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The control synthesis problem is investigated in this paper for a class of semi-active seat

suspension systems with norm-bounded parameter uncertainties, time-varying input

delay and actuator saturation. A vertical vibration model of human body is introduced in

order to make the modeling of seat suspension systems more precise. By employing a

nonlinearity, the existence conditions of the desired state-feedback controller are

derived in terms of linear matrix inequalities (LMIs). The controller is derived by solving

the LMIs and the corresponding closed-loop system is asymptotically stable with a

guaranteed H1 performance. A design example is presented to show the usefulness and

advantages of the developed theoretical results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle suspensions are capable of providing a more comfortable ride by serving the basic function of isolating
passengers from the roughness of the road. In other words, the most important role of suspension systems is the ride
quality improvement, which is drawing increasing attention because of its impact on the drivers’ fatigue, health and
discomfort. Despite much work has been done on primary and secondary suspensions to improve the ride quality [1,2], seat
suspensions are introduced for their simplicity and effectiveness to attenuate high-amplitude vibration in the low
frequency range, in which human body is most sensitive to vibrations in the vertical direction [3–5]. To meet this demand,
numerous types of seat suspension systems, including passive, semi-active and active suspensions, are currently employed
and studied. Especially, the semi-active suspensions have been attracting the most attention in recent years and various
approaches have been proposed to improve the performance, including optimal control [6], fuzzy logic and neural network
control [7], adaptive control [8], H1 control [9,10], and gain-scheduling control [11], for instance.

Time delays are widely encountered in the control loops because of the electrical and electromagnetic characteristics of
the actuators, which often degrade the control performances and even cause system instability. As a result, they have been
widely studied during the past decades and many analytical techniques and synthesis methods have been developed using
delay-dependent Lyapunov function concerning conservatism [12–18]. However, it is worth mentioning that most existing
results for seat suspension systems have not taken time delays in the system into account, and ignoring them may cause
deterioration in the control performance or even render the system unstable, which motivates our present study. The input
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delay in this paper is assumed to be time varying in a range with upper and lower bounds, and a delay-range-dependent
Lyapunov function is employed to further reduce conservatism [19,20].

Moreover, actuator saturation appears frequently in engineering systems, which is also a source of performance
degradation and the closed-loop system instability. Therefore, the analysis and synthesis of control systems with actuator
saturation nonlinearities have been a highlighted research topic in the research and industry domain in the past few years,
and many results have been reported [21–23]. However, to the best of the authors’ knowledge, this control method has not
been tried for the seat suspension system in available literatures, which is another motivation of the research in this paper.

Besides, many uncertain factors such as the inaccuracies of model parameters and the errors of sensors and actuators,
degrade the vibration attenuation performance and safety during the driving process. In recent years, many results have
been reported to deal with the uncertainties in order to guarantee the closed-loop performance [24–27]. This robust
control design method is also considered in this paper to ensure the closed-loop system asymptotical stability and H1
performance in spite of the parameter uncertainties.

Last but not least, most existing results concerning with seat suspensions have limited their scope to model the diver as
a rigid dummy mass on the seat, which is obviously not precise enough to investigate the performances because no
biodynamics are included. Therefore, the sophisticated research of ride comfort and safety improvement calls for a
mathematical seated human body model. This paper utilizes a four DOF human body model to depict the essential
dynamics of a seated human exposed to vertical vibration to obtain a good tradeoff between facility and accuracy as well as
a better insight of the controller design.

In this paper, we are interested in the problem of robust H1 state-feedback controller design for a class of semi-active
seat suspension systems with time-varying input delay, norm-bounded parameter uncertainties and actuator saturation. In
order to obtain a better insight of the suspension system performance, a vibration model of human body is introduced and
combined with the seat. By defining a Lyapunov functional more appropriate for the underlying systems and exploring the
special property of the saturation nonlinearity to utilize an auxiliary feedback matrix, a less conservative condition is
obtained, which turns out to be equivalent to a set of linear matrix inequalities (LMIs) [28]. And the desired controller can
be obtained after solving the LMIs with standard numerical algorithms so that the corresponding closed-loop system is
asymptotically stable and has a guaranteed disturbance attenuation level. Simulation results of a design example are given
to show the effectiveness of the proposed controller design method.

The rest of this paper is organized as follows. Section 2 addresses the problem of multiobjective state-feedback
controller design for a semi-active seat suspension system with human body model. Section 3 presents the main results,
including stability and performance analysis. A design example demonstrating the effectiveness and advantages of the
proposed methodology is given in Section 4 and some concluding remarks are given in Section 5.

2. Problem formulation

In this study, a three-degree-of-freedom seat suspension model shown in Fig. 1 established by Wei and Griffin in 1998
[29] is considered for controller design. In this figure, m1 is the mass of seat frame; m21 and m22 are the masses of human
thighs together with buttocks and the seat cushion, respectively, and m2 ¼ m21 þm22; m3 is the mass of the upper body of
a seated human. The mass of lower legs and feet is neglected because of their little contribution to the biodynamic response
of the seated body. c1, c2 and k1, k2 are dampings and stiffnesses of the passive suspension system, respectively; c3 and k3
C3 k3

C2 k2

C1

k1 Sat (u (t-d))

z0

z1

z2

z3Human body

Buttocks & Seat
Cushion

Seat Frame

Cabin Floor

m3

m21

m22

m1

Fig. 1. Vibration model of the seat suspension system.



ARTICLE IN PRESS

Y. Zhao et al. / Journal of Sound and Vibration 329 (2010) 4335–4353 4337
stand for the damping and stiffness of the components inside human body such as spines; z1, z2 and z3 are the
displacements of the corresponding masses; z0 is the road displacement input, oðtÞ ¼ _z0ðtÞ represents the disturbance
caused by road roughness; u is the active control input of the seat suspension system. To predict the biodynamic responses
more reasonably, the mass of buttocks and legs is assumed to contact rigidly with the seat. The road excitation input is
transmitted to the cabin floor. It is also assumed that only the vertical motion of the vehicle exists for simplification.

The governing equations of motion for the seat suspension can be expressed as

m1 €z1 ¼ �c1ð_z1 � _z0Þ � k1ðz1 � z0Þ þ c2ð_z2 � _z1Þ þ k2ðz2 � z1Þ � u;

m2 €z2 ¼ �c2ð_z2 � _z1Þ � k2ðz2 � z1Þ þ c3ð_z3 � _z2Þ þ k3ðz3 � z2Þ;

m3 €z3 ¼ �c3ð_z3 � _z2Þ � k3ðz3 � z2Þ: (1)

By defining the state variable as

xðtÞ ¼ ½x1ðtÞ x2ðtÞ x3ðtÞ x4ðtÞ x5ðtÞ x6ðtÞ�
T; (2)

where

x1ðtÞ ¼ z1ðtÞ � z0ðtÞ; x2ðtÞ ¼ _z1ðtÞ; x3ðtÞ ¼ z2ðtÞ � z1ðtÞ;

x4ðtÞ ¼ _z2ðtÞ; x5ðtÞ ¼ z3ðtÞ � z2ðtÞ; x6ðtÞ ¼ _z3ðtÞ; (3)

which are the deflections of the corresponding springs and velocities of the mass segments.
Then the dynamic equations in (1) can be written in the following state-space form:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ BwoðtÞ; (4)

where

A ¼

0 1 0 0 0 0

�
k1

m1
�

c1 þ c2

m1

k2

m1

c2

m1
0 0

0 �1 0 1 0 0

0
c2

m2
�

k2

m2
�

c2 þ c3

m2

k3

m2

c3

m2

0 0 0 �1 0 1

0 0 0
c3

m3
�

k3

m3
�

c3

m3

2
66666666666664

3
77777777777775
;

B ¼ 0 �
1

m1
0 0 0 0

� �T

;

Bw ¼ �1
c1

m1
0 0 0 0

� �T

: (5)

The seat suspension model becomes an uncertain model with time-varying input delay when changes in vehicle inertial
properties, actuator time delays and saturation nonlinearities are taken into account, which can be expressed as

_xðtÞ ¼ AxðtÞ þ Bsðuðt � dðtÞÞÞ þ BwwðtÞ; (6)

the actuator delay dðtÞ is a time-varying continuous function that satisfies

d1rdðtÞrd2; 0r _dðtÞrm; (7)

where d1 and d2 are the lower and upper bounds of the input delay, respectively, and m is the delay variation rate limit. The
parameter uncertainties considered here are norm-bounded of the form

A ¼ Aþ DA;B ¼ Bþ DB;

½DA DB� ¼ L1FðtÞ½EA EB�; (8)

where L1, EA, EB are known constant real matrices of appropriate dimensions, and FðtÞ is an unknown matrix function with
Lebesgue-measurable elements satisfying FT

ðtÞFðtÞrI, and the actuator saturation nonlinearity is described by

sðuðtÞÞ ¼ ½sðu1ðtÞÞ sðu2ðtÞÞ � � � sðuqðtÞÞ�
T;

sðuiðtÞÞ9

ui max if uiðtÞZui max;

uiðtÞ if � ui maxruiðtÞrui max;

�ui max if uiðtÞr� ui max:

8><
>: (9)
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Before designing the state-feedback control law for a seat suspension system, we need to consider the following aspects:
(1) Ride comfort: Ride comfort can be generally quantified by the body acceleration in the vertical direction, thus, it is

chosen as the first control output, i.e. minimizing the vertical acceleration of human body €z3ðtÞ is one of our most
concerned objectives in the controller design, that is,

zo1ðtÞ ¼ €z3ðtÞ:

Moreover, the H1 norm is employed to measure the performance, whose value actually gives an upper bound of the
root-mean-square gain. Hence, our goal is to minimize the H1 norm of the transfer function from the disturbance wðtÞ to
the control output zo1ðtÞ in order to improve ride comfort.

(2) Suspension deflection limitation: The controller should be capable to prevent the suspension from hitting its travel
limit in order to avoid ride comfort deterioration and mechanical structural damage. The requirement is

zo2ðtÞ ¼ jz1ðtÞ � z0ðtÞjrzmax; (10)

where zmax is the maximum suspension deflection limit, under all road disturbance inputs. The deflection space does not
need to be minimized but its peak value needs to be limited.

Therefore, the strategy in the seat suspension system control law designing is to minimize the H1 norm of the transfer
function from the disturbance wðtÞ to the control output zo1ðtÞ and guarantee the suspension stroke requirement.

Then, the vehicle seat suspension system can be described by the following state-space equations:

_xðtÞ ¼ AxðtÞ þ Bsðuðt � dðtÞÞÞ þ BwwðtÞ;

zo1ðtÞ ¼ C1xðtÞ;

zo2ðtÞ ¼ C2xðtÞ; (11)

where A, B, Bw are already defined in (5), and

C1 ¼ ½0 0 0 c3=m3 � k3=m3 � c3=m3�;

C2 ¼ ½1 0 0 0 0 0�;

with

C1 ¼ C1 þ DC1;DC1 ¼ L2FðtÞEc:

In this paper, our goal is to find a state-feedback control law

uðtÞ ¼ KxðtÞ; (12)

such that the following requirements are satisfied:
(1)
 the closed-loop system is asymptotically stable;

(2)
 under zero initial condition, the performance JTzo1wJ1og is minimized subject to (10) for all nonzero w 2 L2½0;1Þ,

where Tzo1w denotes the closed-loop transfer function from the road disturbance wðtÞ to the control output zo1ðtÞ.
3. Robust H1 controller design

The sufficient conditions for the closed-loop system robust asymptotically stability and performance requirements can
be derived as follows.

To begin with, for feedback gain matrix K, we define

LðKÞ9fx 2 Rn : jkixjrui max; i ¼ 1;2; . . . ; qg;

where ki is the i th row of K. Then LðKÞ is the region in the state space where the control input is linear in x.
Next, as shown in [28], we utilize the technique of auxiliary feedback matrices here to reduce the conservatism of

dealing with the actuator saturation. Namely, for two matrices K, H 2 Rq�n and a vector v 2 Rq, a matrix set is introduced as

Wðv;K;HÞ9 W 2 Rq�n : W ¼

v1k1 þ ð1� v1Þh1

^

vqkq þ ð1� vqÞhq

2
64

3
75

8><
>:

9>=
>;;

where vi ¼ 0 or 1, define cðvÞ9fv 2 Rq : vi ¼ 0 or 1g and the auxiliary matrix H satisfies jhixjrui max, i ¼ 1;2; . . . ; q. And a
subset of the set LðKÞ will be found and chosen to be an ellipsoid of the form

xðP;1Þ9fx 2 Rn : xTPxr1g;
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where P40 will be determined. Combine xðP;1Þ with

ui max hi

� ui maxP

" #
Z0; i ¼ 1;2; . . . ; q; (13)

which means that if xðtÞTPxðtÞr1, we have 2jhixðtÞjrui maxð1þ xðtÞTPxðtÞÞr2ui max, i.e. jhixðtÞjrui max. So we can ensure
that xðP;1Þ � LðHÞ.

Remark 1. There are 2q elements in cðvÞ. v is used to choose from the rows of K and H to form a new matrix Wðv;K;HÞ. If
vi ¼ 0, then the i th row of Wðv;K;HÞ is hi, and if vi ¼ 1, then the i th row of Wðv;K;HÞ is ki. For example, assume q ¼ 2, then

fWðv;K;HÞ : v 2 cðvÞg9 H;
k1

h2

" #
;

h1

k2

" #
;K

( )
:

Based on the above ideas, the following theorem gives the existence conditions of a desired state-feedback controller for
system (11).

Theorem 1. Consider system (11) with the input-delayed state-feedback controller in (12), suppose g40, r40, 0rd1rd2 and

m40 are given scalars. Then the closed-loop system is asymptotically stable and satisfies JTzo1wJ1og for all nonzero w 2 L2½0;1Þ
under zero initial condition if there exist matrices P40, T40, Q i40, i ¼ 1;2;3, Zi40, i ¼ 1;2, Ni, Si, Mi, i ¼ 1; . . . ;5; Wðv;K;HÞ
and Wðs;K;HÞ satisfying

P̂ d2N d12S d12M

� �d2Z1 0 0

� � �d12ðZ1 þ Z2Þ 0

� � � �d12Z2

2
66664

3
77775o0; (14)

�I
ffiffiffiffirp C2

� �z2
maxP

" #
o0; (15)

where

P̂ ¼

P11 þ C
T
1C1 P12 P13 P14 P15 P16

� P22 P23 P24 P25 0

� � P33 P34 P35 0

� � � P44 P45 0

� � � � P55 P56

� � � � � �g2

2
6666666664

3
7777777775
;

NT
¼ ½NT

1 NT
2 NT

3 NT
4 NT

5 0�;

ST
¼ ½ST

1 ST
2 ST

3 ST
4 ST

5 0�;

MT
¼ ½MT

1 MT
2 MT

3 MT
4 MT

5 0�; (16)

P11 ¼
X3

i¼1

Q i þN1 þ NT
1 þ TA þ A

T
T;

P12 ¼ NT
2 �N1 þ S1 �M1 þ TBWðv;K;HÞ;

P13 ¼M1 þ NT
3;P14 ¼ �S1 þNT

4;

P15 ¼ NT
5 � Tþ Pþ A

T
T;P16 ¼ TBw;

P22 ¼ ðm� 1ÞQ 3 þ S2 þ ST
2 � N2 � NT

2 �M2 �MT
2;

P23 ¼M2 �NT
3 þ ST

3 �MT
3;P24 ¼ �S2 �NT

4 þ ST
4 �MT

4;

P25 ¼ ST
5 � NT

5 �MT
5 þWT

ðs;K;HÞB
T
T;

P33 ¼ �Q 1 þM3 þMT
3; P34 ¼ �S3 þMT

4;
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P35 ¼MT
5;P44 ¼ �Q 2 � S4 � ST

4; P45 ¼ �ST
5;

P55 ¼ d2Z1 þ d12Z2 � 2T; P56 ¼ TBw; d12 ¼ d2 � d1:

Proof. In the first place, we define a Lyapunov–Krasovskii functional candidate for system (11) as

VðtÞ ¼ xTðtÞPxðtÞ þ
Z t

t�d1

xTðsÞQ 1xðsÞdsþ

Z t

t�d2

xTðsÞQ 2xðsÞdsþ

Z t

t�dðtÞ
xTðsÞQ 3xðsÞdsþ

Z 0

�d2

Z t

tþy
_xT
ðsÞZ1 _xðsÞds dy

þ

Z �d1

�d2

Z t

tþy
_xT
ðsÞZ2 _xðsÞds dy; (17)

where P40, Q i40, i ¼ 1;2;3, Zi40, i ¼ 1;2 are matrices to be determined.

Then, the derivative of VðtÞ along the solution of system (11) is given by

_V ðtÞ ¼ _xT
ðtÞPxðtÞ þ xTðtÞP _xðtÞ þ xTðtÞQ 1xðtÞ � xTðt � d1ÞQ 1xðt � d1Þ � xTðt � d2ÞQ 2xðt � d2Þ þ xTðtÞQ 3xðtÞ

�

Z t�d1

t�d2

_xT
ðsÞZ2 _xðsÞdsþ d2 _x

T
ðtÞZ1 _xðtÞ � ð1� _dðtÞÞxTðt � dðtÞÞQ 3xðt � dðtÞÞ þ xTðtÞQ 2xðtÞ

�

Z t

t�d2

_xT
ðsÞZ1 _xðsÞdsþ d12 _x

T
ðtÞZ2 _xðtÞ: (18)

Then, for any appropriately dimensioned matrices T40 and Ni, Si, Mi, i ¼ 1; . . . ;5 we have

2O1 xðtÞ � xðt � dðtÞÞ �

Z t

t�dðtÞ

_xðsÞds

� �
¼ 0;

2O2 xðt � dðtÞÞ � xðt � d2Þ �

Z t�dðtÞ

t�d2

_xðsÞds

" #
¼ 0;

2O3 xðt � d1Þ � xðt � dðtÞÞ �

Z t�d1

t�dðtÞ

_xðsÞds

" #
¼ 0; (19)

2½xTðtÞTþ _xT
ðtÞT�½� _xðtÞ þ AxðtÞ þ BsðKxðt � dðtÞÞÞ þ Bww� ¼ 0; (20)

where

O1 ¼ xTðtÞN1 þ xTðt � dðtÞÞN2 þ xTðt � d1ÞN3 þ xTðt � d2ÞN4 þ _xT
ðtÞN5;

O2 ¼ xTðtÞS1 þ xTðt � dðtÞÞS2 þ xTðt � d1ÞS3 þ xTðt � d2ÞS4 þ _xT
ðtÞS5;

O3 ¼ xTðtÞM1 þ xTðt � dðtÞÞM2 þ xTðt � d1ÞM3 þ xTðt � d2ÞM4 þ _xT
ðtÞM5:

Noticing that the following equations hold

2xTðtÞTBsðKxðt � dðtÞÞÞ ¼ 2
Xq

i¼1

xTðtÞTbisðkixðt � dðtÞÞÞ;

2 _xT
ðtÞTBsðKxðt � dðtÞÞÞ ¼ 2

Xq

i¼1

_xT
ðtÞTbisðkixðt � dðtÞÞÞ:

Then, according to (9), for each term 2xTðtÞTb isðkixðt � dðtÞÞÞ,
1.
 If xTðtÞTbiZ0 and kixðt � dðtÞÞr� ui max, then for �ui maxrhixðt � dðtÞÞ we have

2xTðtÞTb isðkixðt � dðtÞÞÞ ¼ �2xTðtÞTb iui maxr2xTðtÞTb ihixðt � dðtÞÞ:
2.
 If xTðtÞTbiZ0 and kixðt � dðtÞÞZ� ui max, then sðkixðt � dðtÞÞÞrkixðt � dðtÞÞ and

2xTðtÞTbisðkixðt � dðtÞÞÞr2xTðtÞTbikixðt � dðtÞÞ:
3.
 If xTðtÞTbir0 and kixðt � dðtÞÞZui max, then for ui maxZhixðt � dðtÞÞ we have

2xTðtÞTb isðkixðt � dðtÞÞÞ ¼ 2xTðtÞTb iui maxr2xTðtÞTb ihixðt � dðtÞÞ:
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4.
 If xTðtÞTbir0 and kixðt � dðtÞÞrui max, then sðkixðt � dðtÞÞÞZkixðt � dðtÞÞ and

2xTðtÞTb isðkixðt � dðtÞÞÞr2xTðtÞTb ikixðt � dðtÞÞ:
By combining all the above four cases, we have

2xTðtÞTbisðkixðt � dðtÞÞÞrmaxf2xTðtÞTbihixðt � dðtÞÞ; 2xTðtÞTb ikixðt � dðtÞÞg

for any x 2 xðP;1Þ and each i 2 ½1; q�.

Now if 2xTðtÞTb isðkixðt � dðtÞÞÞo2xTðtÞTb ihixðt � dðtÞÞ, we set vi ¼ 1, otherwise we set vi ¼ 0. Then it is obvious that

2xTðtÞTBsðKxðt � dðtÞÞÞr2xTðtÞTBWðv;K;HÞxðt � dðtÞÞ;

where vðxÞ 2 cðvÞ. Similarly, it also follows that 2 _xT
ðtÞTBsðKxðt � dðtÞÞÞr2 _xT

ðtÞTBWðs;K;HÞxðt � dðtÞÞ with sðxÞ 2 cðsÞ.
Hence, we can see from (20) that for every x 2 xðP;1Þ it holds that

0 ¼ 2½xTðtÞTþ _xT
ðtÞT�½� _xðtÞ þ AxðtÞ þ BsðKxðt � dðtÞÞÞ þ BwwðtÞ�r2xTðtÞT½� _xðtÞ þ AxðtÞ þ BWðv;K;HÞxðt � dðtÞÞ

þ BwwðtÞ� þ 2 _xT
ðtÞT½� _xðtÞ þ AxðtÞ þ BWðs;K;HÞxðt � dðtÞÞ þ BwwðtÞ�: (21)

After adding Eqs. (19) and (21) to Eq. (18) and some algebraic manipulations it yields

_V ðtÞrfT
ðtÞ½Pþ d2NZ�1

1 NT
þ d12SðZ1 þ Z2Þ

�1ST
þ d12MZ�1

2 MT
�fðtÞ

�

Z t

t�dðtÞ
½fT
ðtÞNþ _xðsÞZ1�Z

�1
1 ½f

T
ðtÞNþ _xðsÞZ1�

T ds

�

Z t�dðtÞ

t�d2

½fT
ðtÞSþ _xT

ðsÞðZ1 þ Z2Þ�ðZ1

þ Z2Þ
�1
½fT
ðtÞSþ _xT

ðsÞðZ1 þ Z2Þ�
T ds�

Z t�d1

t�dðtÞ
½fT
ðtÞMþ _xðsÞZ2�Z

�1
2 ½f

T
ðtÞMþ _xðsÞZ2�

T ds

rfT
ðtÞ½Pþ d2NZ�1

1 NT
þ d12SðZ1 þ Z2Þ

�1ST
þ d12MZ�1

2 MT
�fðtÞ; (22)

where

fðtÞ ¼

xðtÞ

xðt � dðtÞÞ

xðt � d1Þ

xðt � d2Þ

_xðtÞ

wðtÞ

2
6666666664

3
7777777775
; P ¼

P11 P12 P13 P14 P15 P16

� P22 P23 P24 P25 0

� � P33 P34 P35 0

� � � P44 P45 0

� � � � P55 P56

� � � � � 0

2
666666664

3
777777775
:

By Shur complement, Pþ d2NZ�1
1 NT

þ d12SðZ1 þ Z2Þ
�1ST

þ d12MZ�1
2 MTo0 is equivalent to

P d2N d12S d12M

� �d2Z1 0 0

� � �d12ðZ1 þ Z2Þ 0

� � � �d12Z2

2
66664

3
77775o0:

Next, we establish the asymptotic stability of the system in (11) with wðtÞ ¼ 0, that is,

_xðtÞ ¼ AxðtÞ þ Bsðuðt � dðtÞÞÞ:

For the above system, _V ðtÞ in (22) reduces to

_V ðtÞrf
T
ðtÞ ~PfðtÞ;

where f
T
ðtÞ ¼ ½xTðtÞ xTðt � dðtÞÞ xTðt � d1Þ xTðt � d2Þ _x

T
ðtÞ� and

~P ¼

Ps d2Ns d12Ss d12Ms

� �d2Z1 0 0

� � �d12ðZ1 þ Z2Þ 0

� � � �d12Z2

2
66664

3
77775;
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Ps ¼

P11 P12 P13 P14 P15

� P22 P23 P24 P25

� � P33 P34 P35

� � � P44 P45

� � � � P55

2
6666664

3
7777775
; Ns ¼

N1

N2

N3

N4

N5

2
6666664

3
7777775
; Ss ¼

S1

S2

S3

S4

S5

2
6666664

3
7777775
; Ms ¼

M1

M2

M3

M4

M5

2
6666664

3
7777775
:

It is obvious that (14) guarantees ~Po0, which further leads to _V ðtÞo0 for any fðtÞa0. Therefore, we conclude that system

(11) with wðtÞ ¼ 0, parameter uncertainty (8), actuator saturation and time delay dðtÞ satisfying 0r d1rdðtÞr d2 is robust

asymptotically stable.

Now, we shall establish the H1 performance of the system under zero initial condition. Consider the following index:

J9
Z 1

0
½zT

o1ðtÞzo1ðtÞ � g2wTðtÞwðtÞ�dt: (23)

Then we have

Jr
Z 1

0
½zT

o1ðtÞzo1ðtÞ � g2wTðtÞwðtÞ þ _V ðtÞ�dt (24)

for any nonzero wðtÞ 2 L2½0;1Þ.

Via some algebraic manipulations and Schur complement, it is not difficult to obtain

zT
o1ðtÞzo1ðtÞ � g2wTðtÞwðtÞ þ _V ðtÞrfT

ðtÞPHfðtÞ; (25)

where

PH ¼

P̂ d2N d12S d12M

� �d2Z1 0 0

� � �d12ðZ1 þ Z2Þ 0

� � � �d12Z2

2
66664

3
77775;

which is the same as (14) in Theorem 1.

Therefore, if (14) holds, i.e. PHo0, we have zT
o1ðtÞzo1ðtÞ � g2wTðtÞwðtÞ þ _V ðtÞo0, which indicates Jo0. Hence

Jzo1J2ogJwðtÞJ2 is guaranteed for any nonzero wðtÞ 2 L2½0;1Þ, and the H1 performance is established.

Finally, the hard constraint of suspension deflection needs to be guaranteed. From above it is ensured that
_V ðtÞ � g2wTðtÞwðtÞo0, and by integrating both sides of which we obtain

VðtÞ � Vð0Þog2

Z t

0
wTðtÞwðtÞdtog2JwJ2

2;

and without loss of generality we have JwJ2
2rwmaxo1. Thus, it holds that

xTðtÞPxðtÞog2wmax þ Vð0Þ ¼ r:

Moreover, it is also true that

max
t40
jzo2ðtÞj

2 ¼ max
t40

JxTðtÞCT
2C2xðtÞJ2 ¼max

t40
JxTðtÞP1=2P�1=2CT

2C2P�1=2P1=2xðtÞJ2or � lmaxðP
�1=2CT

2C2P�1=2
Þ;

where lmaxð�Þ represents the maximal eigenvalue of a matrix. From above, it is easy to see that the deflection constraint (10)

is guaranteed if r � P�1=2CT
2C2P�1=2oz2

maxI, which is equivalent to (15) according to Schur complement,the proof is

completed. &

Remark 2. It is worth mentioning that the system (11) may be used to represent many important physical systems subject
to inherent time-varying input delays, parameter uncertainties, exogenous disturbances and actuator saturations besides
the seat suspension system. Thus, this controller designing approach has big application potentials and can be generally
used.

Before proceeding further, we give the following lemma that will be used in the proof of Theorem 3.

Lemma 2. Given appropriately dimensioned matrices S1, S2, S3, with S1 ¼ ST
1, then

S1 þ S3WðtÞS2 þST
2WT
ðtÞST

3o0

holds for all WðtÞ satisfying WT
ðtÞWðtÞrI if and only if there exists a scalar e40 such that

S1 þ eS3ST
3 þ e

�1ST
2S2o0:
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Theorem 3. Suppose r, d1, d2 and m are prescribed positive scalars. Consider the semi-active suspension system in (11), if there

exist matrices P40, T40, Q i40, i ¼ 1;2;3, Zi40, i ¼ 1;2, N i, Si, M i, i ¼ 1; . . . ;5, Wv, Ws and scalar e40 satisfying

F11 F12

FT
12 F22

" #
o0; (26)

�I
ffiffiffiffirp C2T

� �z2
maxP

" #
o0; (27)

where

F11 ¼

P11 þ eL1LT
1 P12 P13 P14 P15 P16

� P22 P23 P24 P25 0

� � P33 P34 P35 0

� � � P44 P45 0

� � � � P55 þ eL1LT
1 P56

� � � � � �g2

2
6666666664

3
7777777775
;

F12 ¼

d2N1 d12S1 d12M1 TCT
1 TET

A TET
A TET

C

d2N2 d12S2 d12M2 0 W
T
vET

B W
T
s ET

B 0

d2N3 d12S3 d12M3 0 0 0 0

d2N4 d12S4 d12M4 0 0 0 0

d2N5 d12S5 d12M5 0 0 0 0

0 0 0 0 0 0 0

2
6666666664

3
7777777775
;

F22 ¼ diagf�d2Z1;�d12ðZ1 þ Z2Þ;�d12Z2;�Iþ eL2LT
2;�eIg;

and

P11 ¼
X3

i¼1

Q i þN1 þN
T
1 þ AT þ TAT;

P12 ¼ N
T
2 �N1 þ S1 �M1 þ BWv; P13 ¼M1 þ N

T
3;

P14 ¼ �S1 þN
T
4; P15 ¼ N

T
5 � T þ P þ TAT; P16 ¼ Bw;

P22 ¼ ðm� 1ÞQ 3 þ S2 þ S
T
2 � N2 � N

T
2 �M2 �M

T
2;

P23 ¼M2 � N
T
3 þ S

T
3 �M

T
3;P24 ¼ �S2 � N

T
4 þ S

T
4 �M

T
4;

P25 ¼ S
T
5 �N

T
5 �M

T
5 þWsBTT; P33 ¼ �Q 1 þM3 þM

T
3;

P34 ¼ �S3 þM
T
4;P35 ¼M

T
5;P44 ¼ �Q 2 � S4 � S

T
4;

P45 ¼ �S
T
5; P55 ¼ d2Z1 þ d12Z2 � 2T; P56 ¼ Bw;

then a stabilizing controller in the form of (12) exists, such that the closed-loop system satisfies:
(1)
 asymptotically stable;

(2)
 the H1 performance JTzo1wJ1og is guaranteed subject to the constraint of suspension deflection for all nonzero w 2 L2½0;1Þ

under zero initial condition.
Moreover, if inequalities (26) and (27) have a feasible solution, the control gain K in (12) is given by

K ¼ KT
�1
: (28)

Proof. First, from Shur complement (26) is equivalent to

S1 þ eS3ST
3 þ e

�1ST
2S2o0; (29)
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where

S1 ¼

P11 þ TC
T
1C1T P12 P13 P14 P15 P16

� P22 P23 P24 P25 0

� � P33 P34 P35 0

� � � P44 P45 0

� � � � P55 P56

� � � � � �g2

2
66666666664

3
77777777775
;

ST
3 ¼

LT
1 0 0 0 0 0 0 0 0 0

0 0 0 0 LT
1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 LT
2

2
664

3
775;

S2 ¼

EAT EBWv 0 0 0 0 0 0 0 0

EAT EBWs 0 0 0 0 0 0 0 0

ECT 0 0 0 0 0 0 0 0 0

2
64

3
75:

By invoking Lemma 2, (29) holds if

S1 þS3WðtÞS2 þ ST
2W

T
ðtÞST

3o0; (30)

where

WðtÞ ¼ diagfFðtÞ; FðtÞ; FðtÞg:

From the norm-bounded parameter uncertainty defined in (8) we note that (30) is equivalent to (14) in Theorem 1 by
defining

T ¼ T�1; N i ¼ T�1NiT
�1; S i ¼ T�1SiT

�1;

P ¼ T�1PT�1; Mi ¼ T�1MiT
�1; Z i ¼ T�1ZiT

�1;

Q i ¼ T�1Q iT
�1; Wv ¼Wðv;K;HÞT�1; Ws ¼Wðs;K;HÞT�1;

J ¼ diagfT�1;T�1;T�1;T�1;T�1; I;T�1;T�1;T�1
g; (31)

and performing a congruence transformation to (14) with J. Similarly, it also follows that (27) is equivalent to (15) in
Theorem 1. Hence, the closed-loop system is asymptotically stable with an H1 disturbance attenuation level of g if (26) and
(27) holds and the proof is completed. &

If we assume that there is no input delay in the semi-active suspension system in (11), then we have

Corollary 4. Suppose r is a prescribed positive scalar. Consider system (11) with the input-delayed state-feedback controller in

(12), the closed-loop system is asymptotically stable and satisfies Jzo1J2ogJwJ2 under zero initial condition if there exist

matrices P40 and Wv satisfying

symðAP þ BWvÞ Bw PC
T
1

� �g2 0

� � �I

2
64

3
75o0;

�I
ffiffiffiffirp C2P

� �z2
maxP

" #
o0; (32)

then a stabilizing controller in the form of (12) exists, such that the closed-loop system satisfies:
(1)
 asymptotically stable;

(2)
 the H1 performance JTzo1wJ1og is guaranteed subject to the constraint of suspension deflection under zero initial condition.
Moreover, if (32) has a feasible solution, then the control gain K in (12) is given by

K ¼ KP
�1
: (33)

Furthermore, if we assume that the input delay is constant with an upper bound t, then we have
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Corollary 5. Suppose t40 and r40 are proscribed scalars. Consider system (11) with the input-delayed state-feedback

controller in (12), the closed-loop system is asymptotically stable and satisfies Jzo1J2ogJwJ2 under zero initial condition if there

exist matrices P40, Q40, S, and Wv satisfying

C1 þC2 þC
T
2 þC3

ffiffiffi
t
p

F
T
1

ffiffiffi
t
p

S F
T
2

� Q � 2P 0 0

� � �Q 0

� � � �I

2
66664

3
77775o0; (34)

�I
ffiffiffiffirp C2P

� �z2
maxP

" #
o0; (35)

where

C1 ¼

AP þ PA
T

BWv Bw

� 0 0

� � 0

2
64

3
75; C2 ¼ ½ S �S 0 �;

F1 ¼ ½AP BWv Bw�; F2 ¼ ½C1P 0 0�;

C3 ¼ diag½0 0 � g2I�;

then a stabilizing controller in the form of (12) exists, such that the closed-loop system satisfies:
(1)
Tabl
Syst

M

m1

m2

m3
asymptotically stable;

(2)
 the H1 performance JTzo1wJ1og is guaranteed subject to the constraint of suspension deflection under zero initial condition.
Moreover, if inequalities (34) and (35) have a feasible solution, the control gain K in (12) is given by

K ¼ KP
�1
: (36)

Proof. First, we define a Lyapunov–Krasovskii functional candidate for system (11) as

VðtÞ ¼ xTðtÞPxðtÞ þ
Z 0

�t

Z t

tþb
xTðaÞQxðaÞdadb; (37)

where P40 and Q40 are matrices to be determined. Then define

P ¼ P�1; Q ¼ P�1QP�1; Wv ¼Wðv;K;HÞP�1;

and follow the same procedures as Theorems 1 and 3, and the proof is completed. &

Remark 3. The above results may actually be extended to deal with the analysis and synthesis of stochastic systems.
Because if we model the road excitation and actuator fault occurrences stochastic, which is quite natural in practice [30].
The deduction methods and procedures are basically similar.

From Theorem 3 we can see that the conditions are LMIs not only over the matrix variables, but also over the objective
scalar g when gg is given, which implies that g can be included as an optimization variable to obtain a lower bound of the
guaranteed H1 performance. That is, the controller design problem has been transformed into a set of LMI conditions.
Based on these conditions, the robust multiobjective state-feedback controller design can be accomplished by solving the
following convex optimization problem:

min g s:t: ð26Þ and ð27Þ: (38)
e 1
em parameters of the proposed seat suspension.

ass (kg) Damping coefficient (N s/m) Spring constant (N/m)

15 c1 830 k1 31 000

1þ7.8 c2 200 k2 18 000

43.4 c3 1485 k3 44 130
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4. A design example

In order to evaluate the effectiveness and usefulness of the controller design method proposed in the above section, an
example is introduced in this section. The schematic and biodynamical parameters for this study are borrowed from [31,32]
and listed in Table 1 and the maximum suspension deflection is defined as zmax ¼ 0:08 m, the maximum control force is
assumed as umax ¼ 1500 N. Furthermore, assume that the input time delay lower bound d1 ¼ 0 ms, upper bound
d2 ¼ 25 ms, the delay variation rate m ¼ 1:5, and the norm-bounded parameter uncertainties are expressed as

L1 ¼ d1 �

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 1 1

0 0 0 0 0 0

0 0 0 1 1 1

2
666666664

3
777777775
; LT

2 ¼ d2 �

0

0

0

1

1

1

2
666666664

3
777777775
; EB ¼ dB �

0

1

0

0

0

0

2
666666664

3
777777775
;

EA ¼ dAI, EC ¼ dCI, where d1, d2, dA, dB, dC are all set to 0.02 for simplicity.
0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Time (s)

M
ag

ni
tu

de

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

Time (s)

D
is

pl
ac

em
en

t z
0

Fig. 2. Bump (a) and white-noise (b) inputs from ground.
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First, we give a controller Knom with a guaranteed H1 performance g ¼ 8:8867, which is designed by employing the
approach in Corollary 4 without considering the time delay in the actuator to see its performance for no input delay
(d ¼ 0 ms), minor input delay (0 msodo10 ms) and biggish input delay (0 msodo25 ms) cases, which are denoted as case
1, 2 and 3. And the controller is given by

Knom ¼ 104
� ½�0:2632 0:0599 �2:9348 0:1195 �2:2877 0:3544 �:

In the context of seat suspension performance, road disturbances can be generally assumed as shocks. Shocks are
discrete events of relatively short duration and high intensity, caused by, for example, a pronounced bump or pothole on an
otherwise smooth road surface. In this work, this case of road profile is considered first to reveal the transient response
characteristic, which is given by

z0ðtÞ ¼

a

2
1� cos

2pV0

l
t

� �� �
; 0rtr

l

V0
;

0; t4
l

V0
;

8>>><
>>>:

(39)

and illustrated in Fig. 2(a), where a is the height of the bump, and l is the length of the bump. Here we choose a ¼ 0:1 m,
l ¼ 2 m and the vehicle forward velocity V0 ¼ 30 ðkm=hÞ. The second type of disturbance input from the ground wðtÞ is
assumed to be zero-mean white noise with identity power spectral density, which is shown in Fig. 2(b) (Fig. 3).
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Fig. 4. Vertical accelerations of open-loop system and closed-loop system with controller Kcon under bump excitation.
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The bump responses of the passive suspension and the active suspension with controller Knom for cases 1, 2 and 3 are
compared in Fig. 4. It demonstrates that the closed-loop system is asymptotically stable and has a better performance with
or without actuator time delays. However, the closed-loop performance degrades significantly when the actuator delay
bound gets larger.

Next, we give another controller Kcon with a guaranteed H1 performance g ¼ 14:0432, which is designed with
consideration for constant input time delay using the approach in Corollary 5 with t ¼ 25 ms to see its performance for the
three cases, which is given by

Kcon ¼ 104
� ½�1:3144 0:0266 � 1:1652 0:0625 � 2:1263 0:0614�:

In Fig. 5, the bump responses of the passive suspension and the active suspension with controller Kcon for cases 1, 2 and
3 are illustrated. From Fig. 5 we can see that the closed-loop performance level with controller Kcon is a bit more stable
than controller Knom when the actuator delay happens, which is still not a satisfaction though.

Finally, we give the controller Kdrd with a guaranteed H1 performance g ¼ 16:4012, which is designed with delay-
range-dependent method proposed in this paper by solving the convex optimization problem (38) in the MATLAB
environment, and the associated matrices are as follows (for brevity, here we only list the matrices that are necessary for
the construction of the desired controller):

Kdrd ¼ ½�27:6826 859:9575 12:2584 109:4245 3:0885 78:1620 �;
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Fig. 6. Vertical accelerations of closed-loop systems with different controllers under bump excitation when 0 msodo10 ms.
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T ¼

0:0009 �0:0191 �0:0003 �0:0078 �0:0002 �0:0024

�0:0191 1:1318 0:0136 0:2072 0:0075 0:0011

�0:0003 0:0136 0:0003 �0:0025 �0:0001 0:0022

�0:0078 0:2072 �0:0025 0:4762 0:0126 �0:0770

�0:0002 0:0075 �0:0001 0:0126 0:0004 �0:0025

�0:0024 0:0011 0:0022 �0:0770 �0:0025 0:0537

2
666666664

3
777777775
;
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Fig. 8. Suspension deflections of closed-loop systems with different controllers.
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and therefore we can obtain the delay-range-dependent state-feedback controller Kdrd as

Kdrd ¼ 104
� ½�3:0358 0:0629 � 1:7496 � 0:0103 � 2:2889 � 0:0425�:

The bump responses of controller Kdrd for the three cases are shown in Fig. 5. It is obvious that this delay-range-
dependent state-feedback controller is capable to provide the best time domain performance among the three controllers
under time-varying delay condition. To make this point clear, the performances of the three closed-loop systems with
controllers Knom, Kcon and Kdrd are compared in Figs. 6 and 7 for cases 2 and 3, respectively.

The bump response of suspension deflection is plotted in Fig. 8, from which it can be seen that this time domain
constraint is guaranteed to be less than its prescribed limit in spite of the large bump energy by all of the three designed
state-feedback controllers.

Fig. 9 depicts the active control forces of the closed-loop systems, which are confined within a reasonable range which
can be generated by hydraulic or electrorheological actuators in practice. It is confirmed that the designed robust active
seat suspension system is able to guarantee a better performance under a pronounced bump disturbance and limited
actuator control force in spite of the parameter uncertainty and time-varying input delay.

At last, vertical human body accelerations of open- and closed-loop systems under white-noise disturbance are
illustrated in Figs. 10–12, and compared in Figs. 13 and 14, from which it can be seen that the closed-loop system
performance with controller Knom degrades the fastest among the three controllers, while controller Kdrd maintains the
most satisfying performance when the actuator delay bound is large. Here, the root mean square (RMS) value, which is a
statistical measure of the magnitude of a varying quantity, is employed to investigate the seat suspension performances.
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Fig. 10. Vertical accelerations of open-loop system and closed-loop system with controller Knom under white noise disturbance for cases 1, 2 and 3.
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Fig. 11. Vertical accelerations of open-loop system and closed-loop system with controller Kcon under white noise disturbance for cases 1, 2 and 3.
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Fig. 12. Vertical accelerations of open-loop system and closed-loop system with controller Kdrd under white noise disturbance for cases 1, 2 and 3.
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Fig. 13. Vertical accelerations of closed-loop systems with different controllers under white noise disturbance when 0 msodo10 ms.
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Fig. 14. Vertical accelerations of closed-loop systems with different controllers under white noise disturbance when 0 msodo25 ms.
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Table 2

Comparison of RMS values of vertical human body acceleration ðm=s2Þ for passive system and closed-loop systems with different controllers.

d ¼ 0 ms 0 msodo10 ms 0 msodo25 ms

Passive 3.6826 3.6826 3.6826

Knom 1.1803 1.2904 2.1289

Kcon 1.5797 1.6309 1.9773

Kdrd 1.1952 1.2691 1.5806

Y. Zhao et al. / Journal of Sound and Vibration 329 (2010) 4335–43534352
Because it is especially useful when variants are positive and negative. It can be calculated for a series of discrete values or
for a continuously varying function. The name comes from the fact that it is the square root of the mean of the squares of
the values. It is a special case of the power mean with the exponent is 2. The corresponding RMS values of vertical human
body accelerations of open- and closed-loop systems for the three cases are listed and compared in Table 2, which indicates
that controller Kdrd has the best vibration attenuation ability than the other two controllers especially when time-varying
delay happens.
5. Conclusions

The problem of robust multiobjective H1 control synthesis for a class of uncertain seat suspension systems with
actuator saturation and time-varying input delay has been dealt with in this paper by proposing a state-feedback
controller. A delay-range-dependent Lyapunov function and an auxiliary feedback matrix have been considered to reduce
the conservatism so that a better closed-loop performance can be guaranteed. The H1 performance has been established
via a Lyapunov approach and the controller design has been cast into a convex optimization problem with LMI constraints
via some algebraic manipulations. Then the desired controller can be achieved by solving the corresponding LMIs. Finally, a
design example has been given to demonstrate the effectiveness and advantages of the proposed controller design
approach.
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