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1. Introduction

In the field of engineering structures, identifying structural modal parameters or physical parameters means extracting
the structural information from both the structural excitation and the response data or only from the response data.
However, the random excitation in an ambient vibration test, which acts on bridges and large buildings, is usually too
complicated to be known or measured, so one has to determine the modal parameters from the response data.

In the last several decades, a series of mature methods have been presented for modal identification subject to the
stationary ambient excitation, but that is not the case for non-stationary situations. Up to now, the better and widely
applied methods for non-stationary situations focus mainly on the time domain and the time-frequency analysis domain.
These methods have their merits in extracting modal parameters from the measured data. In this paper, we discuss mainly
the modal identification methods in time domain. The mature time-domain methods are mainly based upon the time
series models and the structural inversion algorithm.

As a powerful technique for analyzing non-stationary signals, the autoregressive integrated moving average (ARIMA)
model has been widely used in a variety of engineering subjects. To use this method, at first we need to carry out the
difference operation with the non-stationary time series till the resulting series is stationary and thus constant ARMA
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model coefficients are obtained by the model identification. However, the corresponding relationship of
parameters between the structural dynamic model and the ARMA model is quite complicated, especially for the MDOF
system.

In Refs. [1-3], Li, Chen and Joo et al. discussed the structural inversion algorithm of the LTI system subject to the
ambient excitation. The method can estimate both system parameters and inputs by the recursive algorithm. Nevertheless,
the method is computationally intensive due to its iterative nature, and it is unpractical for applications.

Because the response of the system subject to the non-stationary excitation is non-stationary too, it is appropriate to
study it with both the ARMA model with non-stationary stochastic error and the continuous time-varying ARMA model
(TARMA). Sakellariou and Fassois discussed the ARMA model with non-stationary stochastic error in Ref. [4]. Liu [5] built
the link between the continuous time-varying ARMA model and the discrete time-varying ARMA model. Poulimenos and
Fassois [6] gave an overall view of methods on identifying parameters of the discrete time-varying ARMA model. Based on
it, Jachan et al. [7] presented a new time-frequency ARMA model for non-stationary signals. The TARMA model differs
from their conventional, stationary, counterparts in that their parameters are time-dependent. Methods based upon them
are known to offer a number of potential advantages, such as representation parsimony; improved accuracy; improved
resolution; improved tracking of the time-varying dynamics; flexibility in analysis; capturing directly the underlying
structural dynamics responsible for the non-stationary behavior. Inevitably, these methods suffer also from, such as, the
complication of the corresponding relationship between the continuous and discrete ARMA models and the iterative
nature in computation.

Besides, some researchers presented some time-domain modal identification methods from different aspects. Toolan
[8] presented a random subspace method for the system subject to the non-stationary excitation. Mohanty [9] improved
the Ibrahim method when the system is driven by the harmonic excitation.

This paper presents a new efficient time-domain identification procedure to identify the physical parameters and the
dynamic characteristics of a structural system, namely, the stiffness, damping, natural frequencies, modal damping ratios,
and modal shapes, by using the continuous time autoregressive moving average model under the non-stationary ambient
excitation. These models will be introduced in Section 2, we also give a brief exposition of their state space forms. Section 3
transforms the structural dynamic equation of the system into the continuous time autoregressive moving average model.
Section 4, which provides the main contributions of this paper, presents the estimator of the uniformly modulated function
and the exact maximum likelihood estimators of parameters. Section 5 demonstrates the applicability of the method by
numerical simulations. Some conclusions are presented in Section 6.

2. Multivariate Gaussian CARMA process

Definition 2.1. An n-dimensional continuous-time Gaussian autoregressive moving average (CARMA) process (for more
details, see [10]) of order p,q (0 < g <p) is defined symbolically to be a solution of the stochastic differential equation

AD)X(t) = J(t) + 6o ()DW(b) + - - - +064(t)DI+H TW(), (1)

where A(D)=1,DP +A;DP~'+ ... +Ap, A;(i=1,...,p) is the nxn matrix, I, is an n-dimensional identity matrix, the
operator D denotes differentiation with respect to t; J(t) and o;(t) (i=0,...,q) are the n-dimensional column vector and the
nxn non-singular matrix, respectively. o;(t) is called the uniformly modulated function, o;(t)=0 (i=q+1,...,p).
{W;,F:;0 <t < oo} is an n-dimensional Brownian motion. Since D'W(t) (i=1,...,q+1) does not exist, we give meaning
to Eq. (1) by rewriting it as the observation and state equations:

X() = (15,0, ...,00Y()+ Bo(t) dW(D), (2)

dY(t) = AY(t) dt +J(t) dt + C(t) dW(E), (3)

where Y(t) = (Yg(t), ... ,YlTH(t))T denotes an np-dimensional column vector, Y;(t) (i=0,...,p—1) is an n-dimensional column
vector, superscript T denotes transposition, fy(t) = o,(t),

0 I, 0 o 0
0 0 I, 0
A= : ,
0 0 0 I,
Ay —Ap Ay —Aq

and C(t) = (B1(©),....B3(t)", where
B1(t) = 6p_1()—A1 Bo(0),

B2(0) = Gp-2(O)=A2Bo(O—A1 1 (D+1: (dlillt( 0).
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4, d
(6= 03~ Aol Aapy 61~ ot s (a2, 20),

d t
By (®) = 60(t)—ApBo()—Ap_1B1(O)— - - —A1Bp_1 (D +fp (dﬁlt(t)v e ﬂ;g;( )).

where f,(df;(t)/dt) is the function with respect to df,(t)/dt.

The state-space model is also called the undetermined coefficient model (see [11]).
The stochastic differential equation (3) has the following strong solution (see Ref. [12, Section 5.6]):

t t
Y(t) = A0y (tg)+ / A9 (s)ds+ / eA=9C(s) dW(s), (4)
to to

where et =1, + >"p° 1(At)"/k!, to denotes the initial time. For a special circumstance t,=0, we have
ot ot
Y(t) = eAY(0) + / eft=9J(s)ds + / eft=9C(s) dW(s). (5)
Jo Jo

Assuming that the initial state Y(0) has an n-dimensional normal distribution and is independent of W(t), then the
response process Y(t) is Gaussian too and it is completely defined from a probabilistic point of view by the knowledge of
the statistics up to second order, i.e. the mean vector and the covariance matrix. The mean vector and covariance matrix,
for every 0 < t < oo, are expressed as

E(Y(t)) = eME(Y(0))+ /0 eA=9)(s)ds,

Var(Y(t)) = et Var(Y(0))er't + ‘ /0 ‘ eAt=9¢(5)CT(5)el 9 ds.
Let S(t) = Y(t)—E(Y(t)), then
ds(t) = dY(t)—d (eA‘E(Y(O)H— /0 t eA=9Y(s) ds) =dY(t)—AeME(Y(0)) dt—J(t) dt
- [ A ‘ Aer9)(s) ds} dt = AY(t) dt +]J(t) dt + C(t) dW(t)—Aer E(Y(0)) dt—J(t) dt

ot ot
- [ / Aer=9Y(s) cls] dt:A{Y(t)—eA[E(Y(O))— / eAt=9J(s) ds}dt+C(t) dwi(t)
0 0
= A[Y(t)—E(Y(t))] dt + C(t) dW(t) = AS(t) dt + C(t) dW(E).

For notational convenience, we still denote the difference Y(t)—E(Y(t)) as Y(t), so one can obtain the concisely stochastic
differential equation

dY(£) = AY(6) dt +C(t) AW(t). (6)

Therefore, in later sections, we always assume that Y(t) satisfies Eq. (6).
When the order g in the CARMA(p,q) model is zero, the CARMA(p,q) model is also called the CAR(p) model.

3. The CARMA representation of a vibratory system

The structural dynamic equation of an MDOF vibratory system excited by an unknown random Gaussian force can be
expressed as

MX (£)+CX(t)+ KX(t) = u(t), (7)

where (M, C and K are the n x n mass, damping and stiffness matrices, respectively; X(t), X(t) and X(t) are n x 1 vectors of
acceleration, velocity and displacement, respectively, and u(t) denotes the n x 1 external loading vector.

The ultimate goal of modal analysis is to identify the modal parameters of the system, and then to provide the basis for
the vibration characteristics analysis, fault diagnosis, prediction of the structural system and the optimal design of the
structural dynamic characteristics. However, in practical engineering applications, structural dynamic modification and
dynamic design are all implemented through the physical parameters rather than modal parameters. So in order to meet
the structural needs, we eventually need to measure the physical parameters of the structure.In many cases of practical
interest, the masses of a system can be estimated more accurately. Hence, we assume that the mass matrix M is known,
and only K and C need to be identified, and we assume the system is excited by wind load.

In Ref. [13], Harris presented the expression of wind load at height z,

P(z,t) =V(2) + Vg (D),
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where V(z) is the mean wind velocity at height z and v((t) denotes the pulsation wind. The inherent non-stationarity of
wind load means the non-stationarity of v{t). In general cases, v{t) is Gaussian too.

If the random excitation is a non-stationary random perturbation (noise), then wvg{t) can be written by
vp(t) = 21 (H)+n(HDW(t), where ,(t) denotes the trend term of the random excitation. Based on v{t) and the expression
of P(z,t), one can obtain

P(z,t) = Az,t)+n(t)DW (D), (8)

where A(z,t) is the combination of v(z) and A;(¢t).

By virtue of Eq. (8), the non-stationary random excitation vector u(t) in Eq. (7) can be expressed by
u(t) = A(t)+n(t)DW(t), where A(t) is a column vector, {W(t)} is an n-dimensional Brownian motion and #(t) is assumed
to be a non-singular matrix. So Eq. (7) becomes

MX (1) +CX(t) + KX(t) = A(t)+q(t)DW(1).

If random excitation is covariance non-stationary, it is natural to think of describing it by a continuous time MA model
due to the time dependence of the MA model. If we further restrict the order of the MA model to 1, then the structural
dynamic equation can be expressed as

X () + A1 X () + A X(t) = A(t) + 1o ()DW(E) + 1, ()D*W(1). 9)

The above conclusion shows that under some restricted conditions, the structural dynamic equation is essentially a
CARMA model. Once the parameters of the CARMA model are identified, we can obtain the modal parameters by the
eigenvalue analysis method.

The CARMA model differs from the traditional time series models in that it is a continuous time ARMA model, and it
overcomes the deficiencies, such as the lower computing efficiency, the strong dependence on initial parameters and the
higher complexity on the MDOF system, of the discrete time ARMA models.

4. Parameter estimation

In order to give a more full understanding on the modal identification method of the CARMA model, we first introduce
the simpler one of the CAR model.

4.1. Parameter estimation for the CAR model

4.1.1. Parameter estimation when o(t) is an identity matrix

The following method was presented firstly by Brockwell et al. [14] in 2007. In his paper, the estimation of parameters
of the simple degree-of-freedom system was presented under the assumption that the uniformly modulated function is a
constant. In this section, we extend the method to the case of an MDOF system.

Eq. (6) can be expressed as

dYo(t) =Y1(O)dt,

dY; () =Yz(dt,

dY, 2(t) =Y, (0)dt,

de—l (t)= [—ApYo(t)— S —Ay Yp_] 0] dt+ dW(t) (]O)

We see from the first p—1 rows of Eq. (10) that Yj(t) (j=0,...,p—2) is the function with respect to both Y,_1(t) and the
initial state. Assume that the initial state is expressed by Y(0) = (y}, ... ,y;_l)T. the last equation in Eq. (10) can be written in
the form like

dY,_1(t) = G(Y,_1,t) dt+dW(), (11)
where G(Y,_1,t) is an n-dimensional function with respect to {Y,_1(s),0 <s <t}.
Now let us begin with an n-dimensional Brownian motion W(t) (with W(0)=y,_,) defined on the probability space

(C[0,T]",B(C[O,T]"),Py, ). For t<T, let Ft=a(W(s),s <t)vN, where N is the o—algebra of Py _ —null sets of B(C[0,T]".
Equations

dzZy(=Z,(Hdt,

dz,(=Z,(t)dt,
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dZ,_5(t) = Z, By dt,

dz,_;(t) = dW(t),

with Z(0)=Y(0), clearly have the unique strong solution. Indeed, by Definition 5.2.3 of Karatzas and Shreve (see [12]), for
any two processes Z;,l’l(t) and Z;,Z) 1(b) satisfying the above equation, we may observe that

Z0 (=Y, (O +W(D), 0<t<T, i=12,

which means Z;1jl(t) = Zﬁ)](t), as.

Obviously, G(Z,_1,t) is adapted to the filtration ;. One can also verify that fOT HG(Zp,l,t)H2 dt < oo almost surely, where
the notation | - Il represents the Euclidean norm of a vector. Let

t ] ot
L[éexp{ /0 (GZp1.5) AW(S)— 5 /0 |\c(zp,1,s)\|2ds},

then L; is a martingale under probability measure Py _, so the Girsanov Theorem 3.5.1 (see [12]) implies that, under the
probability Pr given by dPr/dPy, | =Lr, the process

W(H)2W(t)— /O tc(zp_l,s) ds, 0<t<T

is an n-dimensional Brownian motion. Hence by Propositions 5.3.6 and 5.3.10 of Karatzas and Shreve (see [12]), we see that
Eq. (6) with initial condition Y(0) have, for 0 <t <T, the weak solutions (Zp,l(t),W(t)) and (Y(t), W(t)), and the weak
solutions are unique in law, and by Theorem 10.2.2 of Stroock and Varadhan (see [15]), they are non-explosive.

If f is a bounded measurable functional on C[0,T]", then

Ef@Zy 1) =Ey, [fZp1)Lr] = / FOLrE) Py, (@),

In other words, Ly is the density, conditional ony,,_1, of Y, _1(t) with respect to measure Py ,.If we can observe Y, 5, then
we could compute the conditional maximum likelihood estimators of the unknown parameters by maximizing Lt .
Estimators via this method are called exact maximum likelihood estimators.

For the CAR(p) process defined by Eq. (6), denoting the realized state process on [0,T] by
{Y(s) =), ....2Z)_1(5)",0 <5 < T}, we have

T T
logLT=/ Gszp,l(sy%/ G’ Gds. (12)
JO JO

Differentiating Eq. (12) with respect to As,....A, and setting the derivatives equal to zero give the exact maximum
likelihood estimators of parameters:

-1

. T T
A1, ....Ap) = —</O dz, 1(z) ... ,zE)) (/0 @ 1020 ) s ,zE)dt) ) (13)

4.1.2. Estimation for o(t)

For many non-stationary cases, the uniform modulated function o(t) is not an identity matrix, so it is necessary to
estimate o(t) firstly.

Eq. (4) can be written in the following form:

Y(t)—eAt-0Y(ty) = / t eft=9¢(s) dW(s). (14)

to

For any h > 0, replacing t with t+h and t, with t, squaring and taking expectation on both sides of Eq. (14), we have

t+h h
E(Y(t+h)—eMY(0)(Y(t+h)—eMY(t)" = / e+ h-¢(s)CT(s)eh (419 ds = / A0+ )CT -+ el B du.
t 0

(15)

Since the interest here is to discuss the modal identification of structural systems, we only need to identify the
parameters of the CAR(2) model. For the CAR(2) model,

0 I, 0
A= A A )’ = o) |

eAh—u) _ (Hll(h—u) le(h—U)>

Let

Hyi(h—u) Hp(h—uw)
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where H; (i,j = 1,2) is the n-dimensional square matrix, then Eq. (15) can be written as

E(Y(t+ h)—eAhY(t))(Y(H— h)_eAhY(t))T _ [(])1 H126(u + t)GT(u + t)H—{Z du ](;l H]zG(U—i— t)O'T(Ll+ t)HEZ du (16)
T\ [P Hpou+ e u+HH, du [ Hyyou+teT(u+tHS, du |

Generally, the uniformly modulated function o(t) is continuous on the observed interval [0,T], therefore,
there exists a sequence {t;} of real numbers with O=ty<t;<--- <t,=T which can divide [0,T] into k
consecutive subintervals Ty,...,Ty, and o(t) is considered as nearly constant matrix (denoted as o(t;)) on the subinterval
T; (i=1,... k).

Now let us consider the ith subinterval T;. Given h >0 and h—0, we can divide T; into m = |T;|/h consecutive sub-
subintervals [t;,t;+h], .. .,[tj+(m—1)h,t;+mh]. For sub-subintervals [t;,t;+h], .. .,[t; +(m—1)h,t;+mh], the right side terms of
Eq. (16) are identical and are the function with respect to o(t;), so the expectation of Eq. (16) can be estimated by the
corresponding sample moment, namely,

S (Y(E+ ) —eAY (6 + - DY (G +jh)—eAY (6 +G-Dh)T |, (Vin Vi
m AV Vo f

Therefore, on the interval T;, the estimator of Eq. (16) is

17
]Oh szG(t,‘)GT(t,’)H-{Z du [(;l szc(t,-)o'T(t,-)ng du v21 v22 ( )

( Jo Hizo(t)a(t)HT, du [ Hizo(6)6™(6)H3, du) ~ <V11 vu>
However, o(t;) only contains n x n parameters, while Eq. (17) contains 2n x 2n equations, which will lead to redundance.
Therefore, only by solving the following equation can obtain the estimator of o(t;):

h
/0 Ha0(t)6" (t)H], du = Vyy. (18)

Obviously, Eq. (18) is a nonlinear function of the parameter o(t;), so a nonlinear algorithm is needed. The following are
only several computing formulas for some especial cases in practical applications.

1. o(t;) is a diagonal matrix.

The assumption applies to the case that the random excitation is space-uncorrelated.

Assuming o(t;) =diag(oq,...,0,) is a constant matrix on the interval T;. If we choose the diagonal elements of
f(',’ szc(ti)o-T(ti)ng du to construct a column vector, and the diagonal elements of V,;, to construct the column vector
(V11,...,Unn)", then from Eq. (18), we have

h h h
V11 Johtdu  fghidu .- [ghi,du o?
U?z — (? h%1 du th h%Z du - f(;l h%n du O-% (19)
Vnn Jordu iR du - [oh2 du ) \ %

where h; = h;(h—u) (i,j=1,...,n) denotes the (ij)th element of H,,. Therefore, from Eq. (19), one can obtain the estimator
of 62(t;) on the interval T;:

~ h h h -1

‘7% Johdu  fghidu -~ [yhi,du V11

Gy | _ | Jomsidu fomsdu o fon3,du || va (20)
&, Joh2du  fihZdu o fghZ,du Vnn

In the above computation process, we need to know the sub-matrix H,, of e which is unknown because
A is an unknown parameter. However, when h tends to 0 and A has the form in Section 3, e" is nearly a constant
matrix. So we can use the raw estimator of A obtained in Section 4.1.1 as the initial value to compute e®", then obtain the
estimator of o(t;) from the above equation. Finally, the estimator of o(t) can be obtained by spline interpolation of
6t) (i=1,....k.

2. 6(t;) is a special block diagonal matrix.

The assumption applies to the case that the random excitation is space-correlated.



4300 X.L. Du, F.Q. Wang / Journal of Sound and Vibration 329 (2010) 4294-4312

Assuming o(t;) is expressed as

cpr 0 .- 0
6, 0 ... 0
] 0 0
Glig 0 - 0
Gy 0 - 0
i1 0 - 0
op, 0 --- 0

where the main diagonal of o(t;) includes j = mod(n,l) or j = mod(n,l)+1 sub-matrices.
Let

[ h2, du ["h2 du 2 [ hyyhyy du
J¥h2, du J¥h2, du 2 [2 hy by du
f(? hi1hy1 du f(l; hinha, du fg(huhzl-i-hnhzz)du
C=| Jfohithndu Jo hinhpn du Jothizh +hy1hyp) du
f(’; ha1h3y du fg hanhs, du fg(hzzhm +hah3y)du
‘]g' hy1hyy du f(? honhyn du _]g(hzzhm +hay1hn) du
Jo hu-1yt ot du Jo ha-tnhan du— f3 (ha-12hm + a1y he) du

2[51 h]]h]n du f(})l 2h]2h13 du

2 [2 hy hn du S 2hnyhys du
fg(h1nh21+hnh2n) du fg(h13h22+h12h23)du
ﬁf(hmhm +hi1han) du ,/él(h13hn2+h12hn3)du
fg(h2nh31 +hy1h3p) du fg(h23 h3z 4+ hyyhs3) du
fg(thhnl +hy1hpn) du f(?(hZBhnZ +hyohp3) du

f(’;(h(rz—l)nhnl +hg_1y1hpn) du fg(h(nq)s hyz +hp_1y2hp3) du

J22hy5h1, du T2 2Ry 1) h1n du
I 2ha b, du 2 21y han du
,[g(hlnhzz +hizhn) du

S8 hinham 1) +hi-1yhan) du

fél(hmhn(n—])+h1(n—1)hnn) du
]g(thhanq)+h2(n71)h3n) du

f(?(hlnhHZ + h]lhnn) du
J(hanhsa +hashzy) du
f(’;(hZthZ +hozhpg) du f(};(thhn(n—h +hog—1yhnn) du
Jo (hn—tnhn2 +hn_1)2hnn) du T tmhn-1) + 11y han) du

T
V=W, UnnV12s - V1naV230 -5 V2ns - V1)
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then the first n rows of C~!'V give the estimator of &2(t;). Finally the estimator of &(t) can be obtained by spline
interpolation of 6(t;) (i=1,...,k).

When [ > 1, the determinant of the above matrix o(t;) is zero, so o(t;) is singular. However, the parameter identification
method in Section 4.1.3 requires the non-singularity of o(t;). Therefore, we present a new method, that is, constructing the
new matrix

By
B,
o1(t) = - )
B;
where
Oi-1)i+1 0 -0
O i .o 0
B — I 1:)l+2 pog :1)l+2 ) : G=1,.. )
ail 0 -+ poj

to adjust o(t;). When p is small enough, 6(t;) is quite close to o(t;), and o1(t;) is non-singular.
3. o(t;) is the lower triangular matrix.
When h tends to 0, E(Y(t+h)—eArY(0))(Y(t 4 h)—eAhY ()T ~ eAfcCTeA™h, thus,
CC" = e ARE(Y(t + h)—ePY (1)) (Y(t + h)—eAhY(t))Te A" /h.

In fact, A is the unknown parameter, but when h tends to 0 and A has the form in Section 3, the sub-matrices H;; and
H,, of e*" always approximate to the identity matrices, and H;» always approximates to the zero matrix, so

_Ah <Hll1 0 >
e M PN
*  H,

o(t)6" (t) = Hy; Voo Hog /.
When o(t;) is the lower triangular matrix, estimating o(t;) means the Cholesky decomposition of H2‘21V22H52T /h, and the
decomposition is unique.

so we have

4.1.3. Parameter estimation when o(t) is the function of time
Eq. (6) can be expressed as

dYo(t) =Y () dt,

dY;(H) =Y, (O dt,

dY, 2() =Y, () dt,

de,] 6= [7ApYo(t)f e —Ay Yp,l (O1dt+o(t) dW(t), (21)
and
de_1 (t)= G(Yp_1 ,H) dt+o(t) dW(t).

Assume W(t) is an n—dimensior}al Brownian motion just as in Section 4.1.1, Z,_1(f) = fé o(s)dW(s), Y(0) = (¥}, . .. ,y;_l)T.
Let us define probability measure Pt and process W(t) = W(t)— [é 67 1(5)G(Z,-1,5)ds as in Section 4.1.1. If 67! (t) exists and is
bounded, and let

t 1 t
L= exp{/o (6 1)G(Zp_1,9)" dW(s)fj/0 I~ 1 (OG(Zy_1,5)I1? ds},

then L, is a martingale, and under the probability measure Py, {W(t),0 <t <T} is an n-dimensional Brownian motion.
So Eq. (6) has the weak solution for 0 <t < T, and Lr is the density, conditional ony, 4, of Y,_4(t) with respect to measure
Py, ,. Therefore, we could compute the conditional maximum likelihood estimators of the unknown parameters by
maximizing Ly.

The logarithm likelihood function can be expressed as

T 1 T
logLy = /0 GT(GGT)‘l(s)dzp,1(s)—§ /O G'(o6") " '(s)Gds. (22)
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Differentiating Eq. (22) with respect to A;,...,A, and setting the derivatives equal to zero give the exact maximum
likelihood estimators.

AsTsuming P=(A;,...,Ap) is the parameter of the CAR process defined in Section 2. Let Y(t):(leH(t),...,zg(t))T,
YOY ()= (@ (D), ... anO)RE) =@ (H) @ (6(t)6" ()7, ...,anp) @ (6(t)e" ()™, then the exact maximum likelihood
estimator of parameters is given by [16]

R T -1 T T
Vec(P)= — ( /0 R() dt) Vec ( /O (66" (1) dzy,1 (Y (t)), (23)

where Vec(-) is a column vector valued function listing the columns of the matrix in brackets one below the other and ®
represents the Kronecker product.

4.2. Parameter estimation for the CARMA model

CARMA(p,q) process
XP(O)+ A XP V() + - - +Ap 1X(0) +ApX(E) = Go()DW(D) + - - - +04(£)D9H DW(E) (24)

can also be written in another state space form, namely, the ancillary variable model. The following is the detailed
description of the new form.
Introducing the ancillary variable s(t) so that

SO(D)+ AP V() + - - +Ay18(0)+Aps(t) = DW(D),

GOS0+ - - - +G0(D)s(t) = X(b),
then the state variables are

Y1) =s(0),

V1O =¥, =5(t),

Vp(t) =$P() = —Ap¥ 1 (6)—Ap_1¥2()—A1¥ 5 (1) + Go()DW(E).

Assume that 6(t), ...,04(t) are all continuous functions on the observed interval [0,T], therefore, there exists a sequence
{t;} of real numbers with0 =ty < t; < --- < t, =T which can divide [0,T] into k consecutive subintervals Ty,...,Ty, and o;(t) is
approximately equal to a constant matrix on the subinterval T; (i=1,...,k). Then Eq. (24) can be rewritten into the state-
space form on every interval T; (i=1,...,k):

X(t) = (60(t),61 (L), - - . ,64(t),0, ... ,0)Y (D),

dY(t) = AY(t) dt+ CdW(t),

where C=(0,...,0,I,)".

For the CARMA(2,1) model, we furthermore assume 6y(t) is a constant matrix, then its two state space models are
expressed respectively as follows.

(1) The undetermined coefficient model

X(t) =@, 0)Y(D), (25)

dY(t) = AY(t) dt + C(t) dW(t), (26)

where Y(t) = (Y (t),Y1(t)" denotes the 2n-dimensional column vector, Y{(t) (i=0,1) is the n-dimensional column vector,
C(t)=(B1(6),B5(t)" and A= (,',J\2 ,',’il)- B1(t) =61(), Bo() = 6o—A161(t)+61(0).

(2) The ancillary variable model: Assume o6(t) is the piecewise continuous function, the state-space model on every
interval T; (i=1,...,k) is expressed by

X(t) = (60,61 ()Y (D), (27)
dY(t) = AY(t) dt+ CdW(t), (28)

where C=(0,I,)".

4.2.1. Estimation for ¢4(t)
Let us consider the undetermined coefficient model firstly. When h tends to zero and A has the form in
Section 3, the sub-matrices H;; and H,, of e always approximate to the identity matrices, and H,; approximates
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to zero matrix, so

Just as in Section 4.1.2, we have

Jupie+wpiE+wdu [ fi(By0)dt

E(Y(t+h)—efrY(©)(Y(t+h)—efY()! = 29
(MmO ) JoBaendt — [3 (B0 dt 29)
where fi(,(t)) (i=1,2,3) denotes the function with respect to B,(t).
On the interval T;, Eq. (29) can be estimated by
c1(t)ol(toh [y fi(By(t)de Vii Vi
Jo (Bt de o fs(Byt) dt Var Vo

Table 1

Damping matrices of the seven-storey frame structure (kN s/m).
Theoretical values
958 —481 0 0 0 0 0
—481 1127 —646 0 0 0 0
0 —646 1292 —646 0 0 0
0 0 —646 1292 —646 0 0
0 0 0 — 646 1200 —554 0
0 0 0 0 —554 1108 —554
0 0 0 0 0 —554 554
Identified results: p; =1
958 —485 9 1 —13 11 -2
—481 1123 —638 2 —14 11 -2
0 —649 1299 —645 —-11 9 -2
0 -4 —639 1294 —658 9 -2
14 —24 25 —662 1195 —530 —-13
15 -25 25 —16 —560 1133 —567
16 —-26 27 —18 -6 —528 541
Identified results: p; =2
962 —457 —46 43 —14 —20 14
—477 1151 —692 43 —14 —20 14
0 —651 1303 —641 —22 30 —-17
0 -5 —636 1298 —669 31 —18
16 —28 33 —677 1224 —564 3
17 —30 35 —-32 —530 1098 —551
—40 36 —126 167 —-97 —491 513
Identified results: p; =3
965 —480 —10 10 2 —-14 9
—475 1128 —657 11 2 —-14 9
6 —646 1284 —637 1 —-12 8
-2 2 —646 1289 —638 -5 2
-2 2 0 —650 1209 —559 2
-2 2 0 -4 —545 1103 —553
-36 97 —-112 87 —-18 —642 633
Identified results: p; =4
994 —489 59 —100 11 42 -8
—471 1133 —632 6 -39 36 —20
17 —655 1354 —599 75 27 -7
43 —53 —594 1318 —632 -5 —22
38 29 -9 —662 1217 —545 19
—26 24 68 —44 —560 1138 —551

—68 —26 89 -10 —-54 —548 558
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However, in the above equations, except Vi1 = 61(t;)6] (t;)h, the other equations are all nonlinear functions with respect to
the unknown parameters, which means we can get the parameters estimator easily only by solving V11 /h = 61(t)o1(t)).

4.2.2. Estimation for A
After obtaining the estimator of ¢;(t;), we can compute the state vector from the ancillary variable model on every
interval T;, then the structural parameters can be estimated by the undetermined coefficient model just as in Section 4.1.1.

5. Simulations

To demonstrate the effectiveness and accuracy of the system identification methodology presented above, we carry out
some numerical simulations in Matlab on a seven-storey shear-building model with the following properties. The mass
matrix is M=diag(723 714, 686091, 549693, 549693, 549 693, 549693, 549693)kg, with diag(-) designating diagonal
matrix. The viscous damping and stiffness matrices are shown respectively in the (2)-(8) rows of Tables 1 and 2.

5.1. Simulations by the CAR model

Assume that the random eXxcitation is a continuous time white noise modulated by the uniformly modulated function,
then it is variance non-stationary with the variety of the uniformly modulated function. Now we assume the structure is

Table 2
Stiffness matrices of the seven-storey frame structure (10° N/m).

Theoretical values

6729 —3320 0 0 0 0 0
—3320 7309 —3989 0 0 0 0
0 —3989 7978 —3989 0 0 0
0 0 —3989 7978 —3989 0 0
0 0 0 —3989 7651 —3662 0
0 0 0 0 —3662 7324 —3662
0 0 0 0 0 —3662 3662
Identified results: p, =1

6743 —3344 32 —18 -9 15 -6
—3333 7293 —3955 —-25 19 -11 2
-1 —3975 7964 —4017 48 -2 -15
-10 5 —3999 7990 —4005 13 -2
12 -16 -7 —3986 7675 —3694 15
12 -17 —-10 32 —3685 7337 —3667
3 —26 33 —-13 -4 —3663 3665
Identified results: p; =2

6727 —3313 —-12 13 -9 1 1
—3322 7316 —4001 13 -9 1 2
-8 —3974 7960 —3984 7 -4 0
-8 16 —4008 7983 —3982 -4 0
0 -3 18 —4021 7674 —3671 2
0 -3 19 -33 —3638 7315 —3660
28 —56 74 -71 54 —3687 3667
Identified results: p; =3

6730 —3322 2 -4 4 0 -1
—3319 7307 —3987 -4 4 0 -1
1 —3991 7980 —3992 3 0 -1
0 -4 —3981 7972 —3986 -3 2
0 -5 8 —3995 7654 —3665 2
0 -5 9 -7 —3659 7321 —3660
28 —61 55 —-12 20 —3716 3694
Identified results: p; =4

6729 —3322 2 0 -1 2 -1
—3320 7307 —3986 0 -1 2 -1
0 —3991 7980 —3989 -1 2 -1
0 -2 —3987 7978 —3990 2 -1
-2 2 4 —3997 7657 —3667 3
-2 2 4 -8 —3655 7318 —3659

-2 2 4 -9 7 —3668 3666
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Fig. 1. Displacement response at the 1st floor of the seven-storey frame structure.
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Fig. 2. Modulated functions at the 1st floor of the seven-storey frame structure. The left represents theoretical values and the right represents identified
results.

Table 3
Natural frequencies and damping ratios of the seven-storey frame structure.

Mode Theoretical values Identified results: p; =1
Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

1 0.8483 0.0040 0.8467 0.0042
2 2.4303 0.0116 2.4287 0.0116
3 3.9407 0.0190 3.9407 0.0189
4 5.2585 0.0249 5.2569 0.0249
5 6.2818 0.0302 6.2818 0.0303
6 7.3100 0.0357 7.3100 0.0356
7 8.1853 0.0410 8.1853 0.0410

excited by the variance non-stationary time-uncorrelated Gaussian random force, then its structural dynamic equation can
be described by the CAR(2) model.

In the simulation process, the continuous-time Gaussian white noise is generated by dW(t)/dt, where W(t) is a standard
Brownian motion. The uniformly modulated function is a continuous function with respect to the time t. Its value
determines not only the oscillation level of the random excitation but also the amplitude of the displacement of a system.
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In the simulation, the value of the uniformly modulated function is controlled by the allowed maximum displacement of
the structure. The selection of the simulation time lies on the estimation of the uniformly modulated function. In this paper
we assume that the uniformly modulated function is a piecewise smooth function, the length of each period is set to 1s. By

Table 4
Natural frequencies and damping rations of the seven-storey frame structure: p; = 2,3,4.

Mode pL=2 pL=3 pL=4
Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)
1 0.8467 0.0038 0.8483 0.0047 0.8467 0.0067
2 2.4287 0.0120 2.4287 0.0116 2.4303 0.0130
3 3.9407 0.0184 3.9391 0.0195 3.9407 0.0197
4 5.2553 0.0249 5.2585 0.0253 5.2569 0.0266
5 6.2834 0.0300 6.2898 0.0305 6.2755 0.0312
6 7.3052 0.0363 7.3100 0.0365 7.3100 0.0364
7 8.1917 0.0409 8.1869 0.0408 8.1981 0.0403
Table 5

Modal shapes of the seven-storey frame structure.

Theoretical values

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9650 1.5186 0.6898 —0.3537 —-1.3721 —2.5784 —3.7487
2.6723 1.3413 —0.2961 —0.8160 0.3334 3.8121 9.3820
3.2751 0.7331 -1.0317 —0.0504 1.3226 —0.8952 —11.7416
3.7499 —0.1107 —0.8953 0.7911 —0.5301 —2.9964 10.0041
4.1074 —0.9910 0.0776 0.4109 —1.3075 4.2168 —6.0956
4.2901 —1.5246 0.9791 —0.6428 0.9753 —1.9422 2.0475

Identified results: p; =1

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9632 1.5191 0.6926 —0.3536 —1.3628 —2.4880 —3.6429
2.6698 1.3407 —0.3001 —0.8222 0.3181 3.6684 9.3796
3.2736 0.7319 —1.0431 —0.0400 1.2920 —0.9014 —11.8009
3.7490 —0.1158 —0.9049 0.7998 —0.5093 —2.8394 10.1204
4.1064 —1.0018 0.0763 0.4089 —1.2600 4.0007 —6.2625
4.2898 —1.5388 0.9836 —0.6480 0.9504 —1.8171 2.1423

Identified results: p, =2

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9652 1.5188 0.6906 —0.3525 —1.3728 —2.5869 —3.8808
2.6731 1.3418 —0.2948 -0.8175 0.3382 3.8022 9.6704
3.2765 0.7334 —1.0319 —0.0521 1.3154 —0.9028 —12.1998
3.7518 —0.1110 —0.8977 0.7928 —0.5428 —3.0247 10.4943
4.1094 —0.9923 0.0766 0.4152 —1.3039 4.2407 —6.3540
4.2916 —1.5267 0.9822 —0.6421 0.9803 —1.9267 2.3636

Identified results: p; =3

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9648 1.5185 0.6904 —0.3534 —1.3822 —2.5761 —3.7162
2.6717 1.3412 —0.2954 —0.8147 03514 3.8085 9.3278
3.2740 0.7331 —1.0318 —0.0486 1.3274 —0.8913 —11.6723
3.7481 —0.1106 —0.8966 0.7894 —0.5552 —2.9913 10.0123
4.1049 —0.9911 0.0758 0.4064 —1.3014 4.2120 —6.1406
4.2865 —1.5250 0.9784 —0.6445 1.0083 —1.9332 2.1992

Identified results: p; =4

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.9650 1.5186 0.6891 —0.3537 —-1.3723 —2.5708 —3.7494
2.6723 1.3412 —0.2973 —0.8164 0.3340 3.8062 9.3894
3.2752 0.7329 —1.0329 —0.0509 1.3227 —0.8923 —11.7601
3.7500 —0.1109 —0.8960 0.7910 —0.5308 —2.9868 10.0371
4.1076 —0.9913 0.0789 0.4103 —1.3093 4.1956 —6.0867

4.2904 —1.5248 0.9821 —0.6442 0.9749 —1.9371 2.0666
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the spline interpolation, we obtain the estimator of the uniformly modulated function. However, for the spline interpolation
method, too much or too little datum will affect the calculation accuracy, so we take the simulation time for about 30s. The
simulated time history of the displacement response at the 1st floor of the seven-storey frame structure in 30s is shown in
Fig. 1, the sampling period is 0.001 s. From Fig. 1, we can see that the non-stationarity is evident in terms of variance.

In order to identify stiffness and damping matrices, we first need to estimate the uniformly modulated functions. The
theoretical and identified uniformly modulated functions at the 1st floor are shown in Fig. 2. As observed from Fig. 2, the
identified uniformly modulated function hardly differs from the theoretical curve. The maximum relative error in
identifying the uniformly modulated function is less than 9 percent.

In simulation process, we also introduce the time history of wind velocity (denoted as p;) in order to consider the
spatial correlation of wind load.

The theoretical damping matrix of the building is presented in rows (2)-(8) of Table 1 for comparison. The identified
results, when p; varies from 1 to 4, are presented in the rest rows. As one would expect that these identified results are
very close to the theoretical values too.

The analogous results are true for the stiffness matrices. Table 2 shows the theoretical values and the identified results.

It is observed from Tables 1 and 2 that these identified results agree well with the theoretical values. For all cases, the
maximum error in identifying the stiffness is less than 0.9 percent, whereas the maximum error in identifying the damping
is also less than 5 percent.

To gain a further insight into the modal parameters, we carry out the eigenvalue analysis method after obtaining the
physical parameters of the building. The theoretical frequencies and damping ratios of the building are presented in
columns (2) and (3) of Table 3 for comparison. The identified frequencies and damping ratios for p; =1 are presented in
columns (4) and (5). As shown in Table 3, these identified results are very close to the theoretical values. For all cases, the
maximum error in identifying the natural frequencies is less than 0.2 percent, whereas the maximum error in identifying
the damping ratio is also rather small and is less than 5 percent.

The identified frequencies and damping ratios, when p, varies from 2 to 4, are presented in columns (2)-(7) of Table 4.
It is observed from Tables 3 and 4 that these identified results are very close to the theoretical values. Compared with
Table 3, when p; varies from 2 to 4, it is gradually decreased in identification efficiency. But for all cases, the maximum

1 2 3 4 5 6 7
(€)
2 T T T T T
0
-2 L L L
1 2 3 4 5 6 7
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_1 1 L L L
1 2 3 4 5 6 7
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1 2 3 4 5 6 7
(f)
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0
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@)
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0
_20 1 1 1 1
1 2 3 4 5 6 7

Fig. 3. Modal shapes of seven-storey frame structure. Solid line represents the theoretical values and * represents the identified results. It denotes, from
(a) to (g) respectively, the 1-7th modal shapes.
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Table 6

Damping matrices of the seven-storey frame structure corrupted by noise (kN s/m).
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SNR=85

1238 —580 80 —102 -2 —57 43
-585 1492 -823 —42 28 —14 -8
-19 ~751 1600 -763 43 28 -75
4 34 —694 1444 —642 -9 -20
-28 -5 -58 —679 1413 —643 12
8 -29 32 0 — 696 1364 —658
14 29 112 —58 71 —672 778
SNR=90

1062 —504 24 -20 -29 58 ~13
—530 1274 —769 60 —66 23 —12
6 — 646 1383 —709 —51 72 —24
—54 36 —681 1404 —676 16 -28
-29 39 -29 —692 1385 —700 23
31 -52 52 -53 —579 1307 —619
21 4 -57 ~15 22 —647 685
SNR=100

1022 —534 15 40 -19 0 4
—441 1220 —761 36 94 -97 3
-7 — 664 1350 —684 10 45 —42
-9 0 —610 1231 —620 21 6
-33 50 20 —670 1240 —580 -20
-39 8 —44 ~12 —507 1149 —586
-17 -69 77 -52 15 —568 598
SNR=110

1032 —477 . 21 -90 26 19
—447 1133 —610 —49 —21 -13 44
27 —633 1281 —647 -5 —43 34
-37 20 —688 1388 —639 4 -26
-36 40 —24 —629 1204 —569 -16
66 —92 12 29 ~571 1161 —564
-29 90 -57 48 -53 ~565 612
SNR=120

1032 —472 -19 —47 73 —98 55
-501 1188 —650 —64 5 -29 19
—34 —674 1355 —651 65 —49 -5
—44 44 — 636 1244 —559 —54 12
-36 11 —52 —609 1249 —566 7
14 7 —40 52 — 649 1189 —552
10 27 —101 22 —18 —551 632

error in identifying the natural frequencies is less than 0.2 percent, whereas the maximum error in identifying the damping
ratio is also rather small. However, the larger the time history of the wind velocity becomes, the larger the maximum
identified error is.

The rows of (2)-(8) in Table 5 present the theoretical modal shapes for comparison. The identified results are presented
in the remaining rows of Table 5. The identified results agree well with the theoretical values. We can also reach the
conclusion from Fig. 3.

In order to check the robustness of this method, Gaussian random disturbance forces are added to the response datum.
The simulation results show that when the signal-noise-ratio (SNR) is higher than 85 dB, the approach is robust. The
identified damping and stiffness matrices, when SNR varies from 85 to 120dB, are presented in Tables 6 and 7. It is
observed from Tables 6 and 7 that with the increase of SNR, these identified results are more and more close to the
theoretical values, and eventually stabilize at the theoretical values. The result can be concluded from Fig. 4, which show
the 2nd modal shape when SNR varies from 30 to 150dB.

5.2. Simulation by the CARMA model

Assuming the structure is excited by the covariance non-stationary Gaussian random force, then its structural dynamic
equation can be described by the CARMA(2,1) model. The theoretical and identified uniformly modulated functions are
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Table 7
Stiffness matrices of the seven-storey frame structure corrupted by noise (10° N/m).

SNR=85

6737 —3314 -2 —29 20 —18 22
—3312 7298 —3957 —28 —20 26 —6
-4 —3988 7972 —3984 -1 11 —12
2 7 —4011 7984 —3983 11 -10
10 -10 10 — 4002 7658 —3658 )
5 4 -28 29 —3666 7304 —3647
14 —44 66 —53 37 —3672 3657
SNR=90

6751 —3332 1 -2 10 2 -9
—3328 7329 —3997 —14 22 —26 13
12 —4003 7986 —3985 —-14 —10 15
15 12 —4036 8018 —4002 -2 6
-5 0 8 —4001 7658 —3652 -8
14 —-23 3 22 —3686 7330 —3660
5 11 13 -12 -8 —3634 3646
SNR=100

6715 —3295 —-25 9 8 —-13 7
—3324 7313 —4006 34 —-22 -15 18
17 —4002 7989 —3991 -8 -5 8
-23 18 —3999 7996 —4010 13 -5
13 —13 8 —4001 7678 —3691 11
-8 10 -8 14 —3681 7340 —3669
14 —16 35 —48 36 —3684 3669
SNR=110

6736 —3334 44 —40 -1 -5 12
—3313 7288 —3957 —-12 —10 5 0
-7 —3983 7975 —4000 14 13 —-17
16 -1 —4008 7978 —3976 -2 0
2 -6 23 —4013 7656 —3669 10
20 —15 6 11 —3686 7324 —3651
2 -7 0 16 -31 —3618 3637
SNR=120

6720 —3299 —-17 6 -11 -8 17
—3328 7312 —3976 —-11 —-18 23 -9
-5 —3983 7967 —3984 0 19 -19
18 —-14 —3996 7994 —3999 8 —4
15 -21 23 —4015 7674 —3674 4
—-18 27 —38 29 —3674 7311 —3647
23 —44 55 —42 36 —3685 3667

-2

1

2

3

4

Fig. 4. The 2nd modal shape of seven-storey frame structure corrupted by noise. SNR varies from 30 to 150dB. ‘*’ represents the theoretical values.
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shown in Fig. 5. As observed from Fig. 5, the identified uniformly modulated function hardly differ from the theoretical
curves, but the identified errors become larger compared with the identified results from the CAR(2) model.

The identified damping matrix by the CARMA model is presented in Table 8. It is observed from Tables 1 and 8 that the
identified results are very close to the theoretical values. However, we also see that the identified precision declines
compared with that of the CAR model. The analogous results are true for the stiffness matrices. The identified results are
presented in Table 9.
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Fig. 5. Modulated functions of seven-storey frame structure. The left represents the theoretical values and the right represents identified results.

Table 8
Identified damping matrix of the seven-storey frame structure by the CARMA model (kN s/m).

1019 —523 54 16 —-118 76 -9
—442 1207 —601 —44 -50 —42 50
12 —580 1265 —646 39 —24 9
—-38 6 —756 1494 —697 -10 10
—111 72 —-94 —552 1156 —572 12
137 72 11 —63 —612 1236 —548

3 60 -85 81 —149 —469 670
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Table 9
Identified stiffness matrix of the seven-storey frame structure by the CARMA model (10> N/m).

6721 —3327 74 -90 28 6 -2
—3299 7266 —3937 -19 -27 40 -22
-1 —3952 7896 —3953 38 —18 -8
38 -33 -3929 7856 —3905 -39 22
17 2 8 —3962 7576 —3637 8
-7 25 -22 —18 —3583 7199 —3597
-30 20 -37 50 —42 —3591 3609
Table 10

Natural frequencies and damping ratios of the seven-storey frame structure by the CARMA model.

Mode Theoretical values Identified results
Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

1 0.8483 0.0040 0.8372 0.0116
2 2.4303 0.0116 2.4287 0.0165
3 3.9407 0.0190 3.9232 0.0245
4 5.2585 0.0249 5.2362 0.0253
5 6.2818 0.0302 6.2627 0.0316
6 7.3100 0.0357 7.2559 0.0384
7 8.1853 0.0410 8.1344 0.0417

The identified frequencies and damping ratios are presented in columns (4) and (5) of Table 10. It is observed that these
identified results are very close to the theoretical values. For all cases, the maximum error in identifying the natural
frequencies is rather small, whereas the maximum error in identifying the damping ratio is relatively bigger, especially for
the low-frequency situations.

6. Conclusion

A new time-domain CARMA method using response-only data is proposed in this paper. The system parameters include
the damping parameters as well as the stiffness parameters of a structure. The proposed method is able to estimate the
stiffness and damping properties directly.

Although the CARMA model has been widely used in the traditional modal identification procedures, most of them need
to transform the continuous model into a discrete one and then identify modal parameters, which can lead to a low
computing efficiency. Our method overcomes the deficiency to a certain extent. And the new identification method is
robust when SNR is higher than 85 dB.

Although the method has the advantages mentioned above, many deficiencies can be found. The inevitable deficiency is
that the method can identify parameters efficiently only when the random excitation is a Gaussian process, but in practical
applications most of the random excitations are not Gaussian. Therefore, further study is still needed in the future.
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