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1. Introduction

ABSTRACT

This paper presents an experimental study of the nonlinear dynamic characteristics of
taut steel cables using a 3-D motion analysis system. In the experiment, the taut cables
have one end fixed and the other end subject to harmonic vertical excitation. The 3-D
motion analysis system can simultaneously record (with high resolution) the instant
3-D coordinates of the multiple markers fixed on a vibrating cable; this distinguishes it
from other experimental systems used in vibration studies, in which the vibration of
only one single point can be recorded during each individual testing. With the 3-D
motion analysis system, this experimental study presents a distinctive interpretation of
the dynamic characteristics of taut cables in spatial domain (based on the mode-shape
information of the entire cable), in addition to one in time domain (based on real-time
traces of one single point). This paper introduces the 3-D motion analysis system and
experimental setup, discusses practical experimental procedures, and presents a
detailed analysis of three sets of experimental vibration data of three taut steel cables
with different small sags. The frequency response curves were obtained for three cables.
For one of the three taut cables, more informative vibration data were recorded; this
cable was studied in greater detail via modal analysis using a modal decomposition
technique and nonlinear time-series analysis.

© 2010 Elsevier Ltd. All rights reserved.

Cables and strings are one-dimensional structures that can sustain only longitudinal tension loads because they have
negligible flexural, torsional and shear rigidities, and zero buckling loads. According to the linear theory of cable vibration
[1], string and cable are, in effect, the same one-dimensional structures and the only difference lies in having a small or
relatively large elasto-geometric parameter value. A taut string is a cable subject to significant external tension; the sag-to-

span ratio is close to zero and, therefore,
non-zero sag and corresponding non-zero

the elasto-geometric parameter is also close to zero. A cable is a string with
elasto-geometric parameter. As the value of the sag and corresponding elasto-

geometric parameter increases, the structure’s dynamic characteristics change from that primarily composed of string to
that of cable. In this paper, the studied taut cable refers to a string with small sag and the x/m < 2, where « is the elasto-
geometric parameter widely referred in loose cable vibration studies. According to linear theory of cable vibration, such a
cable has dynamic characteristics similar to that of both string and cable. For a cable with small sag (a sag-to-span ratio
of less than 1/8) and x/m ~ 2, according to linear theory of cable vibration, various resonant vibrations are expected.
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Most studies on cable and string vibration, both theoretical and experimental ones, have been focused on either tightly
tensioned string or loose cable with multiple resonant vibrations; few works have been conducted on taut cable (small
sagged string). Although not “technically” string (and it should be noted that the dynamic characteristics of both string and
cable are anticipated), taut cable behaves more like a string, according to linear cable vibration theory. However, as a result
of existing sags, nonlinear behaviors caused by quadratic nonlinearities are also noted.

Research on string vibration has a long history, and there are many publications on both theoretical and experimental
studies regarding various aspects of this topic. Since the early 20th century, string vibration, observed most commonly in
musical instruments, has attracted the interests of many researchers. C.V. Raman, the Nobel Prize Laureate, conducted
important research and made significant contributions to this field. He performed thorough investigation on the vibration
of string with one end fixed and the other end subjected to periodic longitudinal excitation. This excitation was supplied by
an electrically maintained turning-fork oscillation that periodically varied the string tension [2-5]. Raman’s observations
focused primarily on two aspects of the response. The first aspect was the maintained resonant transverse vibration. By
adjusting the tension in the string and, therefore, the commensurate relationship between the natural frequencies of the
string and its excitation, profiles of the maintained vibration, as well as the frequency and phase relationships between the
longitudinal excitation and transverse response were investigated through both theoretical and experimental studies.
Multiple resonances when the periods of the forces were integer times of the half of that of the system were observed.
Single degree-of-freedom resonant vibration, compound vibration, and transitional-type vibration were recorded and
studied. The second aspect was the oscillation of the fictitious node (so-called because the node is not actually absolutely
at rest). Its amplitude and phase relationships to those of the rest of the string were investigated through stroboscopic
studies. It was determined that the node actually oscillates parallel to the string through a certain range; the oscillation of
the node has a quarter cycle phase difference from that of the string. Depending on the tension of the string and the
excitation, the transverse vibration trajectory of the fictitious node may be a straight line, flat parabola, etc. Raman also
worked on the acoustics of string musical instruments [6]. He worked out the theory of the transverse slip-stick vibration
of bowed strings, on the basis of superposition velocities. This explanation of bowed string vibration is superior to
Helmholtz’s approach. However, Raman’s work was based on some questionable assumptions that subsequent studies
have investigated further. Woodhouse and Galluzzo [7] recently published a review of the friction-excited vibration of
bowed strings.

Johnson and Bajaj [8] and Bajaj and Johnson [9] are two of the many excellent works recently published on theoretical
studies of nonlinear string vibrations. The authors performed extensive bifurcation analyses of nonlinear string vibration
and predicted the existence of saddle-node, period-doubling, and quasi-periodic torus-doubling bifurcations of the Hopf
branch, and the appearance of chaotic attractors as well as their disappearance due to the boundary crisis. Many
representative experimental studies have also been performed on string vibrations. Intent on examining the influence of
different damping values, Molteno and Tufillaro [10] performed a detailed experimental study of the nonlinear dynamics of
a nonmagnetic tungsten string driven by distributed forces produced by sinusoidal current stay in a permanent magnetic
field. The vibration of a single point on the string was detected by an infrared photodiode that was coupled to a matched
infrared phototransistor. Theoretically predicted interesting nonlinear phenomena, as presented in various works [8,9],
such as quasi-period motion (both of Hopf and isolated branches), intermittent transition to chaos and boundary crisis,
were observed. Some more complex phenomena not present in the theoretical study were also observed. It was
demonstrated that the experimental results qualitatively agree with the predictions obtained by averaged equations for
large damping cases. Nayfeh et al. [11] studied the nonlinear response of a taut string subjected to combined parametric
(longitudinal) and external (transverse) excitations using multiple-scale analysis. Studies have shown that theoretical and
experimental results are in agreement regarding frequency response predictions for cases where the parametric excitation
is not present. However, it is likely that longitudinal motion contributes significantly to the response to parametric
excitation; therefore, it is reccommended that a further theoretical study which includes resonant longitudinal responses be
conducted.

Research on cable vibration is dependent on such things as the configuration of the cable, the properties of the cable
material, external excitation characteristics, and boundary conditions. One scenario that has been widely studied is the
resonant vibration of elastic sagged non-inclined cable subjected to external (either distributed or at boundaries) harmonic
excitation. Resonant vibrations are expected for cables that have crossover commensurate frequency based on linear cable
vibration theory. A taut cable does not have commensurate frequencies as cables with x/m x~ 2, 4, 6, ...; thus, few studied
have been performed. However, such research work would be helpful to bridge the gap between the research on string and
cable and to evaluate the influences of both quadratic (due to curvature) and cubic (due to stretching) nonlinearities on
their nonlinear dynamics. There are many other valuable aspects of this work. Although lots of experimental research have
been performed on string and cable vibration, because of the limitations of the experimental apparatus, none of these
research have been based on the vibration data of an entire string or cable. Most recent works on string and cable vibration
have been based on experimental data recorded in time domain for only one single point on the structure. Investigation
using experimental data of a single fixed point on the string or cable can show the nonlinear response. However, the
frequency response curve is constructed not on consistent response amplitude, for example, modal amplitude, but nodal
vibration amplitude. Frequency response curves that are obtained by not using consistent vibration amplitude reflect a
distorted nonlinear phenomenon, such as a hardening effect, of the system. Moreover, investigations using experimental
data of a single fixed point on the string or cable cannot record and study the modal transition as the change of excitation
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frequency and the compound modal vibration. This is emphasized further if the study is to investigate the dynamic
characteristics in a relatively wide frequency range. The frequency response curves in this paper were plotted using
responses of a fixed single point on the taut cables. The reason to for this arrangement is that the taut cable’s nonlinear
responses (composed of a specific single mode) were mostly within a narrow frequency interval, and, therefore,
the responses at a fixed single point were acceptable for response curve plotting. However, since the obtained vibration
data set recorded vibrations of the entire taut cable, the authors obtained multiple nonlinear response curves based on the
response amplitudes of different locations by doing only one set of experimental testing; thus, the selective presentation of
nodal responses was possible. A practical approach for experimental study of taut cable vibration using the 3-D motion
analysis system is introduced and examined in this study. The state-of-the-art 3-D motion analysis system, an effective and
efficient experimental testing approach, and straightforward experimental data analysis and presentation all contribute to
a unique examination of taut cable vibration. A loosely sagged cable can be easily obtained by loosening a taut cable. The
experimental vibration study of sagged cable is similar to that of taut cable in many aspects. For the experimental study of
cable resonant vibration, response curve plotting based on consistent modal amplitude is a must, because of the prevailing
existence of resonance through which multiple modes interact with one another. The experimental study of a loose cable’s
resonant vibration using the same experimental setup will be examined in a subsequent paper.

Perturbation methods are effective for investigating the dynamic characteristics of weakly nonlinear responses to
excitations within a narrow range of specified natural frequencies. Studies on string and cable vibrations using
perturbation methods have been primarily focused on responses to excitations within narrow ranges of selective natural
frequencies. Experimental studies that were intended to verify theoretical predictions have been accordingly narrowed to
responses to excitations within the selected frequency range. It is true that the responses around resonant frequencies are
of the most important interest. Responses between resonant frequencies indicate modal transitions and are also worthy of
a researcher’s interest. This study investigated the dynamic responses of a taut cable for a relatively wide excitation
frequency range. The taut cable had one end fixed and the other end subject to periodic excitation. The excitation was
strictly in vertical direction (external type) and no longitudinal (parametric) component was included. Responses around
resonant frequencies and those indicating modal transitions between resonant frequencies were all investigated. The
research work was conducted using a 3-D motion analysis system; this paper summarizes the work and presents a
complete picture of taut cable nonlinear vibration. The 3-D real-time vibration of the entire taut cable was recorded, and
data analyses, in both time and frequency domains, were conducted. Spatial-domain analysis of the entire vibrating taut
cable was accomplished on the basis of modal decomposition analysis. An unprecedented panoramic investigation of
nonlinear taut cable vibration is presented herein.

2. Experimental setup and procedure
2.1. The 3-D motion analysis system

The lightweight nature of string and cable precludes the attachment of measurement sensors (e.g., accelerometers) to
these structures, because the mass of the sensors may significantly influence their static and dynamic characteristics.
Therefore, a non-contacting vibration measurement device is needed for the experimental investigation of the mechanics
of string and cable. Fig. 1(a) shows the typical arrangement of the digital real-time 3-D motion analysis system used in this
experimental study. Fig. 1(b) and (c¢) shows the camera and the hub of the system, respectively. The 3-D motion analysis
system is useful for the noncontact measurement of significant static and/or dynamic deformations of string and cable.
This system uses several (six in this study) high-resolution cameras to capture images of a structure when the
retroreflective markers affixed to the structure are illuminated by lights from cameras. Using triangulation techniques [12],
the known focal lengths obtained after the necessary calibrations, and the known coordinates of the markers on the 2-D
images captured by the cameras, the system can automatically compute and instantly record the 3-D coordinates of the
centers of each retroreflective marker. The 3-D real-time traces of all markers can be used to perform dynamic animation
using stick figures to show pop-up figures of displacements and to calculate velocities and accelerations. In addition, these
traces can be entered into other programs for further signal processing. The recording time length is effectively infinite,
and up to 600 markers can be simultaneously traced using a computer with enough memory and a minimum 100 megabit
(Mbit) data upload rate. Because the 3-D coordinates of each marker were checked and calibrated when at least two
cameras observed the marker, the measurement accuracy is reasonably high. For example, measurement error is far less
than 1.0mm when the measurement volume is up to 2 x 2 x 2m? The system’s measurement power, ease of operation,
simple setup, and extreme accuracy have made it a widely recognized experimental tool for structural vibration and
dynamics study. For a more detailed discussion and other applications of the 3-D motion analysis system, please refer to
Pai [12] and Ramanathan et al. [13].

2.2. Experimental setup and excitation

Fig. 2 depicts the experimental setup of a taut steel cable that was subjected to harmonic base excitations provided by a
shaker. Because of the small mass of the taut cable, it could be mounted either horizontally (to avoid the effect of gravity on
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(b)

Fig. 1. The digital real-time 3-D motion analysis system: (a) typical setup of the system, (b) digital camera, and (c) hub.
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Fig. 2. The experimental setup.

the tension) or vertically (to avoid the effects of gravity on the initial curvature). In this experiment, set screws were used
to clamp the taut cable to the two rigid supports A and B, which were horizontally placed approximately 1.475 m apart and
were mounted on heavy weights to ensure mechanical isolation. The shaker head was attached to the taut cable at
x=0.05m from the left support A. Forty-eight 4 x 15 mm rectangular retroreflective markers were affixed by winding them
to the taut cable; these markers were distributed evenly between the shaker and the other fixed support. Markers 1 and 48
were attached close to the supports. Marker 25 was placed close to the middle point of the taut cable between the two
supports. The motion analysis system, shown in Fig. 1, made it possible to record the dynamic response of the entire taut
cable instead of only one point on it. The six cameras used in this experiment were placed at different locations,
approximately symmetrical with respect to the taut cable and with three on each side. Cameras were located to ensure that
they had good viewing angles and that each of the 48 markers could be seen by at least two cameras on the vibrating taut
cable at all times during the testing. The capture volume was set at 1.5 x 1.5 x 1.5 m>. The system was calibrated using an
L-frame and then a T-wand to define the experimental testing coordinate system XYZ.

The taut cable was excited using an electrodynamic shaker, which had a maximum output force of 196N and a
frequency range of 5-9000 Hz, to supply the oscillatory boundary condition at one of the two supports. The shaker-head
motion was monitored by an accelerometer mounted to the shaker head. The axis of the shaker was vertical
and perpendicular to the straight line connecting the two end markers of the taut cable, so that the taut cable was
transversely excited only. The excitation was controlled by an accelerometer attached to the head of the shaker for
feedback. The accelerometer provided feedback of the base motion to a shaker controller, which modified the ac voltage
accordingly to keep the base motion harmonic. The software in the computer system controlled the entire measuring
system. It tracked and identified the markers and provided the XYZ coordinates of all the markers at consecutive moments
of time. The data were exported in ASCII format and were then processed using the author’s post-process codes (written in
MATLAB).
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2.3. Frequency sweeping scheme

Temporal- and spatial-domain data for the vibrating taut cable excited at a specific frequency were acquired during the test
by recording the coordinates of all 48 markers on the taut cable. Because nonlinear vibration depends on initial conditions, the
tests should be performed by continuously varying, either by increasing and then decreasing, or by decreasing and then
increasing, the excitation parameter (either the excitation frequency or the amplitude) through the desired range of the
parameter. After the first set of data was collected by continuously increasing (decreasing) the parameter value, a second set of
data was collected by continuously decreasing (increasing) the parameter value. However, these kinds of sweeping tests may
confuse a nonlinear transient vibration for a steady-state one, and only one type of vibration for each parameter value can be
obtained. After a couple of experimental attempts, a practical frequency sweeping scheme for the experiment was developed. In
this sweeping scheme, each test was stopped before the parameter (frequency or amplitude) was changed for the next test.
Each test started with the same initial conditions (still taut cable); therefore, the tests were independent of the changing
direction of the parameter. For the same set of experimental parameters, after one steady-state vibration was recorded, the
steady-state vibration was disturbed in various ways and other potential steady-state solutions were obtained. In most cases, a
stable planar response (if it existed) was obtained by exciting the initially still taut cable, and the nonplanar response was
obtained by introducing a disturbance to the planar vibration. Depending on the relative stability of the planar and nonplanar
responses, the magnitude of the disturbance to alter the response from stable planar to stable nonplanar varied. Typically, the
disturbance for obtaining a stable nonplanar response for excitations near the theoretically predicted saddle-node bifurcation
point would have a larger magnitude. This is because the initial condition space for the stable planar solution is comparatively
much larger than that of the nonplanar solution. In this manner, vibrations starting with different initial conditions were
simulated, and potential multiple solutions were not overlooked.

In this study, tests were performed by varying the excitation frequency only, and the excitation amplitude was held
constant. For every parameter change, either increasing or decreasing, it was necessary to ensure that the transient motion
had dissipated so that a steady state could be reached before the response was captured by the camera system. In general, a
steady state was attained within 1-2 min after the excitation reached a steady state for the specified amplitude. It was
observed that it took more time for the response to reach a steady state in those tests with parameters near where
bifurcation occurred. For example, it took a longer time for the vibration to reach a steady state at approximately the point
where the planar response branch and the nonplanar branch were connected. Theoretically, the step-size of increase or
decrease of the parameter depends on the closeness of the excitation frequency to the bifurcation frequencies. When the
excitation frequency is close to the resonant frequency, the increase step needs to be small because various nonlinear
phenomena exist for this frequency range; this range can be very small and easy to be overlooked. In these experiments,
the excitation frequency was increased by a 1 Hz or larger value when the frequency was far from the resonant frequency,
and by a 0.5 Hz or smaller value when it was close to the resonant frequency so that it was possible to observe important
phenomena (such as period-doubling, quasi-periodic and chaotic motions) that might appear. In actual application, the
appropriate step-size will depend on practical experience. Usually, an initial rough screening will provide some
information about appropriate step-size determination. The total number of excitation frequency increments will depend
on the frequency range to be investigated and on the capacity of the experimental apparatus.

2.4. Experimental parameters

The experiments described in this paper were performed on a 1.425 m (effective length) steel wire whose diameter was
0.4572 mm (0.01 in). The taut cable was stretched with a pre-tension T that was obtained by attaching weights to the taut
cable through a pulley before the taut cable ends were fixed using clamps. Because of friction, the true tension in the taut
cable was smaller than that provided by the weights. Although not accurate, it should be a value with a deviation less than
11b, as observed. The tension had to be low enough to ensure that no yielding occurred in the taut cable, but high enough
so that the initial bending deformation would not significantly affect the vibration. In addition, the maximum vibratory
strain on the taut cable (which can be determined by the maximum vibrating amplitude) could not be so large as to be out
of the linearly elastic range of the material. Since steel wires were used and only low-frequency vibrations were tested in
this experimental study, these problems did not appear. For taut steel cable, the longitudinal wave speed c, is much higher
than the transverse speeds c, and c,,. To reduce the inertia effect of the retroreflective markers on taut cable vibration, the
diameter of the markers must be as small as possible but still visible to the cameras. A smaller marker diameter results in
more accurate experimental data recording. Large markers cause image distortion and reduce the accuracy of the
measured center locations (i.e., the measured or recorded center position of each marker by averaging different views from
all cameras). In the experiments conducted, the diameter of the marker was approximately 1.5 mm, which is small
compared to the vibration amplitude in most cases.

With regard to dynamic parameters, the natural frequencies need to be determined in order to gain a general
understanding of the dynamics of taut cable. The theoretical method using material stiffness, mass density and taut cable
geometry to determine the linear natural frequencies is straightforward, but can be used for reference purpose only
because of the inaccuracy caused by nonlinearities and uncertain pre-tension forces, etc. Experimental approaches are
preferred. The fundamental frequency of transverse vibration can be determined by the Fast Fourier Transformation (FFT)
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Fig. 3. The experimental data used for damping and fundamental frequency calculation.

Table 1
Parameters of Taut Steel Cable.

Parameter Symbol Measured/calculated values

Damping ratio { (assuming {,={w=0) 0.005-0.01

Length L 1.474m

Diameter d 0.4572 mm

1st natural frequency (O 17.5, 25, 17.5 Hz for the 1st, 2nd, and 3rd cases
Tension force T ~ 8.896 N

Young’s modulus E 200 x 10° N/mm?

Mass per unit length m 0.0013 kg/m

analysis of the decaying free oscillation of the taut cable that was started by a small initial transverse displacement. For
these experiments, the taut cable was plucked at the middle point and, therefore, the initial shape of the taut cable was a
triangle consisting of many harmonics. Since the high-frequency harmonics died out quickly and only the primary
harmonic was left for a longer time, the fundamental frequency was obtained by analyzing the latter part of the time-
domain data. Because of the initial curvature, possible uneven gravity distribution, uncertain pluck by a finger and other
reasons, the taut cable was observed to readily undergo nonplanar vibration. In these experiments, the taut cable was
plucked many times until an approximately pure planar vibration was obtained and captured. The recorded data used to
determinate the primary frequency and damping ratio are plotted in Fig. 3. The vibration decay observed in the
experiments was smooth, and the vibration was primarily planar. After the fundamental frequency is obtained, other
natural frequencies can be roughly deduced using the linear taut cable vibration theory.

The longitudinal wave speed can be determined by detecting the longitudinal motions of the markers. However, the
longitudinal wave speed of the steel wire, 4000-6000 m/s, is very high and beyond the measurement capability of the
motion analysis system. By assuming that exactly two frames are captured at the two instants that the elastic wave starts
at one end and arrives at the other end, the maximum wave velocity T, that can be measured by the motion analysis
system with a maximum frame rate of 2000 frames per second would be

Cu=L/(1/2000)=1.425 x 2000 m/s,

which is lower than the wave speed of the steel wire. Here, L is the length of the taut cable. Therefore, although this
approach is theoretically possible, it is impractical for the purpose of these experiments. The damping ratio { was
determined using the logarithmic decrement method. The system parameters identified using the methods and
approaches discussed above for these experiments are listed in Table 1.

3. Experimental results

3.1. Frequency responses of three taut cables

The excitation amplitude of the shaker was set at 1 mm for frequency sweeping. The in-plane and out-of-plane response
amplitudes of each marker were taken as the lengths of the major and minor axes of the elliptic trajectory obtained by
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ellipse-fitting. The frequency response curve for a marker was obtained by plotting the excitation frequency with respect to
the response amplitude of the chosen marker. The frequency spectrum of each marker’s time trace can be obtained by FFT
analysis. The three tested wires had different and virtually non-negligible sags. All of the sag-to-span ratios, however, were
small and, therefore, the wires behaved like a taut cable. The upper limits of the excitation frequency range were
constrained by the experimental system. Higher excitation frequencies made the system out of control when a closed loop
excitation was used. This was due to the large variation in tension force acting on the shaker during the vibration. The first
taut cable had a sag-to-span ratio of 1/801; its static equilibrium configurations, which were plotted using curve-fitted
data and original data, are shown in Fig. 4(a). In Figs. 4-6(b, c), dots represent out-of-plane responses and circles represent
in-plane responses. For the first cable, the scanning range was from 12 to 35Hz, and only responses to harmonic
excitations around the first natural frequency were examined. The in-plane and out-of-plane frequency response curves of
Marker 25 are shown in Fig. 4(b) and (c), respectively. The hardening effect of the response can be observed. The second
taut cable was a little more tightly tensioned, and the sag-to-span ratio was close to 1/1000. Fig. 5(a) shows the static
equilibrium configurations. The examined excitation frequency range was from 15 to 53.5 Hz. The in-plane and out-of-
plane frequency response curves of Marker 25 are shown in Fig. 5(b) and (c), respectively, where it can be seen that the
hardening effect is more pronounced. As a result of being subjected to a larger tension force than the first and third one, the
second taut cable had a larger value of natural frequency, as shown in Fig. 5(b) and (c). The third taut cable had a sag-to-
span ratio of 1/756 but was still considered as a taut cable, because its elasto-geometric parameter [1,14,15] was
determined to be 0.2171 (much less than 2). Therefore, it could be expected to behave more like a string or taut cable than
a loose cable, although there was small sag. The testing frequency range was from 15 to 53.5 Hz. The static equilibrium
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Fig. 4. The first string with a sag-to-span ratio1/801: (a) the static equilibrium configurations plotted using the curve-fitted data and the original data,
(b) the in-plane frequency response curve, and (c) the out-of-plane frequency response curve of Marker 25.
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Fig. 5. The second string with a sag-to-span ratio 1/1000: (a) the static equilibrium configurations, (b) the in-plane frequency response curve, and (c) the
out-of-plane frequency response curve of Marker 25.

configurations are shown in Fig. 6(a). The in-plane and out-of-plane frequency responses of Marker 9 are shown in Fig. 6(b)
and (c), respectively. Marker 9 was chosen for the frequency response plot because, around this location, the third-mode
vibration had peak amplitude. It was practically impossible for the experimentally recorded out-of-plane response to be
completely zero even under actual planar vibration because the markers had non-zero dimensions and the marker
locations that were seen and recorded by the camera system changed at different vibration instants. Consequently, some
solid dots of small amplitude appeared in the plots of the out-of-plane response curves. All responses of the three tested
taut cables were periodic, which was verified by their frequency spectra. No nonlinear vibrations of the period-doubled,
quasi-periodic, torus-doubled or chaotic types were observed. This is probably due to the large vibration damping values;
these phenomena occur only for vibrations of taut cables or strings with very small damping values.

Because the third taut cable had richer and more informative responses recorded, this study concentrated on the
response of that taut cable. Based on the response characteristics, the recorded responses were divided into seven
branches, which are marked as B1-B7 (B represents Branch) in Fig. 6(b) and (c). For the convenience of the following
analysis, each continuous response curve was divided into planar (odd numbered branch) and nonplanar (even numbered
branch) sections. The first branch B1 is the one whose response starts from a translation motion (under low-frequency
excitations) to a planar vibration of the first mode (under excitations close to the first natural frequency). The second,
fourth, and sixth branches (B2, B4, and B6) represent nonplanar vibrations primarily composed of the first, second, and
third modes, respectively. The third, fifth, and seventh branches (B3, B5, and B7) represent planar vibration transitions in
which the major participating mode changes from the first to the second, the second to the third, and the third to the
fourth mode, respectively. Based on the number of different types of responses to one excitation frequency, the excitation
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Fig. 6. The third string with a sag-to-span ratio 1/756: (a) the static equilibrium configurations, (b) the in-plane frequency response curve, and (c) the
out-of-plane frequency response curve of Marker 9.

frequency range was divided into five subintervals. The subintervals are marked as S1-S5 (S represents Subinterval) in
Fig. 6 (b) and (c).

3.2. Response observation for frequency sweeping

By observing the frequency response curves, the responses for increasing frequency sweeping can be summarized as
follows. Initially, there was no out-of-plan vibration, and the motion was strictly planar. As the excitation frequency was
increased, the planar vibration became unstable at an excitation frequency corresponding to the saddle-node bifurcation
point in the theoretical prediction [8,9,14], which is just slightly above the natural frequency. The in-plane vibration lost
stability and the out-of-plane vibration amplitude was no longer zero. As the whirling or ballooning motion started to
appear, the trajectory changed from a vertical line to an ellipse. Fig. 7 summarizes the typical trajectories of responses of
each subinterval and the branch. Reading vertically, the appearing and disappearing (gaining and losing stability) of the
response of each branch could be observed. Reading horizontally, the responses to excitations within the corresponding
frequency subinterval could be observed. The excitation frequency @2 (Hz), the major and minor axes r; and r, of the fitted
ellipse and the frames per excitation period (fpp) for all cases shown in Fig. 7 are presented in Table 2. As the bifurcation
occurred, the response curve was not second-order continuous because the slope decreased (refer to Figs. 4(b) and 6(b)),
indicating that the input energy was no longer completely fed into the planar vibration only. As the excitation frequency
was increased further, the major and minor axes of the ellipse, representing the amplitudes of in-plane and out-of-plane
vibrations, increased with the minor axis, r,, growing slightly faster than the major axis r;. Just as the ellipse was about to
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Fig. 7. The trajectories of typical responses of each subinterval and branch. The label and scale for all plots are the same as those shown in Fig. 7(a).

become a circle (i.e., r;=13), the ballooning motion lost stability, and the hysteresis phenomenon occurred. The response to
higher-frequency excitations actually depends on the properties of the taut cable. After the hysteretic frequency,
corresponding to the reverse pitchfork bifurcation point in the theoretical prediction [8,9,14], the only stable response is a
planar vibration of the next mode of small amplitude. However, in this study, there were two types of responses after the
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Table 2
Parameters for Fig. 7 plots.

Figure Q (Hz) r; (mm) > (mm) fop
(a) 14.2 0.53 2.84 36
(b) 17.5 6.16 7.29 30
(c) 28 14.79 15.67 20
(d) 32 17.67 18.43 17
(e) 37 20.94 21.61 15
(f) 28 0.30 2.19 20
(g) 32 2.62 3.29 17
(h) 37 4.05 4.60 15
(i) 40 4,74 5.26 14
[6) 49 6.39 6.81 11
(k) 53 7.20 7.45 10
[)) 37 0.31 1.16 15
(m) 40 0.32 1.54 14
(n) 49 2.08 2.54 11
(o) 50 2.29 2.61 11
(p) 53 0.29 0.93 10

hysteretic frequency: one was a planar vibration (B5) and the other was a nonplanar vibration (B4). This is because the
natural frequencies of a taut cable are closely spaced, and the damping is small. Thus, the effective frequency range of each
natural mode becomes wider and overlapped. These planar and nonplanar responses persist, and the amplitudes increase
as the excitation frequency is increased. Observing the frequency response curve, the responses for decreasing frequency
sweeping can be summarized similarly.

3.3. Responses of subintervals

Typical responses both of each branch and subinterval were examined to investigate the dynamic characteristics of taut
cables. Modal analyses of the typical responses of each branch are presented in subsequent sections. This section
concentrates on the typical responses of each subinterval. By studying the response variation between subintervals, the
losing and gaining stability of one branch of response and the appearance or disappearance of one type of response as the
excitation frequency changes may be revealed. The first subinterval S1 is from 10 to 17.5Hz and there are two types of
responses. The B1 (10-14.2 Hz) is a stable planar vibration and the B2 (14.5-17.5Hz) is a stable nonplanar vibration. Both
are primarily composed of the first mode. The second subinterval S2 starts at 18 Hz and has two types of stable responses.
The first response is the B2, which is the nonplanar first-mode vibration. The response amplitude of this branch increases
with the excitation frequency. The second typical response starts with a planar vibration consisting of the first and second
modes. The amplitude of the first mode decreases and that of the second mode increases when the excitation frequency
increases. This type of vibration belongs to the third branch (B3), which represents the vibration transition in which the
major participating mode changes from the first mode to the second mode. At 28.5 Hz, a small amplitude in-plane vibration
consisting of the first and second modes loses stability, and the vibration becomes a nonplanar one primarily consisting of
the second mode (B4). The second subinterval lasts until 32 Hz. The third subinterval S3 starts at 33 Hz and lasts until
37 Hz. There are three different typical responses for each excitation frequency in this interval. Except for the two
nonplanar solutions (B2 and B4) that also exist in the second subinterval, the third one is a planar response (B5), which
consists of the second and third modes. At the end of this subinterval, the response of the nonplanar vibration that is
composed of the first mode (B2) loses stability and disappears. The frequency around which the hysteresis phenomenon
occurs (with increasing excitation frequency) is 37 Hz. The fourth subinterval (S4) starts at 38 Hz and has two types of
stable responses. From 38 to 41 Hz, they are the planar vibration of B5 and the nonplanar vibration of B4. From 42 to 50 Hz,
the planar response, primarily consisting of the second and third modes (B5), becomes nonplanar and mainly consists of
the third mode (B6). The responses are similar to those of the second subinterval except that the contributing modes are
different. The fifth subinterval (S5) is from 50 to 53 Hz. Subinterval S5 has three types of responses. In addition to the two
typical responses of subinterval S4, a typical planar response primarily consisting of the third and fourth modes is added.
This interval has a response similar to the third subinterval.

3.4. Responses of branches

3.4.1. Modal decomposition technique

The modal decomposition technique was used to study the typical response of each branch. The previously discussed
qualitative analyses were based on real-time observations and experimental data of one particular marker on the taut
cable. Within a wider excitation frequency range, hybrid modal vibrations are always expected. A modal decomposition
based modal analysis [16] provides accurate participating frequency identification and also makes the identification of the
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participating mode shape possible. Modal interactions such as resonances of sub-harmonics, sup-harmonics, etc., can be
revealed. Although most recorded experimental responses are periodic, they are not of a single harmonic. Most vibrations
consist of several modes due to linear and nonlinear modal couplings. Depending on the closeness of the excitation
frequency to the neighboring natural frequencies, the contributing modes that have natural frequencies close to the
excitation frequency carry different weights. Modal decomposition technique is widely used for the investigation of
the contributions of participating modes in harmonic vibrations. In the low-frequency tests of these experiments, the
vibrations were primarily composed of the first four modes. To investigate the contributions of the first four linear normal
modes to the experimental operational deflection shapes at t=ty, the following was assumed:

4
Wt = Th. )+ > altdix) (1)

i=1

where b is the shaker’s vertical (Z-direction) displacement during excitation, a; denotes the modal displacement of the ith
linear mode and ¢; represents the ith linear mode shape. In the following experimental results analysis, CZ(t) (i=1, 2, 3, 4)
and CY{(t) (i=1, 2, 3, 4) are used to represent the modal displacements for in-plane and out-of-plane responses,
respectively. To obtain the value of at;) by least-squares fitting, a spatial-domain error function Ex is defined. The value
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Fig. 8. Response to an excitation at Q=10Hz: (a) 52 curve-fitted consecutive vibration profiles within 0.098 s and (b) the frequency spectra of Marker 25
Z-direction vibration.
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Fig. 9. Response to an excitation at 2=14.2Hz: (a) 37 curve-fitted consecutive vibration profiles within 0.069s and (b) the corresponding frequency
spectra of Marker 25 Z-direction vibration.
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Fig. 10. Response to an excitation at 2=35Hz: (a) 32 curve-fitted consecutive vibration profiles within 0.055s, (b) the trajectory of Marker 25, (c) the
frequency spectrum of the Z-direction vibration of Marker 25, (d) the frequency spectrum of the Y-direction vibration of Marker 25, (e) the modal
coordinates of the XZ-plane vibration; (f) the frequency spectra of the modal coordinates of the XZ-plane vibration, (g) the modal coordinates of the
XY-plane vibration, (h) the frequency spectra of the modal coordinates for the XY-plane vibration, (i) error functions of the modal decomposition of
the XZ-plane vibration, and (j) error functions of the modal decomposition of the XY-plane vibration.
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Fig. 10. (Continued)

of Ex at time t is as follows:

nm

Ex(ti) = ) W, ti) —W(Xm, b)), (2)

m=1

where W denotes experimental data. t;(k=1, ..., N) are the time instants of recording, and N is chosen to be 2° or 2'° for the
FFT analysis. nm is the number of markers (=48 in this study). The equations for determining a;(t,) are as follows:

OEX(t, om R .

% = 3 2[Wm, )W, B bixm) =0, i=1,2,3, 4 (3)
1 m=1

The standard deviation, SD(t;), of the fitted displacement profile at each time instant t is as follows:

SD(ty) = /Ex(t)/nm. 4)

Moreover, one can check the displacement of the marker at x=x,, to determine how much its curve-fitted displacement

W(Xm, tx) from Eq. (1) matches with its experimental one W(xn, t;), and this can be quantified using the following time-
domain error function Et(x,,). The value of Et(x,,) at location x,, (marker m) for a 2'° time instants is as follows:

1024
Et(Xm) = > [WXm, ti) =W (Xm, () (5)

k=1

The linear combination of two modes vibrating at the same frequency and having a phase difference « is as follows:
W = ¢, (X)sin(Q1) + ¢ 1 (x)sin(Qt + o)) = S(X)sin(Qt +x),

51 = Aimax®1, 52 = Wmax P2,

(6)
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where

1 ¢qsin(@)

¢, + ¢ cos(o)

If the phase difference o between these two harmonics is not equal to 0° or 180°, the phase for the combined vibration,
o, is a function of x and the combined vibration is called a complex mode. A complex mode is one in which each point of
the structure has its own vibration amplitude and phase angle. Consequently, each point of the structure will reach its
maximum and zero deflection positions at different time instants during the vibration.

tan

Do) =\ o124, Py cOS)+ 0 X

3.4.2. Responses of the first branch (B1)

The first branch (B1) in Fig. 6(b) and (c) depicts the responses to low-frequency excitations. The vibration under low-
frequency excitation was dominated by the movement of the end support because the taut cable was vibrating with small
amplitude. The vibration could not be adequately captured because the response amplitude and the size of the marker
(1-2 mm diameter) were close to the excitation amplitude (1 mm). Fig. 8(a) depicts the 52 consecutive curve-fitted vibration
profiles within 0.098 s when the taut cable was excited at 10 Hz. As expected, the frequency spectrum of the vibration of
Marker 25 (around the midpoint of the taut cable), as shown in Fig. 8 (b), is complicated because of a loose signal-to-noise
ratio and multiple-mode Z-direction vibration. For a higher excitation frequency at 14.2 Hz, the motion could be determined
more accurately because it had a response with a larger amplitude, as shown in Fig. 9(a), 37 consecutive curve-fitted
vibration profiles within 0.069 s. The frequency spectrum of the Z-direction vibration of Marker 25 (Fig. 9(b)) is much clearer,
with one major harmonic at the excitation frequency. The taut cable was still not vigorously excited, and the complex
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Fig. 11. Response to an excitation at 2=17.75Hz: (a) 64 curve-fitted consecutive vibration profiles within 0.111s, (b) the modal coordinates of the
XZ-plane vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.
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behavior of the vibration was obvious. Although the largest displacement was around the midpoint of the taut cable, close
examination shows that profiles at various times had different locations of maximum deflection. Traveling waves (e.g., the
dotted line) can be seen in Fig. 9(a). This irregular vibration shape is the result of the interference of the incident wave that
was started by the excitation with a reflected wave in a rather nonsequential and untimely manner.

3.4.3. Responses of the second branch (B2)

The B2 branch in Fig. 6(b) and (c) is the whirling motion primarily consisting of the first mode. As shown in Fig. 6, the
amplitude of response increases as the excitation frequency increases. The 32 consecutive curve-fitted vibration profiles
within 0.055 s of response to an excitation at 2=35Hz is shown in Fig. 10(a). The profiles are clearly separated, which
indicates that the taut cable returned to the same position after a specific interval and therefore, the vibration was periodic.
Close examination of the vibration profiles shows that there are exactly 16 profiles (=560(FPS)/35(Hz)). This is verified by
the trajectory of Marker 25, shown in Fig. 10(b), which has 16 discrete dots, indicating that the taut cable returned to the
same position after 16 frames or one vibration period. Fig. 10(c) and (d), the frequency spectra of the Z-direction and
Y-direction vibrations of Marker 25, respectively, show that the periodic harmonic vibrations in both planes are exactly at
the excitation frequency. Fig. 10(a) also shows that there are crossovers between the profiles. This indicates that the
vibration was composed of more than one mode, though primarily the first mode. The asymmetric crossovers indicate the
obvious participation of the anti-symmetric mode. The modal coordinates and corresponding frequency spectra for
vibrations in two perpendicular planes are presented in Fig. 10(e)-(h). They show the existence of the second mode (first
anti-symmetric mode) vibrating at both one time () and two times (29) of the excitation frequency for both the XY- and
XZ-plane vibrations. The Q component is caused by linear coupling because the forcing function has a spatial distribution
that is nonorthogonal to any linear modes. The 2Q2 component is due to a 1:2 internal resonance. This phenomenon cannot
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Fig. 12. Response to an excitation at 2=22 Hz: (a) 50 curve-fitted consecutive vibration profiles within 0.089s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.



3988 J. Hu, P. Frank Pai / Journal of Sound and Vibration 329 (2010) 3972-3998

be explained by a string model in which only cubic nonlinearity is considered. Quadratic nonlinearity due to small
curvature of the sagged taut cable accounts for the resonance. Moreover, close examination of Fig. 10(a) shows that the
crossovers between profiles of the XY-plane vibration are more serious than those of the XZ-plane vibration. This is because
the amplitude of the 2Q harmonic is much larger than that of the Q harmonic (Fig. 10(h)) for the XY-plane vibration of the
second-mode component. For XZ-plane vibration, the amplitudes of 2 and 22 harmonics have approximately the same
magnitude (Fig. 10(f)). This is true for most tests on this branch, and the authors believe it is partially because of the gravity
influence on the XZ-plane vibrations. The time-domain error function Et(x) of Marker 25, the spatial-domain error function
Ex(t), and the standard deviation SD(t) of the modal decompositions for the XZ- and XY-plane vibrations are shown in
Fig. 10(i) and (j), respectively. The small values of the error functions indicate that four modes are enough for an accurate
modal decomposition for this response.

3.4.4. Responses of the third branch (B3)

The B3 branch in Fig. 6(b) and (c) represents the transition from the first-mode planar vibration to the second-mode
one. Fig. 11 shows the response when the taut cable was excited at 2=17.75 Hz. Fig. 11(a) plots 64 consecutive curve-fitted
vibration profiles within 0.111 s. Fig. 12 shows the response when the taut cable was excited at Q=22 Hz. Fig. 12(a) plots 50
consecutive curve-fitted vibration profiles within 0.089s. Fig. 13 shows the response when the taut cable was excited at
Q=28 Hz. Fig. 13(a) plots 40 consecutive curve-fitted vibration profiles within 0.07 s. Together, Fig. 11(a), Fig. 12(a), and
Fig. 13(a) show the obvious transition of the vibration from one primarily consisting of the first mode to one primarily
consisting of the second mode. Comparing the amplitudes of the first and second modes of these cases, one can see that the
first-mode amplitude decreases and the second-mode increases, indicating an increasing participation of the second mode.
From the XZ-plane vibration modal coordinates and corresponding frequency spectra figures, Fig. 11(b) and (c) for the
17.75 Hz excitation, Fig. 12(b) and (c) for the 22 Hz excitation, and Fig. 13 (b) and (c) for the 28 Hz excitation, one can see
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Fig. 13. Response to an excitation at 2=28 Hz: (a) 40 curve-fitted consecutive vibration profiles within 0.07 s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.
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that the first and second modes are the two major components and are always in phase or have a phase difference of 7 for
these three cases. Because of linear coupling, some higher modes had small but nontrivial amplitudes and vibrated at the
excitation frequency, making the vibration somewhat complicated.
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Fig. 14. Response to an excitation at 2=29.5Hz: (a) 36 curve-fitted consecutive vibration profiles within 0.066s, (b) the trajectory of Marker 13, (c) the
frequency spectra of the Z-direction vibration of Marker 13, (d) the frequency spectra of the Y-direction vibration of Marker 13, (e) the modal coordinates
of the XZ-plane vibration, (f) the frequency spectra of the modal coordinates of the XZ-plane vibration, (g) the modal coordinates of the XY-plane
vibration, and (h) the frequency spectra of the modal coordinates of the XY-plane vibration.
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Fig. 15. Response to an excitation at 2=33 Hz. (a) 32 curve-fitted consecutive vibration profiles within 0.059 s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.
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3.4.5. Responses of the fourth branch (B4)

The B4 branch depicted in Fig. 6(b) and (c) represents a whirling motion primarily composed of the second mode. This
branch has properties similar to the B2 branch. Fig. 14(a)-(h) represents plots of the response when the taut cable was
excited at 2=29.5Hz. A plot of clearly separated 36 consecutive curve-fitted vibration profiles within 0.066s, Fig. 14(a)
indicates that the vibration was periodic. The trajectory of Marker 13 (Fig. 14(b)) has exactly 18 points, which indicates
that the vibration returned to the same position after one excitation period. The frequency spectra of the Z-direction
vibration of Marker 13 (Fig. 14(c, d)) indicate that the vibrations were periodic at the excitation frequency. Fig. 14(e)-(h)
shows the modal coordinates and corresponding frequency spectra of XZ- and XY-plane vibrations, respectively. They show
that the vibrations were dominated by the second mode. However, there are modes other than the second mode. Actually,
it was the participation of the symmetric modes vibrating at the excitation frequency that partially made the inner node of
the vibration profile unclear. In addition, participation of modes different from the second mode caused the crossover
between the different profiles as observed in Fig. 14(a).

3.4.6. Responses of the fifth branch (B5)

The B5 branch shown in Fig. 6(b) and (c) represents a transition from the second-mode planar vibration to the third-
mode planar vibration. It has properties similar to the B3 branch. Fig. 15 shows the response when the taut cable was
excited at Q=33 Hz. Fig. 15(a) plots the 32 consecutive curve-fitted vibration profiles within 0.059s. Fig. 16 shows the
response when the taut cable was excited at 2=35Hz. Fig. 16(a) plots the 32 consecutive curve-fitted vibration profiles
within 0.055s. Fig. 17 shows the response when the taut cable was excited at Q=37 Hz. Fig. 17(a) plots 30 consecutive
curve-fitted vibration profiles within 0.052s. Fig. 18 shows the response when the taut cable was excited at 2=40Hz.
Fig. 18(a) plots 28 consecutive curve-fitted vibration profiles within 0.048s. From the modal coordinates and
corresponding frequency spectra for XZ-plane vibration for each excitation shown in Figs. 15(b) and (c), 16(b) and (c),
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Fig. 16. Response to an excitation at 2=35Hz: (a) 32 curve-fitted consecutive vibration profiles within 0.055 s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.
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Fig. 17. Response to an excitation at Q=37 Hz: (a) 30 curve-fitted consecutive vibration profiles within 0.052 s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.

17(b) and (c), and Fig. 18(b) and (c), one can see that the second and third modes are always in phase for all cases.
Comparing the amplitudes of the second and third modes, one can see that the second-mode amplitude decreases and that
of the third mode increases, indicating an increasing participation of the third mode. Because of linear modal coupling, the
first mode is not negligible for responses to excitation at 2=33 and 35Hz, and the fourth mode is not negligible for
responses to excitation at Q=37 and 40Hz. Traveling waves are evident in Fig. 16(a). Each profile appears to have a
different maximum deflection location.

3.4.7. Responses of the sixth branch (B6)

The B6 branch in Fig. 6(b) and (c) has nonplanar responses similar to those of the B2 and B4 branches, but they are
primarily composed of the third mode. The amplitudes of these higher-mode vibrations are smaller than those of the
lower-mode vibrations of the B2 and B4 branches. Consequently, the measured vibration profiles have relatively lower
precision. Fig. 19 (a) shows vibration profiles when the taut cable was excited at Q=50 Hz. Respectively, they are plot of 22
consecutive curve-fitted vibration profiles within 0.038 s (a), the trajectory of Marker 8 (b), the modal coordinates (c, e),
and the corresponding frequency spectra (d, f) of the XZ- and XY-plane vibrations. Both cases are typical responses of the B6
branch. It is obvious that the major components of the vibrations in both planes are the third mode. As the excitation
frequency increases, the fourth mode may be excited by linear modal coupling because of the closeness of the excitation
frequency to the fourth natural frequency. Fig. 20 shows a complex vibration when the taut cable was excited at 2=53 Hz.
Respectively, the plots are 20 consecutive curve-fitted vibration profiles within 0.036s (a), the trajectory of Marker 8 (b),
the frequency spectra (c, d) of Z- and Y-direction vibration of Marker 8, the modal coordinates (e, g), and the corresponding
frequency spectra (f, h) of the XZ- and XY-direction vibration. Fig. 20(c) and (d) show that both Z- and Y-direction vibration
of Marker 8 contain high-frequency harmonics with small but not negligible amplitudes. Four modes may not be enough
for an accurate modal decomposition of this high-frequency vibration. From Fig. 20(e) and (f), it can be seen that the
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Fig. 18. Response to an excitation at 2=40Hz: (a) 28 curve-fitted consecutive vibration profiles within 0.048 s, (b) the modal coordinates of the XZ-plane
vibration, and (c) the frequency spectra of the modal coordinates of the XZ-plane vibration.

in-plane vibration amplitudes of the third and fourth modes exhibit small differences. The vibration is dominated by the
third mode and, therefore both nodes are clear in the XZ-plane vibration profile. From Fig. 20(g) and (h), it can be seen that
the out-of-plane vibration amplitude of the third mode is much larger than other contributing modes. The vibration is
dominated by more than one mode, making the nodes of the vibration profiles unclear. The right node, which is even more
blurred than the left one, is close to the excitation support and, therefore, more influenced by the support displacement.
This is especially pronounced for vibrations of higher modes because they have small amplitudes. Fig. 20(e) and (g) show
the phase difference between the two major participating components, the third and fourth modes, of the XZ- and XY-plane
vibrations. It can be seen that the phase difference between the third and fourth modal coordinates changes with the
excitation frequency, indicating that these two linear modes move independently and cannot be combined into one
nonlinear normal mode.

3.4.8. Responses of the seventh branch (B7)

The solution of the branch B7 was not studied in detail, because the shaker was often out of control for excitations in
this frequency range, and only three different excitation tests were performed and recorded. Fig. 21 shows the responses
when the taut cable was excited at =50 Hz. Twenty-two consecutive curve-fitted vibration profiles within 0.038 s shown
in Fig. 21(a) are clearly separated because the vibration was periodic. The number of separated profiles of the left half of
the taut cable is different from that of the right half, indicating that the vibration consists of both symmetric and anti-
symmetric modes. Fig. 21(b) and (c), the modal coordinates and corresponding frequency spectra for the XZ-plane
vibration, show that the vibration were dominated by the third and fourth linear normal modes and that these two major
components were in phase. The contribution of the second linear mode to the vibration was small and its phase was 180°
different from those of the third and fourth modes. The contribution of the first linear normal mode was primarily due to
the gravity-induced sag. For higher-mode vibrations, the influence of gravity and initial curvature on the natural frequency
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Fig. 19. Response to an excitation at 2=50Hz: (a) 22 curve-fitted consecutive vibration profiles within 0.038s, (b) the trajectory of Marker 8, (c) the
modal coordinates of the XZ-plane vibration, (d) the frequency spectra of the modal coordinates of XZ-plane vibration, (e) the modal coordinates of the
XY-plane vibration, and (f) the frequency spectra of the modal coordinates of the XY-plane vibration.

decreases. This can be explained by the well-known crossover phenomena of natural frequencies of cables [1,15]. Taut
cable has non-zero small sag and a small elasto-geometric parameter. Only natural frequencies of low-order in-plane
symmetric modes are affected by the sag, while those of high-order modes stay nearly unchanged. Commensurate
relationships between natural frequencies of higher in-plane and out-of-plane modes still exist and it is possible for
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various resonances to occur. Therefore, additional linear normal modes are necessary for an accurate modal decomposition
analysis of high-frequency vibrations.

4. Conclusions and discussions

This paper presents an experimental study of the nonlinear vibration of taut cables with small but not negligible sags
using a 3-D motion analysis system. The taut cable studied was not as tensioned as ideal string or as loose as most widely
studied cable with frequency-crossover related dynamic characteristics. As expected, dynamic characteristics of both
string and cable were observed. The modal transitional vibration and compound modal vibration within a wide frequency
range of the nonlinear vibration of taut cable was experimentally investigated. A practical and efficient frequency
sweeping scheme for the frequency response study using the 3-D motion analysis system was developed. These
experiments successfully recorded the planar and nonplanar/whirling vibration, hardening effect, and modal coupling
vibration. The hysteretic phenomenon of response was also observed. The recorded frequency response clearly showed the
sudden loss of stability of one branch and the jumping to another branch with increasing and decreasing frequency
sweeps. For all cases, linear coupling excited neighboring modes. For some cases, phase differences between various
participating modes changed as the excitation frequency changed, which indicated that those modes moved independently
and therefore could not be combined into one nonlinear normal mode. The concept of nonlinear normal mode is thus
questionable for application in the modal decomposition of taut cable nonlinear vibration.

Two types of responses observed. The first type was planar vibration primarily composed of two neighboring modes; it
represented a transition phase from the lower mode to the next one. As the excitation frequency increased, the amplitude
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Fig. 20. Response to an excitation at 2=53 Hz: (a) 20 consecutive curve-fitted consecutive vibration profiles within 0.036 s, (b) the trajectory of Marker 8,
(c) the frequency spectra of Z-direction vibration of Marker 8, (d) the frequency spectra of the Y-direction vibration of Marker 8, (e) the modal coordinates
of the XZ-plane vibration, (f) the frequency spectra of the modal coordinates of XZ-plane vibration, (g) the modal coordinates of the XY-plane vibration
and (h) the frequency spectra of the modal coordinates of the XY-plane vibration.
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Fig. 20. (Continued)

of the lower one decreased while that of the other increased. These two linearly coupled modes were always in-phase or
out-of-phase. Lower and higher modes may have been excited because of linear coupling, making the vibration more
complicated. The first type of response is represented by the odd numbered branches shown in Fig. 6(b) and (c). The second
type of response was a nonplanar vibration primarily composed of a single mode for both in-pane and out-of-plane
responses. However, in certain cases, other modes may have participated in both planar and nonplanar vibrations because
of linear and nonlinear coupling, making the vibration profile complex and irregular, although these modes have relatively
small amplitudes in most cases. The second type of response is represented by the even numbered branches shown in
Fig. 6(b) and (c).

Nonlinearities played critical roles in the nonlinear properties of the responses observed in this experimental study.
Observed nonlinear phenomena include hardening effect, hysteretic phenomena, appearance of out of plane response to
in-plane excitation, the resonance between different modes, etc. Theoretically, quadratic nonlinearity due to curvature and
cubic nonlinearity due to cable stretching are both expected to be pronounced in the nonlinear dynamics of a taut cable.
Recorded resonant responses such as 2:1 vibration were due to the intrinsic quadratic nonlinearity of the system. Since
steel cable, which has high tension stiffness, was used for the experiments, stretching during oscillation was almost
negligible and therefore, phenomena due to cubic nonlinearity were not observed.

The classic nonlinear vibration of ideal string is a weakly nonlinear problem and applicable methods, such as the
multiple-scale method, can produce a fairly accurate theoretical prediction for experimental responses. This has been
verified by some well-known research on this topic [11]. Typically, studies on nonlinear string vibration focus on the
response to excitations with small frequency detuning around specified natural frequencies of the linear string. Compared
to the vibration of ideal string examined in most theoretical studies, the taut cable experimentally studied in this paper
vibrates with relatively large amplitudes. The examined excitation varied over a wide range (the first several natural
frequencies) instead of a small range with small detuning around specified natural frequencies as applied in most weakly
nonlinear analyses. The contributions, both of linearly and nonlinearly participating modes, were observed and
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Fig. 21. Response to an excitation frequency at 2=50Hz. (a) 22 curve-fitted consecutive vibration profiles within 0.038 s, (b) the modal coordinates for
the XZ-plane vibration and (c) the frequency spectra of the modal coordinates for the XZ-plane vibration.

investigated. Moreover, taut cable is not an ideal cable or string without any bending stiffness. At the support ends of the
taut steel cable, both the bending and torsional stiffnesses are not negligible and it is more appropriate to be considered as
a rod. It has been shown that in this kind of cable [17], the static profile differs from that of equivalent ideal cable or string
at locations close to the end support because of bending stiffness. Accordingly, it can be confidently concluded that the
influences of boundary bending and torsional stiffnesses on the dynamic response would also be not negligible. Therefore,
a weakly nonlinear analysis of ideal cable or string may not be adequate for a reliable vibration response prediction study.
A more accurate model together with more robust numerical analysis is believed to be the prerequisite for achieving this
objective.
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