimensional oscillating excitation and linear damping coefficient which determine the number of regions in the
bifurcation diagram.

The conclusions from analysis of the two- and the three-beam systems enable understanding of the dynamical behavior
of neighbor elements in multi-microbeam arrays. We conclude that the out-of-phase solutions are stable and periodic up
to amplitudes near penetration of neighbor beams and that solutions that bifurcate from an in-phase solution were found
to be candidates for aperiodic responses. In the case of an aperiodic response, the fast-frequency signals of each beam
vibrate in-phase while the slow-frequency signals (beats) vibrate out-of-phase. The complexity of the periodic system
response is determined by the respective Poincaré maps which depend on the amplitude of each beam and the number of
beams in the array.
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Appendix A. Single-beam system implementing two modes

We investigate the dynamic behavior of the single-beam system considering the first two symmetric eigenmodes of the
resonator. The nondimensional field equation for the single-beam system (N=1) is given in (1). We, henceforth,
concentrate on terms that are essential to the purpose of this exercise, and thus, neglect the nonlinear damping term which
is only of importance for assuring finite amplitudes. Separation of variables is applied with

wðs; tÞ ¼
X2

j ¼ 1

qjðtÞFjðsÞ ¼ q1F1þq2F2: (A.1)

We substitute wðs,tÞ into (1) and employ Galerkin’s method by multiplication of Fj and integration by parts over the length
of the beam (from 0 to 1), which yields the set of nonlinear coupled ordinary differential equations

JMqttþ JCqtþðJKlþ JKnlÞq¼GV2
ACf: (A.2)
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Fig. 19. Frequency responses of the single-beam system with implementations of single- and two-(symmetric) mode approximation; circles: single-

mode approximation (simulation), grey lines: single-mode (analytical), triangles: two-mode approximation (simulation); a¼ 2:8982, b¼ 11:5091,

Q=500, Z¼ 0:4600, mNL ¼ 0.
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In (A.2) q={q1, q2}T is the time dependent vector of generalized coordinates, JM=[mij], JC=[cij], JKl=[klij] are mass, damping,
and linear stiffness matrices, respectively, with

mjj ¼

Z 1

0
F2

j ds; cjj ¼ mLmjj; kljj ¼

Z 1

0
½F2

j;ssþk1F2
j;s�ds: (A.3)

The nonlinear stiffness matrix in (A.2) is JKnl=[knlij] with

knlij ¼ k3

X2

k;l ¼ 1

qkql

Z 1

0
Fk;sFl;s ds

Z 1

0
Fi;sFj;s ds: (A.4)

The actuation term in (A.2) is

f ¼ ĜV2
AC

4g
P2

k ¼ 1 qkFk

ðg2�½
P2

k ¼ 1 qkFk�
2Þ

2
� fF1;F2g

T ; (A.5)

with Fk ¼Fkð1=2Þ being the values of the modeshapes at midspan of the resonator, respectively, and g is the scaled gap
parameter.

Numerical integration of (A.2) at various excitation frequencies near the principal parametric resonance yields the
frequency response plot depicted in Fig. 19. In addition to the result containing two modes, Fig. 19 portrays
the corresponding results of analytical as well as numerical results of the single mode analysis. The relative error
between the single- and two-mode analysis is less than one percent and thus, an analysis using only first modes of each
resonators, respectively, is justified.

Appendix B. Step-by-step derivation of Eq. (19) from (18)

Recalling (18)

d2
ex ¼ ð2zLþ2zNLa2Þ

2
þðd3a2�2s�2dexÞ

2:

Multiplying (18) by e4 yields

e4d2
ex ¼ ð2e

2zLþ2zNLe2a2Þ
2
þðd3e2a2�2e2s�2e2dexÞ

2: (B.1)

Sorting (B.1) and collecting terms in e2s results in

e4s2�ðd3e2a2�2e2dexÞe2sþ1

4
ðd3e2a2�2e2dexÞ

2
þ

1

4
ð2e2zLþ2zNLe2a2Þ

2
�

1

4
e4d2

ex ¼ 0: (B.2)

Eq. (B.2) is a quadratic equation in e2s, whose solutions are

ðe2sÞ1;2 ¼
1

2
d3e2a2�e2dex7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2dexÞ

2
�ð2e2zLþ2zNLe2a2Þ

2
q

: (B.3)
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Finally, substituting former definitions zL ¼ mL=2, zNL ¼ mNL=8, dex ¼ Z2=ð4oÞ, unscaled parameters Z¼ eZ, mL ¼ e2mL and the
detuning e2s¼O�o back into (B.3) results in

O1;2 ¼
1

2
d3e2a2�

Z2

4o7
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z4

16o2
� mLþ

mNL

4
e2a2

� �2
r

þo; (B.4)

which is Eq. (19).

Appendix C. Step-by-step derivation of constraint (37) from (35)

The condition for which the amplitude square, a2, is greater than zero is determined from solutions (35)

d2
ex ¼ ð4zLþ2zNLa2Þ

2
þð2d3a2�4s�2dexÞ

2

by differentiating the same with respect to s and setting da=ds equal to zero, which results in

�8ð2d3a2�4sE�2dexÞ ¼ 0:

Substituting the local extremum sE,

sE ¼
d3a2�dex

2

into (35), and solving for a2 yields

a2
minZ

dex�4zL

2z3
;

which is the constraint (37). Analogous steps beginning from (36) yield to the constraint (38).
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