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The paper presents a method for computing the response of a 1D elastic continuum

supported by a set of semi-active viscous dampers and induced by a load travelling over

it. The magnitude of the moving force has been assumed to be constant by neglect of the

inertia forces. Full analytical solution is based on the power series method and is given

solution in successive layers with initial conditions taken from the end of previous

stages. The semi-active open loop control strategy is proposed. Shapes of damping

functions are defined as a form of piecewise constant function. The control strategy is

suboptimal and it outperforms the passive case. Numerical results are presented for the

cases of a string and a Bernoulli–Euler beam.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Problems of a load travelling along structures, such as strings, beams or plates at a higher range of speed, are of
particular interest to practising engineers. A higher speed range means the speed at which successive passages of a moving
load through the structure significantly increase amplitudes of displacements, up to infinity in the case of critical speed
values. In the case of a string the considered speed can be within the range of 0.3–1.0 of the wave speed. Analytical and
numerical solutions are applied to problems with a single or multi-point contact, such as train–track or vehicle–bridge
interaction, pantograph collectors in railways, magnetic levitation railways, guideways in robotic technology, etc.

Increasing demand requires new technological solutions. Structures with external control of parameters can resist a
load in a more efficient way. Structures with classical passive control are replaced by new, active or semi-active control
systems. Old, weak structures can be reinforced by supplementary supports with magneto- or electro-rheological dampers
controlled externally (Figs. 1 and 2). Active or semi-active control of structural vibrations plays an important role in the
case of dynamic influence of external standing or travelling loads. Active methods of control are, unfortunately, energy-
consuming and complicated in practical applications. Moreover, a poor control system can supply energy in the antiphase
and in extreme cases can damage the structure. We will focus our research on semi-active systems composed of dampers,
which require lower energetic effort.

Several evaluation criteria are subjects of interest. One of them describes the displacement in time of the midpoint. This
criterion determines the resistance of the structure to deformations. Others describe displacement velocities or accelerations
in time at the follower point under the travelling load. In those cases we can control the travel comfort, minimising the
vertical dynamics of the vehicle. In our investigations we will concentrate on all the criteria mentioned above.
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Fig. 1. Examples of passive and semi-active control in a bridge span under a travelling load.
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Fig. 2. The idea of semi-active control of a beam deflection under a travelling load.
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The semi-active control functions that represent evaluation of coefficients of viscous damping in time are continuous
and bounded in a general case. In practical use they can be expressed by a piecewise constant function. The numerical
optimisation of the control in the case of a higher number of those constants cannot be carried on efficiently. The variation
of all the parameters of the damping control function in a discrete form will result in extremely lengthy computation time.
Numerical analysis and classical methods of optimisation fail. We must elaborate a new efficient approach on the basis of
the analysis of the differential equation or its solution.
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In this paper we present the analytical solution of a semi-active control of vibrations in a string subjected to a travelling
load. The string is supported by a set of viscous dampers. The method allows us to solve the problem analytically and
express the continuous solution in a form useful for further analysis of the influence of damping functions on
displacements and its derivatives. Whole time domain is split into time intervals. Full analytical solution in time interval in
a form of power series is given. The time-marching scheme allows us to proceed to successive layers with initial conditions
taken from the end of previous stages. The global solution can be written in a form with damping coefficients given as a
vector. Thus the influence of a particular damper on the final global solution can be simply investigated. This fully
analytical algorithm and the analytical form of the solution allow us to examine quantitatively the influence of a piecewise
constant damping on vibrations. Further work could enable us to determine the general efficient strategy of the control
instead of a particular numerical solution, useless for investigations.

Analysis of the moving load problem is commonly presented in the literature. The travelling load can be one of two
types: non-inertial (massless) or inertial. The analysis of the moving massless force is relatively simple and is treated in
numerous papers [1,2]. We include in this group all the papers devoted to the travelling oscillator, i.e. a mass particle joined
to the base with a spring [3–5]. Some authors describe this type of a load as an inertial one. We consider it as a massless
force generated only by the particle’s inertia. The inertial load moving over the structure is less frequently reported in the
literature [6–8]. The closed solution exists in the case of a mass moving on a massless string [2,9]. Otherwise the final
results are obtained numerically, although the solution is preceded by complex analytical calculations. A new and
important feature of discontinuity of the inertial particle trajectory is exhibited in [10]. In numerous references authors
treat the problem in a very low range of the mass speed. In this case results are sufficient, even if the inertial term
contributing to moving mass is not correctly treated by the time integration method. Simply, the moving mass influence is
trivial compared with static displacements.

Purely numerical solutions of a group of engineering problems with travelling massless load are relatively simple and
every particular case can be computed without significant computational effort. The numerical results in the case of
inertial loads, however, are not sufficient [11,12]. Broad analysis of moving loads was given in [2,13]. In recent contributions
complex problems of structures subjected to a moving inertial load [14] or oscillator [4,5,15] were also analysed.

Numerical algorithms implemented in commercial codes do not allow efficient analysis in the case of the moving
massless load, nor is the inertial moving load implemented. Correct formulae for discrete analysis of moving mass
problems were published recently [16,17] and implemented in the analysis of train/track interaction.

Numerous active and semi-active vibration control methods are widespread and some of them have been put into
practice recently. Most of them are based on sky-hook or ground-hook concepts [18]. These approaches are used for semi-
active control of the moving oscillator problem in [19]. Variable dampers are incorporated in seismic isolation in [20,21].
A theoretical approach to the problem of controlled beam vibration damping, based on the method of optimal Lyapunov
functions, was presented in [22]. In [23] the authors assumed the semi-active control applied to a stiffness and to a
damping. The control function led to maximum dissipation of the energy. Generally, the amplitude level decrease was to be
achieved. Passive damping of a Euler beam under a moving load was presented in [24]. The load of cyclically travelling
forces was considered as a periodic one. The decrease of the resonance peak was obtained by a gradient method. The beam
subjected to a placed harmonic load was controlled by the active method [25]. The analysis of the frequency domain
allowed the authors to reduce the maximum of amplitudes. In the next paper [26] the harmonic load at a fixed point was
also applied. The control of stiffness parameters allowed the reduction of parametric vibrations. The structure elements
were controlled by on/off state. The expected effect with reduced and shifted resonance curves was obtained. Active
damping of structures under travelling load was described in [27,28].

Most of the semi-active methods identified lead to feedback controls determined by state-space measures. In the case of
continuous systems such an observer design is often much too complicated. The alternative method is an open-loop
control. It is of particular use in problems where the excitation is determined.

Preliminary investigation of the destination problem was published in [29]. The beam supported by two dampers
exhibited lower amplitudes both in the midpoint and under the travelling load. Higher frequency modes, however, were
dominant in the transient stage.
2. Mathematical formulation

Formulation and solution of the problem presented in this section are developed for a string, but the technique is not
specific to an 1D continuum and can be applied to elements like Euler–Bernoulli or Timoshenko beams as well.

Let us consider the system shown in Fig. 3. The string is stretched and simply supported by a set of control dampers. The
moving load is passing along the string at a constant velocity. The mass accompanying the travelling load is small
compared with the mass of the string and is neglected. Thus we assume a massless load. Reactions of dampers are
proportional to the velocity of displacements in given points.

The transverse vibration of the string system shown in Fig. 3 is governed by the partial differential equation

�N
q2uðx; tÞ

qx2
þ m q2uðx; tÞ

qt2
¼ �

XZ

i¼1

biðtÞ
quðai; tÞ

qt
dðx� aiÞ þ Pdðx� vtÞ; (1)
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Fig. 3. String system supported by active viscous dampers.
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where N is the force stretching the string, m is the constant mass density per unit length, P is the concentrated force passing
the string at the constant velocity v, biðtÞ is the i th damping coefficient as a function of time, uðx; tÞ is a transverse deflection
of the string at the point ðx; tÞ, Z is the number of viscous supports, ai is the i th fixed point of a damper and d is the Dirac
delta.

The boundary and initial conditions of the simply supported and stretched string are as follows:

uð0; tÞ ¼ 0; uðl; tÞ ¼ 0; uðx;0Þ ¼ 0; _uðx;0Þ ¼ 0: (2)

Eq. (1) with conditions (2) will be solved by the method of the sine Fourier transformation based on the following
fundamental relations:

Vðj; tÞ ¼

Z l

0
uðx; tÞsin

jpx

l
dx;

uðx; tÞ ¼
2

l

X1
j¼1

Vðj; tÞsin
jpx

l
: (3)

Each term of Eq. (1) is multiplied by sinjpx=l and then integrated with respect to x in the interval ½0; l�Z l

0
�N

q2uðx; tÞ

qx2
sin

jpx

l
þ m q2uðx; tÞ

qt2
sin

jpx

l

 !
dx ¼

Z l

0
�
XZ

i¼1

biðtÞ
quðai; tÞ

qt
sin

jpx

l
dðx� aiÞ þ Psin

jpx

l
dðx� vtÞ

 !
dx: (4)

Thus,

Nj2p2

l2
Vðj; tÞ þ m €V ðj; tÞ ¼

Z l

0
�
XZ

i¼1

biðtÞ
quðai; tÞ

qt
sin

jpx

l
dðx� aiÞ

 !
dxþ Psin

jpvt

l
: (5)

The integral term can be rewritten asZ l

0
�
XZ

i¼1

biðtÞ
quðai; tÞ

qt
sin

jpx

l
dðx� aiÞ

 !
dx ¼ �

XZ

i¼1

biðtÞ

Z l

0

quðai; tÞ

qt
sin

jpx

l
dðx� aiÞdx ¼ �

XZ

i¼1

biðtÞ
quðai; tÞ

qt
sin

jpai

l

¼ �
2

l

XZ

i¼1

X1
k¼1

biðtÞ _V ðk; tÞsin
kpai

l
sin

jpai

l
: (6)

Eq. (5) is a system of ordinary differential equations

m €V ðj; tÞ þ 2

l

XZ

i¼1

X1
k¼1

biðtÞ _V ðk; tÞsin
kpai

l
sin

jpai

l
þ

Nj2p2

l2
Vðj; tÞ ¼ Psin

jpvt

l
: (7)

Now we expect a solution of Eq. (7) for an arbitrary shape of functions biðtÞ. It would be convenient to make the coefficients
constant. For this purpose we define all bðtÞ as step-shape functions depicted in Fig. 4

b : 0;
l

v

� �
-½bmin; bmax�; bðtÞ ¼

bp; 8t 2 ðtp�1; tp�; p ¼ 1 . . . s;

0; t ¼ 0:

(
(8)

With the following notations:

pv

l
¼ o; sin

jpai

l
sin

kpai

l
¼ aijk:
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Eq. (7) is reduced to the form

m €V ðj; tÞ þ 2

l

XZ

i¼1

X1
k¼1

bip
_V ðk; tÞaijk þ

Nj2p2

l2
Vðj; tÞ ¼ PsinðjotÞ; (9)

where bip denotes the magnitude of the suspension of the i th damper in the p th time interval.
Eq. (9) is linear and describes the nonhomogeneous system with constant coefficients. The solution sought is the general

solution, where integration constants can be simply represented by initial values C1j ¼ Vðj;0Þ, C2j ¼
_V ðj;0Þ. The interval

solutions can simply be combined to a global one. Investigations prove that the standard method for solving the linear
system, i.e. by means of eigen-problems is not sufficient in this case. The solving procedure presented below is based on the
power-series method. By denoting tp�1 by t, the solution for t 2 ðtp�1; tp� is supposed to take the form

Vðj; tÞ ¼
X1
n¼0

dnðjÞðt � tÞn; (10)

where dnðjÞ are unknown sequences. Then

_V ðj; tÞ ¼
X1
n¼0

ndnðjÞðt � tÞn�1; €V ðj; tÞ ¼
X1
n¼0

ðn� 1ÞndnðjÞðt � tÞn�2; (11)

and Eq. (9) can be written as

m
X1
n¼0

ðn� 1ÞndnðjÞðt � tÞn�2
þ

2

l

XZ

i¼1

X1
k¼1

X1
n¼0

bipaijkndnðkÞðt � tÞn�1
þ

Nj2p2

l2

X1
n¼0

dnðjÞðt � tÞn ¼ PsinðjotÞ: (12)

Representation of sinðjotÞ in a power series gives

sinðjotÞ ¼ sinðjoðt � tþ tÞÞ ¼ sinðjoðt � tÞÞcosðjotÞ þ cosðjoðt � tÞÞsinðjotÞ

¼ cosðjotÞ
X1
n¼0

ð�1ÞnðjoÞ2nþ1
ðt � tÞ2nþ1

ð2nþ 1Þ!
þ sinðjotÞ

X1
n¼0

ð�1ÞnðjoÞ2n
ðt � tÞ2n

ð2nÞ!
: (13)

Then we have

m
X1
n¼0

ðnþ 1Þðnþ 2Þdnþ2ðjÞðt � tÞn þ
2

l

XZ

i¼1

X1
k¼1

X1
n¼0

bipaijkðnþ 1Þdnþ1ðkÞðt � tÞn þ
Nj2p2

l2

X1
n¼0

dnðjÞðt � tÞn

¼ PcosðjotÞ
X1
n¼0

ð�1ÞnðjoÞ2nþ1
ðt � tÞ2nþ1

ð2nþ 1Þ!
þ PsinðjotÞ

X1
n¼0

ð�1ÞnðjoÞ2n
ðt � tÞ2n

ð2nÞ!
: (14)

It is commonly known that for every sequence gn, the following equation is satisfied:

X1
n¼0

gnðt � tÞ
n
¼
X1
n¼0

g2nðt � tÞ
2n
þ
X1
n¼0

g2nþ1ðt � tÞ
2nþ1: (15)

Finally Eq. (14) is rewritten in the form

m
X1
n¼0

ð2nþ 1Þð2nþ 2Þd2nþ2ðjÞðt � tÞ2n
þ

Nj2p2

l2

X1
n¼0

d2nðjÞðt � tÞ2n
þ

2

l

XZ

i¼1

X1
k¼1

bipaijk

X1
n¼0

ð2nþ 1Þd2nþ1ðkÞðt � tÞ2n

þm
X1
n¼0

ð2nþ 2Þð2nþ 3Þd2nþ3ðjÞðt � tÞ2nþ1
þ

Nj2p2

l2

X1
n¼0

d2nðjÞðt � tÞ2n

þ
2

l

XZ

i¼1

X1
k¼1

bipaijk

X1
n¼0

ð2nþ 2Þd2nþ2ðkÞðt � tÞ2nþ1



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t/ (l/v)

u 
(x

 =
 0

.5
l, 

t)

s = 59
s = 61
s = 65

Fig. 5. Solutions computed for different numbers of time intervals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

u 
(x

 =
 0

.5
l, 

t)

98 terms
100 terms
FEM

t/(l/v)

Fig. 6. Solutions computed for different numbers of terms in a power series and compared with the FEM solution.

D. Pisarski, C.I. Bajer / Journal of Sound and Vibration 329 (2010) 140–149 145
¼ PcosðjotÞ
X1
n¼0

ð�1ÞnðjoÞ2nþ1
ðt � tÞ2nþ1

ð2nþ 1Þ!
þ PsinðjotÞ

X1
n¼0

ð�1ÞnðjoÞ2n
ðt � tÞ2n

ð2nÞ!
: (16)

Comparing equivalent terms, we obtain the system of recurrence equations

mð2nþ 1Þð2nþ 2Þd2nþ2ðjÞ ¼ �
2

l

XZ

i¼1

X1
k¼1

bipaijkð2nþ 1Þd2nþ1ðkÞ �
Nj2p2

l2
d2nðjÞ þ PsinðjotÞ ð�1ÞnðjoÞ2n

ð2nÞ!
;

mð2nþ 2Þð2nþ 3Þd2nþ3ðjÞ ¼ �
2

l

XZ

i¼1

X1
k¼1

bipaijkð2nþ 2Þd2nþ2ðkÞ �
Nj2p2

l2
d2nþ1ðjÞ þ PcosðjotÞ ð�1ÞnðjoÞ2nþ1

ð2nþ 1Þ!
; (17)

and d0ðjÞ ¼ Vðj; tÞ, d1ðjÞ ¼ _V ðj; tÞ.
Numerical results exhibiting the convergence rate of the obtained solution are presented next. In the analysis we use 60

modes and 40 terms in a power series. The following data were assumed: m ¼ 1, l ¼ 1, N ¼ 0:5, P ¼ 0:1, v ¼ 0:2
ffiffiffiffiffiffiffiffiffiffi
N=m

p
,

Z ¼ 1; a1 ¼ 0:5l. The suspension magnitude is assumed to be constant and equal to one ðb1p ¼ 1; 8p ¼ 1; . . . ; sÞ.
Fig. 5 presents the solution at x ¼ l=2. Curves are plotted for various numbers of intervals s ¼ 59;61 and 65. For a lower
number of time intervals and greater time increments the solutions diverge.

To extend the radius of convergence, more terms in a power series have to be taken into account. Fig. 6 shows the
solution of the previous problem for s ¼ 25 and the number of terms in a power series equal to 98 and 100. The dashed line
represents the solution obtained by the finite element method.
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3. Control strategy

In this section we present a control method based on the analysis and respective numerical results of the solution.
Further, we investigate the efficiency of the proposed control strategy by means of values of defined payoffs. The advantage
of the derived analytical solution is its continuity, which offers the possibility to define the performance index in the
integral form.

The considered model is shown in Fig. 7 and it is described by the equation

EJ
q4uðx; tÞ

qx4
þ m q2uðx; tÞ

qt2
¼ �

X2

i¼1

biðtÞ
quðai; tÞ

qt
dðx� aiÞ þ Pdðx� vtÞ: (18)

We consider the Bernoulli–Euler beam as a continuum with the following parameters: l ¼ 2 m;m ¼ 0:78 kg=m;

EJ ¼ 104 Nm2. Active dampers are fixed to the beam at points a1 ¼ 0:25 l and a2 ¼ 0:75 l. The force P ¼ 1000 N is
travelling with the velocity v ¼ 0:7 c, where c denotes so-called critical speed and c ¼ p=l

ffiffiffiffiffiffiffiffiffiffi
EI=m

p
.

The formulated system is classified as bilinear. Numerous techniques, which stem primarily from the calculus of
variation, have been derived for the optimal control solution of such a system. Pontryagin’s maximum principle uses
Hamilton’s equations and the Dynamic Programming method leads to the Bellman–Hamilton–Jacobi partial differential
equation. Based on these theories numerous computational technics were developed in the 1960s and 1970s [30]. With the
exception of the simplest cases, however, it is impossible to express controls in an explicit feedback form, owing to
the complicated nature of the associated switching hypersurfaces in the state space. Difficulties increase in the case of the
continuum that is transformed to a multidimensional discrete system.

We propose an open loop control strategy based on the concept presented in Fig. 2. The assumption made the controls
b1ðtÞ; b2ðtÞ piecewise constant and belonging to a closed set B. Numeric investigations proved that the bang-bang controls
exerted the fairest efficiency. In this approach we do not pay attention to optimal solutions in the sense of minimising the
performance index with respect to all admissible controls. We try rather to present cases where semi-active dampers may
outperform passive ones. The goal is to design efficient control so that the practical realisation is the easiest way possible.
l

b1 (t) b2 (t)

a1 a2

EJ

P

v

u (x, t)

X

Fig. 7. Euler–Bernoulli beam system supported with two viscous active dampers.

Fig. 8. Cost functionals as functions of switching times (cases 1 and 3).
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For this purpose and for simplicity we take into account controls that are bang-bang and only one switching time for each
of them is assumed so that

b1ðtÞ ¼ bmaxU1ðtÞ � bmaxU1ðt � t1Þ; b2ðtÞ ¼ bmaxU1ðt � t2Þ; (19)

where U1ðtÞ is a unit step function and bmax ¼ supðBÞ. In fact, damper no. 1 is first switched on then in time t ¼ t1 it turns
into off mode. The situation for damper no. 2 is reversed. Below we define the cost integrands such that they can determine
travel comfort (cases 1 and 3) or structural damage (case 2)

ð1Þ Payoff1 ¼

Z l=v

0
juðvt; tÞjdt

ð2Þ Payoff2 ¼ RMSð _uðvt; tÞÞ ¼
v

l

Z l=v

0
ð _uðvt; tÞÞ2 dt

 !1=2

ð3Þ Payoff3 ¼

Z l=v

0
j €uðvt; tÞjdt (20)

The task is to find pairs ðt1; t2Þ that minimise costs

ðt1; t2Þ ¼ argmin
t1 ;t22½0;l=v�

PayoffðuðtÞ; b1ðtÞ; b2ðtÞÞ; (21)

where b1ðtÞ; b2ðtÞ are defined as before. In Fig. 8 we present mappings ðt1; t2Þ-Payoff1 and ðt1; t2Þ-Payoff3. Numerical
results exert the existence of unique solutions of (21) for all cases. Extremal trajectories for uðtÞ; _uðtÞ; €uðtÞ with their
controls are shown in Figs. 9, 10 and 11, respectively. By the passive case we mean constant damping
b1ðtÞ ¼ bmax;b2ðtÞ ¼ bmax; 8t 2 ½0; l=v�. In computations we assumed bmax ¼ 3� 104 in all cases.

The best performance of the proposed strategy is observed in the first case, where the value of the cost functional is
decreased by more than 30 percent compared with non-active damping. For cases 2 and 3 we expect much better
performance by applying controls with more than one switching. Velocities and accelerations incorporated into these costs
include high-frequency harmonics that can be reduced by high-frequency switching controls. Because of the significantly
higher complexity of the optimisation problem, computing of such controls may be difficult. Appropriate gradient methods
may, however, be useful [31]. The application of existing and the development of new methods for computing higher
dimensional switching vectors are reserved for further work.
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Fig. 11. Extremal acceleration trajectory and controls.
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Fig. 10. Extremal velocity trajectory and controls.
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4. Conclusions

In this paper the analytical solution of the response of a semi-active controlled 1D continuum has been presented. The
technique has been applied to exemplary control systems including string and Euler–Bernoulli beams. The open-loop
control strategy has been proposed and its performance has been verified for three different cost integrands. Control
strategy is simple for a practical design. Further optimisation is the ongoing research topic of the authors.
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