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In this paper, anti-controlling quasi-periodic impact motion of an inertial impact shaker

system is addressed. There exist two aspects of difficulty in the anti-control design: one

is from the implicit Poincaré map of the system itself and the other from the limitation

of the classical critical criterion of Hopf bifurcation described by the properties of

system and applying an explicit criterion of Hopf bifurcation without using eigenvalues

to the Poincaré map of the close-loop system, the two difficulties above can be

overcome and the control design for creation of the quasi-periodic impact motion at a

specified system parameter location is achieved. Numerical simulation shows that the

stable quasi-periodic impact motion of the system is created at a desired parameter

location by adjusting control parameter appropriately.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

There are a lot of impact mechanical devices whose operation principle is based on vibro-impact dynamics, such as
inertial impact shakers, impact vibration dampers and gears. Researches into the dynamic mechanism of vibro-impact
systems are of great significance for stability and reliability analysis, noise suppression and optimum designs. The periodic
motions of two-degree-of-freedom vibratory system with multiple constraints were investigated by Wagg and Bishop [1].
The Hopf bifurcations of Poincaré map for vibro-impact systems and the existence of quasi-periodic impact motion were
studied in Refs. [2,3]. In the literature [4–7], several kinds of codimension two Hopf bifurcation phenomena of vibro-impact
systems are reported, including the degenerate Hopf bifurcation, interaction of Hopf and period doubling bifurcations,
interaction of Hopf–Hopf bifurcation.

Bifurcation control has attracted many researchers’ attentions [8–11]. In general, the goal of bifurcation control is to
modify the bifurcation characteristics of a nonlinear system including delaying the onset of an inherent bifurcation [12]
and modifying the amplitudes [13] and stability [14] of bifurcated solutions. By contrast, anti-control of bifurcation, as the
‘‘inverse’’ problem of conventional bifurcation analysis, is aimed at creating a certain bifurcation with desired dynamic
properties at a specified system parameter location via control method. The main purpose of this paper is to address the
problem of anti-control of Hopf bifurcation of the Poincaré map of an inertial impact shaker system (i.e., the second Hopf
bifurcation of the original system), which may be viewed as a design approach to create a quasi-periodic impact motion
(or torus solution) at a specified system parameter location via control. It should be mentioned that as the bifurcation
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Fig. 1. Hopf bifurcation results in periodic solution whereas second Hopf bifurcation gives rise to quasi-periodic solution (torus).
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solution of the second Hopf bifurcation, the bifurcated Hopf limit circle of the Poincaré map of a vibro-impact system
corresponds to the quasi-periodic impact motion of the original vibro-impact system (as shown in Fig. 1).

In order to create the quasi-periodic impact motion, it is required that the controller must be set up in the original
differential system but its gains need to be determined by the bifurcation criterion of the corresponding Poincaré map. In
general, there exist two aspects of difficulty in anti-control design of quasi-periodic impact motion. One is the difficulty
from the implicit Poincaré map of inertial impact shaker system. Notice that the analysis of quasi-periodic solution is
usually equivalent to the analysis of Hopf bifurcation of Poincaré map (the second Hopf bifurcation of the original
differential system). However, the Poincaré map of an inertial impact shaker system is of implicit form subject to the
noncontinuity property of repeated impacts. If we use the control method based on the Poincaré map of the vibro-impact
system, it is very difficult to deduce the control gains of the original differential system and to achieve anti-control of the
system in real implement of control. Thus, without changing the original system’s periodic solution, we will apply linear
feedback control method in the original differential system instead of the Poincaré map. The other difficulty originates
from the classical bifurcation critical criteria (or bifurcation definitions) described by the properties of eigenvalues.
Different from the traditional bifurcation analysis, there exist multiple control parameters (gains) in the Jacobian matrix of
the close-loop control system to be determined. In the quantitative analysis of gains, it is expected to obtain the analytical
expressions of all eigenvalues with respect to the control parameters. However, it should be stressed that the analytical
expressions of all eigenvalues for a non-constant matrix of high order are unavailable in general. This implies that with
application of the classical bifurcation critical criteria, we have to numerically compute eigenvalues point by point
and check their properties to search for the control gains. In order to overcome the difficulty, an explicit criterion of Hopf
bifurcation for the map without directly using eigenvalues is used to obtain the gains and achieve the goal of creating the
quasi-periodic impact motion at a specified system parameter location. In addition, the stability of the created quasi-
periodic solution is analyzed in detail. Numerical simulation shows that the stable quasi-periodic impact motion of the
inertial impact shaker system is created in the pre-specified parameter location.

2. Inertial impact shaker system and its periodic motion

2.1. Mechanical model of inertial impact shaker

The inertial impact shaker model is shown schematically in Fig. 2. A vibrating platform with mass M is connected to
the foundation with a linear spring with stiffness K and a linear viscous dashpot with damping constant C. The platform is
subjected to a harmonic excitation with amplitude F0, excitation frequency o and phase angle d. The rigid-body cast
with mass m is in the gravitation field without other forces when no impact occurs. Consequently, the cast bounces on the
flat horizontal surface of the platform. Let Y and X denote the displacements of mass m and mass M, respectively. The mass
m will impact with the mass M while the bottom surface of the former contacts with the top surface of the later (i.e., Y=X)
at a non-zero relative velocity.

The impact dynamics of the inertial impact shaker system can be described by the following Eqs. (1) and (2).

M €XþC _XþKX ¼ F0 sinðotþdÞ
€Y ¼�g

, ðXaYÞ

(
(1)

M _X�þm _Y� ¼M _X þ þm _Y þ
_X þ� _Y þ ¼�R̂ð _X�� _Y�Þ

, ðX ¼ YÞ

(
(2)
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Fig. 2. Schematic of an inertial impact shaker model.
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where _X� and _Y� are respectively the instant velocities of M and m at contact points just before impacts. _X þ and _Y þ are
respectively the instant velocities of M and m at contact points just after impacts. R̂ stands for the constant coefficient of
restitution.

We transform the system (1) and (2) into the following non-dimensional form for convenience:

€xþ
2z
z
_xþ

1

z2
x¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�z2Þ

2
þð2zzÞ2

q
z2

sinðyþdÞ

€y ¼�e1

, ðxayÞ

8>><
>>: (3)

_x�þm _y� ¼ _xþ þm _yþ
_xþ� _yþ ¼�R̂ð _x�� _y�Þ

, ðx¼ yÞ

(
(4)

where

x¼ X=s, y¼ Y=s, z¼ C=2Mon, z¼o=on,

e1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�z2Þ

2
þð2zzÞ2

q
=ðbz2Þ, b¼ F0=Mg, m¼m=M, y¼ot,

s¼ F0=ðK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�z2Þ

2
þð2zzÞ2

q
Þ and on ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
(5)

We call the system before control described by Eqs. (1) and (2) or (3) and (4) as ‘‘the original system’’ and the system
under control as ‘‘the controlled system’’ in later sections for convenience.

2.2. Periodic motion of inertial impact shaker system

As mentioned above, a Hopf limit circle bifurcating from a fixed point of the Poincaré map corresponds to the quasi-
periodic impact motion in the original vibro-impact system. In order to create the quasi-periodic impact motion in the
original system via control, Hopf bifurcation of a fixed point in the Poincaré map becomes our control objective. Notice that
a fixed point of the Poincaré map stands for a periodic impact motion of the original system. Thus, we first discuss the
existence of a periodic impact motion and its analytical expression, which will be used in the design procedures of anti-
control of quasi-periodic impact motions in the next section.

To present a periodic impact motion of the original system, we need to give the full solutions of Eqs. (3) as follows:

xðyÞ ¼ e�zðy=zÞðb1 cosZðy=zÞþb2 sinZðy=zÞÞþsinðyþtÞ (6)

_xðyÞ ¼ ½e�zðy=zÞ=z�½ðb2Z�b1zÞcosZðy=zÞ�ðb2zþb1ZÞsinZðy=zÞ�þcosðyþtÞ (7)

yðyÞ ¼ b3þb4y�e1y
2=2 (8)

_yðyÞ ¼ b4�e1y (9)

where Z¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

q
, t¼ d�j, j¼ tan�1½2zz=ð1�z2Þ�. The constants of integration b1, b2, b3 and b4 are determined by the

initial condition and the parameters of the system.
The periodic impact motion of the original system (3) and (4) can be determined by the following set of periodicity and

initial conditions:

xð0Þ ¼ xð2pÞ, yð0Þ ¼ yð2pÞ, xð0Þ ¼ yð0Þ (10a)
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_xþ ð0Þ ¼
1�mR̂

1þm
_x�ð2pÞþ

mð1þ R̂Þ

1þm
_y�ð2pÞ (10b)

_yþ ð0Þ ¼
1þ R̂

1þm
_x�ð2pÞþ

m�R̂

1þm
_y�ð2pÞ (10c)

Subject to the conditions in (10a)–(10c), we can obtain the constants of integration and phase in (6)–(9) as follows:

t0 ¼ cos�1 e1p
1�ð2mþ1ÞR̂

1þ R̂
�

2mðZðc�1ÞþzsÞ

Zðs2þðc�1Þ2Þ

 ! !
(11)

b10 ¼
�2pzmse1

Zðs2þðc�1Þ2Þ
, b20 ¼

2pzmðc�1Þe1

Zðs2þðc�1Þ2Þ
(12)

b30 ¼ b10þsinðt0Þ, b40 ¼ e1p (13)

where s¼ e�zð2p=zÞsinZð2p=zÞ, c¼ e�zð2p=zÞcosZð2p=zÞ: Therefore, the non-impact part of the periodic impact motion of the
original system can be written as the following form:

xpðyÞ ¼ e�zðy=zÞðb10 cosZðy=zÞþb20 sinZðy=zÞÞþsinðyþt0Þ (14)

_xpðyÞ ¼ ½e�zðy=zÞ=z�½ðb20Z�b10zÞcosZðy=zÞ�ðb20zþb10ZÞsinZðy=zÞ�þcosðyþt0Þ (15)

ypðyÞ ¼ b30þb40y�e1y
2=2 (16)

_ypðyÞ ¼ b40�e1y (17)

After the periodic impact motion of the original system is obtained, we may establish the Poincaré map along with the
periodic impact motion as follows [7]:

~Xkþ1 ¼ fða, ~XkÞ (18)

where ~Xk ¼ ð ~xk, _~x k, _~y k, ~tkÞ
T and the real parameter a 2 R. The periodic impact motion of the original system becomes a fixed

point of the Poincaré map (18).

3. Anti-controlling of quasi-periodic impact motion

In this section, we design the linear feedback controller for anti-controlling quasi-periodic impact motion of the inertial
impact shaker system. In what follows, an explicit critical criterion of Hopf bifurcation for map can be utilized to obtain
the gains.

3.1. Inertial impact shaker system under linear feedback controller and its Poincaré map

The inertial impact shaker system under linear feedback controller is

M €XþC _XþUð _X� _X pÞþKXþVðX�XpÞ ¼ F0 sinðotþdÞ
€Y ¼�g

(
(19)

and

M _X�þm _Y� ¼M _X þ þm _Y þ
_X þ� _Y þ ¼�R̂ð _X�� _Y�Þ

(
(20)

where U and V are the linear control gains. _X p and Xp expressing the periodic solution are the dimensional form of the non-
dimensional quantities _xp and xp in (14) and (15).

The system (19) and (20) takes the following non-dimensional form:

€xþ
2z
z
_xþ

2u

z
ð _x� _xpÞþ

1

z2
xþ

v

z2
ðx�xpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�z2Þ

2
þð2zzÞ2

q
z2

sinðyþdÞ

€y ¼�e1

8>><
>>: (21)

_x�þm _y� ¼ _xþ þm _yþ
_xþ� _yþ ¼�R̂ð _x�� _y�Þ

(
(22)

where the non-dimensional quantities u¼U=2Mon and v¼ V=K , the rest are the same in (5).



ARTICLE IN PRESS

G. Wen et al. / Journal of Sound and Vibration 329 (2010) 4040–40474044
By suitable transformations, we can obtain the full solutions of Eqs. (21) as follows:

xðyÞ ¼ e�
~zðy=zÞðm1 cos ~Zðy=zÞþm2 sin ~Zðy=zÞÞþAðsinðyþ ~tÞ�sinðyþ ~t0ÞÞþxpðyÞ (23a)

_xðyÞ ¼ ½e�
~zðy=zÞ=z�½ðm2 ~Z�m1

~zÞcos ~Zðy=zÞ�ðm2
~zþm1 ~ZÞsin ~Zðy=zÞ�þAðcosðyþ ~tÞ�cosðyþ ~t0ÞÞþ _xpðyÞ (23b)

yðyÞ ¼m3þm4y�e1y
2=2 (23c)

_yðyÞ ¼m4�e1y (23d)

where ~z ¼ zþu, ~Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv� ~z

2
q

, ~t ¼ d� ~j, ~t0 ¼ d0� ~j, ~j ¼ tan�1½2 ~zz=ð1þv�z2Þ�, A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�z2Þ

2
þð2zzÞ2

ð1þv�z2Þ
2
þð2zzþ2uzÞ2

,

r
and the constants

of integration mj, j=1,2,3,4, are determined by the initial condition and parameters of the system.
Let ~X

�
¼ ðx�, _x�, _y�,t�ÞT denotes a fixed point of the Poincaré map (18), we choose the Poincaré section defined by

s¼ fðx, _x,y, _y,yÞ 2 R4
� S,x¼ y, _x ¼ _xþ , _y ¼ _yþ g (24)

where R stands for the real space. S=R(mod 2p) means the periodicity of period T of the original system (3) and (4).
The following implicit equation is obtained from x=y in (24),

Gðy,x, _x, _y,tÞ ¼ xðy,x, _x, _y,tÞ�yðy,x, _x, _y,tÞ ¼ 0 (25)

with Gðy�,x�, _x�, _y�,t�Þ ¼ 0, @G
@y ðy

� ,x� , _x� , _y� ,t�Þa0
�� .By virtue of the implicit function theorem, y can be solved from Eq. (25)

y¼ yðx, _x, _y,tÞ (26)

Then, we may obtain the Poincaré map,

Xkþ1 ¼ Fða,q,XkÞ ¼

F̂ 1ða,q,yðxk, _xk, _yk,tkÞ,xk, _xk, _yk,tkÞ

F̂ 2ða,q,yðxk, _xk, _yk,tkÞ,xk, _xk, _yk,tkÞ

F̂ 3ða,q,yðxk, _xk, _yk,tkÞ,xk, _xk, _yk,tkÞ

F̂ 4ða,q,yðxk, _xk, _yk,tkÞ,xk, _xk, _yk,tkÞ

0
BBBBB@

1
CCCCCA¼

F1ða,q,xk, _xk, _yk,tkÞ

F2ða,q,xk, _xk, _yk,tkÞ

F3ða,q,xk, _xk, _yk,tkÞ

F4ða,q,xk, _xk, _yk,tkÞ

0
BBBB@

1
CCCCA (27)

where Xk ¼ ðxk, _xk, _yk,tkÞ
T consists of the state variables, the system parameter a 2 R denotes the bifurcation parameter, and

the parameter vector q¼ ðu,vÞ is the control gains.

3.2. Explicit bifurcation criterion of Hopf bifurcation in Poincaré map

In order to create the quasi-periodic impact motion of the original system via control, we need to design Hopf
bifurcation of the Poincaré map in the close-loop system at a specified system parameter location to obtain a Hopf limit
circle with desired dynamic properties. Our main work is to determine the gain vector q. As mentioned above, it is difficult
to search for the proper values of gains by scanning the parameter plane (u,v) point by point to compute eigenvalues
and check their properties. The explicit criterion of Hopf bifurcation for four-dimensional map without directly using
eigenvalues of the Jacobian matrix [15] is employed to overcome the limitations of the classical critical criterion.
The explicit criterion is formulated using a set of simple equalities or inequalities that consist of the coefficients of the
characteristic equation derived from the Jacobian matrix. The control parameter mechanism of Hopf bifurcation for map
may be explicitly formulated. As shown in the numerical example of the next section, one of the inequalities in the
criterion might pick off half of parameter domain in the plane (u,v) and the gains may be directly solved in terms of the
equalities.

We give the explicit criterion of Hopf bifurcation [15] for four-dimensional map below.
Let the Jacobian matrix of map (27) at ~X

�
¼ ðx�, _x�, _y�,t�ÞT is DFða,qÞ ¼Aða,qÞ. The characteristic equation for matrix

Aða,qÞ is written as

PaðlÞ ¼ l4
þa1l

3
þa2l

2
þa3lþa4 (28)

where ai ¼ aiða,qÞ, i¼ 1, . . .4.
Consider the following determinants

D7
1 ða,qÞ ¼ 17a4

D7
2 ða,qÞ ¼

����� 1 a1

0 1

� �
7

a3 a4

a4 0

 !�����

D7
3 ða,qÞ ¼

�����
1 a1 a2

0 1 a1

0 0 1

0
B@

1
CA7

a2 a3 a4

a3 a4 0

a4 0 0

0
B@

1
CA
�����
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Lemma 1. [15] A Hopf bifurcation for map (27) occurs at a¼ ac if and only if the following conditions (i)–(iv) are satisfied.
(i)
 D�3 ðac ,qÞ ¼ 0

(ii)
 Pac ð1Þ40, Pac ð�1Þ40, Dþ3 ðac ,qÞ40, D7

1 ðac ,qÞ40

(iii)
 dD�3 ðac ,qÞ

da a0
(iv)
 cosð2p=mÞac, c¼ 1�0:5Pac ð1ÞD
�

1 ðac ,qÞ=Dþ2 ðac ,qÞ, m¼ 3,4,5 . . .
Lemma 1 will be employed to determine the gains to trigger a quasi-periodic motion of the close-loop system at a

specified system parameter location.

3.3. Existence of quasi-periodic impact motion of inertial impact shaker system

As an example, we choose the set of parameters z=0.01, b=0.8, m=0.6, z=2 and take R̂ as the bifurcation parameter
(i.e., a¼ R̂). The original system at R̂ ¼ R̂c ¼ 0:8 exhibits the stable periodic motion which is shown in the Poincaré section
(24) as a stable fixed point (see Fig. 3).

Assumed that R̂ ¼ R̂c ¼ 0:8 is the specified location at which the original system is required to transfer from the existing
periodic motion to a stable quasi-periodic motion to be created. We thus design Hopf bifurcation of the Poincaré map (27)
at R̂ ¼ R̂c by adjusting control parameters u and v appropriately.

According to the explicit criterion of Hopf bifurcation for map in Lemma 1, Maple software is employed to solve the
equalities and inequalities (i)–(iv) to obtain the control parameter bifurcation plot (see Fig. 4).

In Fig. 4, the blank region denotes the parameter domain in which all inequalities in the conditions (ii) and (iii) of
Lemma 1 are satisfied whereas in the gray region III and IV at least one inequality fails. The open domain I that is
surrounded with the black arc AD, the blue lines AB and L1, and the green line BC, stands for the stability region in which
Fig. 3. Stable periodic motion projected to the Poincaré section.

Fig. 4. Control parameter bifurcation diagram.
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D�3 ðac ,qÞ40 and all of the inequalities in the condition (ii) hold. The other blank region II, surrounded by the black arc AD

and the red arcs EF and AG, represents the potential parameter region where there may exist the quasi-periodic solutions
near the AD. The black arc AD consists of the parameter points that satisfy D�3 ðac ,qÞ ¼ 0 as well as the inequality constraints
in (ii) and (iii). The black points from R4 to R8 on the arc AD represent the resonance points with m¼ 4,5 . . .8 in (iv),
respectively. To design Hopf bifurcation in the nonresonance case, the gains should be chosen on the arc AD but away from
these resonance points.

We choose one of the points on the open arc AD with ðu,vÞ ¼ ð0:03,4:2955731047Þ as the theoretical values of gains. It
follows from Lemma 1 that a Hopf bifurcation of map (27) occurs at R̂c ¼ 0:8. In other words, a quasi-periodic impact
motion of the inertial impact shaker system, as a created nonlinear solution, is triggered at R̂c ¼ 0:8 via control.

In summary, it is convenient and efficient to create Hopf bifurcations on the basis of the control parameter bifurcation
plot where the stability domain and the bifurcation domain in the parameter plane are clear.
3.4. Stability of quasi-periodic impact motion of inertial impact shaker system

In this subsection, we shall discuss the stability of the bifurcating solutions (Hopf limit circle) of the map (27) (or the
quasi-periodic impact motion of the inertial impact shaker system under control). The stability of Hopf limit circle depends
on the nonlinear property of the map (27). Some methodologies such as the center manifold reduction and normal form
theory [16,17] and frequency domain approach [13], are capable for determining the stability analytically. Here the
method we use is based on the theories of discrete system by Kuznetsov [16].

First, we transform the fixed point ~X
�

and bifurcation point R̂c to the origin point by the change of variables,

Yk ¼Xk�
~X
�
, e¼ R̂�R̂c (29)

Under the change of variables (29), the map (27) becomes

Ykþ1 ¼
~Fðe,YkÞ (30)

We expand the map (30) as Taylor series in the variable Yk

Ykþ1 ¼AYkþ
1

2
BðYk,YkÞþ

1

6
CðYk,Yk,YkÞþoðJYkJ

4
Þ (31)

where A is the Jacobian matrix at the fixed point ~X
�

at R̂ ¼ R̂c . A has a complex conjugate pairs of eigenvalues lð0Þ and lð0Þ
on the unit circle, the other eigenvalues are strictly inside the unit circle.

The stability of Hopf limit circle in map (31) can be analyzed by the sign of fð0Þ in equation below,

fð0Þ ¼ Re
lð0Þg21

2

 !
�Re

ð1�2lð0ÞÞl
2
ð0Þ

2ð1�lð0ÞÞ
g20g11

 !
�

1

2
jg11j

2�
1

4
jg02j

2 (32)

where g20 ¼/p,Bðq,qÞS, g11 ¼/p,Bðq,qÞS, g02 ¼/p,Bðq,qÞS, g21 ¼/p,Cðq,q,qÞSþ2/p,Bðq,ðI�AÞ�1Bðq,qÞÞSþ/p,Bðq,

ðl2
ð0ÞI�AÞ�1Bðq,qÞÞSþ lð0Þð1�2lð0ÞÞ

1�lð0Þ /p,Bðq,qÞS/p,Bðq,qÞS� 2
1�lð0Þ

j/p,Bðq,qÞSj2� lð0Þ
l3
ð0Þ�1
j/p,Bðq,qÞSj2It follows from (32)

that fð0Þ ¼ �1:83o0. According to the criterion of stability [16], the system has a stable invariant cycle (quasi-periodic

motion) near R̂c under the chosen control gains.
Fig. 5. Stable invariant cycle in the Poincaré section.
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3.5. Simulations

At the set of parameters of the original system z¼ 0:01, b¼ 0:8, m¼ 0:6, z¼ 2, u¼ 0:03, v¼ 4:3, Fig. 5 shows the stable
Hopf limit circle by setting R̂ ¼ R̂cþ0:01¼ 0:81, which represents the created quasi-periodic impact motion of the inertial
impact shaker system.

4. Conclusions

In this paper, the linear feedback control method is proposed for anti-control of quasi-periodic impact motion in inertial
impact shaker system based on the bifurcation theory of maps. An explicit criterion of Hopf bifurcation without directly
using eigenvalues is utilized to overcome the limitation of the classical critical criterion of Hopf bifurcation in control
design. The stable quasi-periodic impact motion of the original system is created in a pre-specified parameter location by
adjusting control parameter appropriately.
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