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a b s t r a c t

This paper presents two types of finite impulse response (FIR) filters to reconstruct

dynamic displacement induced by structural vibration from measured acceleration.

The governing equation for the reconstruction is derived by taking the variation

of a minimization problem, which defines an inverse problem on displacement.

included in the minimization problem. The governing equation of the inverse problem

becomes the same type of differential equation as that of a beam on an elastic

foundation. The conventional FIR (CFIR) filter directly approximates the transfer

function of the governing equation, while the FEM-based FIR (FFIR) filter is formulated

by the discretization of the minimization problem with the finite element method. For

the finite element discretization, the Hermitian shape function is utilized. The proposed

FFIR filter is capable of reconstructing displacement and velocity simultaneously. The

fundamental characteristics of the proposed filters are investigated in the frequency

domain using the transfer and accuracy functions. It is shown that the proposed FIR

filters suppress low frequency noise components in measured accelerations effectively,

and reconstruct physically meaningful displacement accurately. The validity of the

proposed filters is demonstrated through a numerical simulation study, a field

experiment and an evaluation of flutter derivatives using measurements taken from a

wind tunnel test.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic displacement and velocity induced by structure vibration can be utilized for various engineering applications
such as structural health monitoring [1], structural control [2] and the evaluation of the dynamic properties of a structure
[3]. Although displacement is measurable with various types of modern devices in theory, displacement is very difficult to
measure for large-scale structures in real situations because fixed reference points are rarely found [4]. The situation is
even worse for the measurement of velocity as virtually no velocity transducers are available. On the other hand, various
types of accelerometers are commercially available, and no fixed reference point is required to measure acceleration.
Therefore, acceleration is primarily measured in structures rather than displacement or velocity.

A great number of approaches have been proposed to reconstruct displacement from measured accelerations [4–10].
Among them, the digital filters and the frequency domain integration approach (FDIA) are frequently adopted in previous
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works. The finite impulse response (FIR) filter [7] and infinite impulse filter (IIR) [5,6,9,10] are well-known digital filters
that are applicable to the displacement reconstruction. The IIR filters generally require initial conditions on displacement
and/or velocity, which are impossible to prescribe in real situations. Moreover, low-frequency noise components are
amplified and propagate through time. Some remedies have been proposed to overcome these drawbacks, but they require
additional pieces of information [10] or cause another type of errors such as phase errors [7,9]. The conventional FIR (CFIR)
filter reconstructs displacement by the linear combination of measured accelerations. The coefficients of the CFIR filter are
determined by approximating a given transfer function in the frequency domain with a truncated Fourier series [5,6]. In
case the exact transfer function is employed for the CFIR filter, the coefficients of the Fourier series cannot be evaluated
with the standard approach utilizing the normality of the trigonometric functions due to the singularity at the zero
frequency [6,7]. Here, the exact transfer function implies the transfer function of the exact governing differential equation
between displacement and acceleration.

The FDIA [6] reconstructs displacement by applying the inverse Fourier transform to the Fourier transform of measured
accelerations multiplied by the exact transfer function. The FDIA requires a rather large computational effort, and may be
inadequate for real-time or near real-time processing because the Fourier transform and the inverse Fourier transform
should be performed for every reconstruction step [11]. Moreover, a low-cut filter or a band-pass filter should be
introduced to suppress low frequency noise components in measured acceleration when the exact transfer function is
employed for the reconstruction.

Lee et al. [11] recently proposed a new type of FIR filter based on the inverse problem discretized by the finite difference
method, and demonstrated the accuracy and stability of the FIR filter through numerical and experimental studies. Since,
however, they employ the discretized form of the inverse problem for the design of the filter, the governing differential
equation of the inverse problem is not derived. Consequently, a CFIR filter based on the transfer function of the inverse
problem cannot be formulated, and the exact relationship between the accuracy of the filter and the regularization factor
in the inverse problem is not fully recognized. The regularization factor, which governs the accuracy of the filter, is defined
empirically rather than analytically as a function of the filter size that affects the stability of the filter, and thus the stability
and the accuracy of the filter cannot be adjusted independently. Another limitation of their work is that the reconstruction
of velocity is not considered.

This paper proposes two types of FIR filters, the CFIR filter and the FEM-FIR (FFIR) filter based on the inverse problem
formulated by Lee et al. [11] for the reconstruction. Unlike their work, however, the continuous form of the minimization
problem defining the inverse problem is utilized in this study. The governing equation of the inverse problem is obtained
by taking variation of the minimization problem, which leads to the same type of differential equation as that of a beam on
an elastic foundation (BEF) [12]. The transfer function of the inverse problem is hereafter referred to as the BEF transfer
function. The exact relation between the regularization factor and the accuracy of the proposed filter is established through
the desired accuracy at the target frequency, which is the lowest frequency in physically meaningful frequency contents in
measured acceleration. Two filter sizes are proposed for the CFIR filter from the viewpoint of the stability independently to
the regularization factor. As the BEF transfer function is capable of suppressing noise components below the target
frequency, the FDIA without a low-cut filter or a band-pass filter is presented using the BEF transfer function.

The coefficients of the CFIR and the FFIR filter are obtained by approximating the BEF transfer function with the Fourier
series in the frequency domain and by discretizing the inverse problem with the standard finite element method in the
time domain, respectively. The proposed filters have their own merits and disadvantages in relation to each other. The
filter size can be selected arbitrarily for the FFIR filter, while the uniform frequency responses are expected in the CFIR filter
for the proposed filter sizes. A great advantage of the FFIR filter over the CFIR filter is that velocity as well as displacement
can be reconstructed simultaneously as the velocity field is embedded in the finite element model of the FFIR filter. The
characteristics of the proposed FIR filters are presented and discussed in detail by investigating the transfer and accuracy
functions [6,10].

Three examples are presented for demonstrating the validity of the proposed filters. Various characteristics of the CFIR
and FFIR filters are verified with reconstructed displacement and velocity from numerically simulated accelerations in the
first example. Displacement is reconstructed from the accelerations measured in a simply supported railroad bridge during
commercial operation, and is compared with the measured displacement in the second example. The third example
presents the evaluation of the flutter derivatives [3,13] using the reconstructed displacement, and compares the results
with those obtained by measured displacements in a wind tunnel test.

2. Variational statement of an inverse problem

2.1. The exact governing equation and transfer function

Acceleration is defined as the second time derivative of displacement at a fixed material point. In case the acceleration is
continuously measured for a time interval T1otoT2, and the displacements at the both ends of the time interval are
specified, displacement is reconstructed from the measured acceleration by solving the following boundary value problem:

aðtÞ �
d2uðtÞ

dt2
� aðtÞ, T1otoT2, uðT1Þ ¼ u1 and uðT2Þ ¼ u2 (1)



Y.H. Hong / Journal of Sound and Vibration 329 (2010) 4980–50034982
where u(t), aðtÞ, u1 and u2 are the displacement and the measured acceleration, prescribed displacements at t=T1 and t=T2,
respectively. A time interval in which displacement is to be reconstructed is hereafter referred to as a time window. As only
the dynamic information is utilized for the displacement reconstruction in this paper, the displacement in Eq. (1)
represents the dynamic component measured from the static equilibrium position of a structure.

The homogenous solution of Eq. (1) is given as a linear function in time. Since, however, the real dynamic displacement
induced by structural vibration is defined with harmonic functions through the Duhamel integral [14], a linear function is
not an adequate basis for the dynamic displacement induced by structural vibration. Therefore, the homogeneous solution
should vanish, and the solution of Eq. (1) is expressed solely by the particular solution. The displacements at the
boundaries of a time window are determined by the particular solution rather than specified as boundary conditions. The
particular solution can be found through the Fourier transform. The transfer function of Eq. (1) is derived by the Fourier
transform [7]

FðuðtÞÞ ¼HEðoÞFðaðtÞÞ ¼�
1

o2
FðaðtÞÞ (2)

where F and HE=�1/o2 denote the Fourier transform and the exact transfer function of the differential equation in Eq. (1),
respectively, and o is the angular frequency. The time-history of displacement is obtained by applying the inverse Fourier
transform to Eq. (2)

uðtÞ ¼ �F�1 1

o2
FðaðtÞÞ

� �
(3)

where F-1 represents the inverse Fourier transform. The displacement reconstruction scheme defined in (3) is referred to as
the frequency domain integration approach (FDIA).

In case the measured acceleration contains random noise, pure noise frequency contents in measured accelerations
below the target frequency are severely amplified by the exact transfer function in the frequency domain [10].
Consequently, the reconstructed displacement in the time domain is polluted with the amplified noise components. The
target frequency is easily determined by investigating the Fourier transform of measured accelerations. Even if measured
accelerations are noise-free, the FDIA defined in Eq. (3) cannot be directly applied to reconstruct displacement. Since the
Fourier transform of measured accelerations in Eq. (3) is performed on the finite time interval, the Fourier transform
contains frequency responses below the target frequency [5,6], which should not exist. This truncation error acts as an
additional source of noise, and thus pollutes the reconstructed displacement in the time domain similar to the random
measurement noise. To suppress the measurement noise and the truncation error below the target frequency, low cut
filters or band pass filters are usually applied to Eq. (3) before performing the inverse Fourier transform

uðtÞ ¼�F�1 1

o2
fðoÞFðaðtÞÞ

� �
(4)

where o is the angular frequency, and f is a proper weighting function [6] for a low cut filter or a band pass filter.
2.2. The governing equation and transfer function of an inverse problem

Lee et al. [11] have proposed a new class of displacement reconstruction scheme with measured acceleration based on
an inverse problem. In their approach, the displacement is reconstructed by solving the following minimization problem
defined in a time window:

Min
u

PðuÞ ¼
1

2

Z T2

T1

d2u

dt2
�a

 !2

dtþ
b2

2

Z T2

T1

u2 dt (5)

The second term in Eq. (5) is a regularization function employed to overcome the ill-posedness and the rank-deficiency of
inverse problems, and b is the regularization factor that adjusts the regularization effect in the displacement
reconstruction procedure. Only the discretized form of the regularization function has been presented in the work by
Lee et al. [11]. Approximation of the second derivative of displacement with the central difference yields a simple quadratic
problem, which is easily solved for unknown displacement. The aforementioned approach results in a type of the FIR filter,
which is referred to as the FDM-FIR filter hereafter. Since the whole reconstruction procedures are performed in the time
domain, the Fourier transform and the inverse Fourier transform are not required at all. The efficiency and accuracy of the
FDM-FIR filter are proven through various examples. Lee et al. [11], however, neither derive the transfer function of the
inverse problem defined in Eq. (5) nor relate the regularization factor to the accuracy of the filter.

The governing equation and the boundary conditions associated with the minimization problem is obtained by taking
the variation of the object function in Eq. (5)

dPðuÞ ¼
Z T2

T1

d2du

dt2

d2u

dt2
�a

 !
dtþb2

Z T2

T1

duudt¼ 0 (6)
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The integration of the first term of Eq. (6) by parts twice leads to the following equation:

Z T2

T1

du
d4u

dt4
þb2u�

d2a

dt2

 !
dtþ

ddu

dt

d2u

dt2
�a

 !������
T2

T1

�du
d3u

dt3
�

da

dt

 !������
T2

T1

¼ 0 (7)

Based on the above variational statement, the governing equation and the boundary conditions of the minimization
problem are defined as follows:

d4u

dt4
þb2u¼

d2a

dt2
T1otoT2 and

d2u

dt2
¼ a,

d3u

dt3
¼

da

dt
at t¼ T1,T2 (8)

Since the displacements and the velocity are unknown at the boundaries, the Neumann type boundary conditions [15] are
adopted. The governing equation in Eq. (8) is the same as that of a beam on an elastic foundation (BEF). The existence and
uniqueness of the solution can be guaranteed with only the Neumann type boundary conditions by virtue of the second
term of the left-hand side of the governing equation, which comes from the regularization function.

The transfer function of the governing equation in Eq. (8), which is abbreviated to the BEF transfer function, is derived
by applying the Fourier transform

HBðoÞ ¼�
o2

o4þb2
¼�

ð2pf Þ2

ð2pf Þ4þb2
(9)

where f is the frequency and HB denotes the BEF transfer function. The time-history of displacement is reconstructed by the
FDIA with the BEF transfer function

uðtÞ ¼ F�1ðHBðoÞFðaðtÞÞÞ ¼�F�1 o2

o4þb2
FðaðtÞÞ

 !
(10)

It is not necessary to apply a low-cut filter to the FDIA defined in Eq. (10) as the BEF transfer function by itself is capable of
suppressing noise components below the target frequency.

Fundamental characteristics of the transfer function are conveniently investigated by the normalization with respect to
the target frequency as proposed by Lee et al. [11]

~HBð
~f Þ ¼ �

HBðoÞ
1=ð2pfT Þ

2
¼

ð2pf Þ2=ð2pfT Þ
2

ðð2pf Þ4þb2
Þ=ð2pfT Þ

4
¼

~f
2

ð~f
4
þb2=ð2pfT Þ

4
Þ

(11)

where ~HB, fT and ~f ¼ f=fT are the normalized BEF transfer function, the target frequency and the dimensionless frequency
normalized to the target frequency, respectively. The term ‘‘normalized’’ is hereafter omitted for brevity of explanation,
unless otherwise stated. The accuracy of the reconstructed displacement is defined with the accuracy function, which is the
ratio of the transfer function used in the displacement reconstruction to the exact transfer function [6,10]. The accuracy
function of the BEF transfer function,Hacc

B ðoÞ, is defined as follows:

Hacc
B ðoÞ ¼

HB

HE
¼

o4

o4þb2
¼

~f
4

ð~f
4
þb2=ð2pfT Þ

4
Þ

(12)

The accuracy function in Eq. (12) becomes 0 at ~f ¼ 0, and the accuracy function rapidly converges to 1 as the frequency
approaches to the target frequency. The transition characteristics of the BEF transfer function in 0r ~f r1 are governed by
the magnitude of the regularization factor. The accuracy at the target frequency is obtained by setting ~f ¼ 1 in Eq. (12)

aT ¼
1

1þb2=ð2pfT Þ
4

(13)

where aT is the target accuracy, i.e., the desired accuracy for the reconstructed displacement. If the target accuracy is pre-
selected based on an engineering sense, the regularization factor is determined by the following equation:

b¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�aT

aT

s
ð2pfT Þ

2
¼ l2
ðaT Þð2pfT Þ

2 0raT r1 (14)

where l4(aT)=(1�aT)/aT. Substitution of Eq. (14) into Eqs. (11) and (12) leads to the following expressions:

~HBð
~f Þ ¼

~f
2

~f
4
þl4
ðaT Þ

(15)

Hacc
B ð

~f Þ ¼
~f

4

~f
4
þl4
ðaT Þ

(16)

The BEF transfer functions and the accuracy functions for various levels of target accuracy are drawn in Figs. 1 and 2,
respectively, along with the exact transfer function. The BEF transfer function begins to decrease quickly below the target
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frequency while the exact transfer function keeps increasing as the frequency approaches to zero. For frequency ranges
larger than the target frequency, the BEF transfer function and the exact transfer function are almost identical regardless of
the target accuracy. Therefore, the FDIA with the BEF transfer function is able to reconstruct the displacement components
for ~f Z1. Meanwhile, the BEF transfer function suppresses the acceleration components below the target frequency, which
are merely measurement noises, in the displacement reconstruction. The degree of the noise suppression becomes stronger
as the frequency approaches zero. Higher target accuracy yields weaker noise-suppression capability of the BEF transfer
function, and vice versa as shown in Fig. 2. As an apparent trade-off between the accuracy and the noise-suppression exists
in the selection of the target accuracy, the optimal target accuracy depends on a specific problem. For example, in case the
noise level of measured accelerations is expected to be high, lower target accuracy may be adequate to provide strong
noise suppression capability to the BEF transfer function. The target accuracy of 0.97 is selected for all forthcoming
discussions in this study.

3. Design of FIR filters and accuracy analysis

3.1. Conventional FIR filter

A conventional finite impulse response (CFIR) filter approximates a given transfer function in the frequency domain.
A CFIR filter based on the BEF transfer function is designed in this section. Fig. 3 illustrates the basic setups for the
formulation of the CFIR filter. In case accelerations are measured discretely by a uniform time increment, Dt, the CFIR filter
expresses the displacement at the center of the time interval, uk +1, as a linear combination of measured accelerations in a
time window

ukþ1 ¼ uðtÞ ¼ ðDtÞ2
X2kþ1

p ¼ 1

cpap ¼ ðDtÞ2
Xk

p ¼ �k

cpþkþ1aðtþpDtÞ (17)

Here, cp is the coefficient of the CFIR filter. It is assumed that a time window contains 2k+1 measured acceleration and that
uk +1 represents the reconstructed displacement at time t. The square of the time increment is introduced in Eq. (17) to
make the coefficients of the CFIR filter dimensionless. The size of the time window is referred to as the filter size. Once the
displacement is computed for time t, the time window moves forward by Dt to reconstruct the displacement at t+Dt. This
procedure is identical to the overlapping time-window technique proposed by Park et al. [16] for the structural damage
detection.

The Fourier transform of Eq. (17) yields the transfer function of the CFIR filter [11]

HCðf Þ ¼ ðDtÞ2
Xk

p ¼ �k

cpþkþ1 ei2pfpDt (18)

where HC(f) is the transfer function of the CFIR filter, and i is the imaginary unit. The transfer function of the CFIR filter is
supposed to approximate the BEF transfer function given in Eq. (9)

HBðf Þ � ðDtÞ2
Xk

p ¼ �k

cpþkþ1 ei2pfpDt (19)
TimetΔ
T1 T2

u1

uk+1
u2k+1

u2k

u2

t = T1 + kΔt

a1

ak+1 a2k+1
a2k

a2

dw

Fig. 3. A time window and measured accelerations for FIR filters.
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Eq. (19) represents the truncated Fourier series of the BEF transfer function, and the coefficients of the CFIR filter are
determined as follows:

cpþkþ1 ¼
1

Dt

Z fs=2

�fs=2
HBðf Þe

i2pf Dtpdf ¼�
1

Dt

1

ð2pÞ2

Z fs=2

�fs=2

f 2

f 4þl4f 4
T

cosð2ppf DtÞdf ¼�
1

2p2 ~f T

Z 1=ð2 ~f T Þ

0

~f
2

~f
4
þl4

cosð2pp~f T
~f Þd~f (20)

where fs=1/Dt and ~f T ¼ fT=fs denote the sampling frequency of measurement and the target frequency to the sampling
frequency (TSF) ratio, respectively. The coefficient of the CFIR filter approximating the exact transfer function cannot be
evaluated like Eq. (20) due to the singularity at the zero frequency.

The coefficients in Eq. (20) are always real and symmetric with respect to p=0 since the BEF transfer function is an
even function in the frequency domain. As the BEF transfer function decreases rapidly for larger ~f as shown in
Fig. 1(b), the integral in Eq. (20) is nearly independent of the upper limit for a small TSF ratio of ~f T r0:1, and thus
becomes a function of ~p ¼ p~f T . Consequently, the relation between ~cpþkþ1 ¼ cpþkþ1

~f T and ~p is TSF ratio independent
as shown in Fig. 4(a). The trapezoidal rule is employed to evaluate the integral. Although the number of terms
included in the CFIR filter varies with filter sizes, the coefficients for the same p are always identical for all filter sizes at a
fixed TSF ratio.

The Gibbs phenomenon, which is the rippling characteristics of a truncated Fourier series, occurs in the CFIR
transfer function. To reduce the rippling amplitude, the filter size should be selected so that the coefficients
smoothly converge to zero as p approaches to k [5,6]. Therefore, the last term of the CFIR filter should correspond to
zero-crossing points, ~p0

k~f T ¼ ~p0 or k¼
~p0

~f T

(21)
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Fig. 4. Coefficients of the CFIR filters for two different TSF ratios: (a) small scale and (b) detail in a large scale. (——) ~f T ¼ 1=1000 and (&) ~f T ¼ 100=1000.
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When the calculated value for k with Eq. (21) is not an integer, the closest integer to the calculated k is employed. The filter
size is defined using k in Eq. (21)

dw ¼ 2kDt¼ 2
fs

fT

~p0Dt¼
2 ~p0

fT
¼Nw

1

fT
(22)

where dw and Nw ¼ 2 ~p0 are the filter size expressed in terms of time and the target period, respectively. The target period
denotes the reciprocal of the target frequency.

The zero-crossing points appear periodically by an interval of 1.687 such as 0.421, 2.108, 3.794, etc., in Fig. 4(b). The
filter sizes corresponding to the three zero crossing points become 0.842, 4.215 and 7.588 times the target period. As the
coefficient of the CFIR filter does not converge to zero near the first zero-crossing point, the filter size of Nw=0.842 yields a
large rippling amplitude in the transfer function (vide the forthcoming discussions), and is not an adequate size. The filter
sizes of Nw=4.215 and 7.588 result in the acceptable rippling amplitudes in the accuracy functions, and therefore are
selected as the standard filter size and the long filter size, respectively. The long filter size yields smaller rippling amplitude
but requires more computational effort than the standard one. The selection of the filter size between the standard and
long filter size depends on specific applications. Of course, a filter size longer than the long filter size may be utilized, but it
is believed that the long filter size gives sufficiently accurate results in an engineering sense.

Because of the symmetry of the coefficients, the transfer function of the proposed CFIR filter becomes as follows:

HCðf Þ ¼ ðDtÞ2ðckþ1þ2
Xk

p ¼ 1

cpþkþ1 cosð2ppf DtÞÞ (23)

Since the transfer function of Eq. (23) is always real, the proposed CFIR filer generates no phase error in the reconstructed
displacement. The normalized transfer function and accuracy function of the CFIR filter are derived as in the previous
section

~HCð
~f Þ ¼ �ð2p~f T Þ

2
ðckþ1þ2

Xk

p ¼ 1

ckþ1þp cosð2pp~f T
~f ÞÞ (24)

Hacc
C ð

~f Þ ¼�ð2p~f T
~f Þ2ðckþ1þ2

Xk

p ¼ 1

ckþ1þp cosð2pp~f T
~f ÞÞ (25)

where ~HC and Hacc
C are the normalized transfer function and accuracy function of the CFIR filter, respectively.

The transfer function and accuracy function are shown in Figs. 5 and 6, respectively, for the standard and long filter sizes
at the TSF ratio of 1/1000. The CFIR filters for both the filter sizes approximate the BEF transfer function very well for ~f Z1.
The transfer function for Nw=5 oscillates severely, and tends to diverge as the frequency increases. The oscillations in the
transfer function are always observed for filter sizes other than the standard and long filter sizes. The smaller filter size
except the two filter sizes not only causes the larger oscillation amplitude, but also triggers the oscillation at the smaller
frequency. The transfer function of the CFIR filter with the standard filter size decreases faster than that with the long filter
size for ~f r0:1, and becomes negative when ~f r0:043 (Fig. 5(b)). The negative transfer function causes the phase error of p
in the reconstructed displacement. Since, however, only noise components exist in the frequency range, the negative
transfer function would not cause any phase error for physically meaningful displacement components. As shown in
Fig. 5(b), the transfer functions for the standard and long filter sizes converge to –0.079 and 0.004 at ~f ¼ 0, respectively.
This fact implies that the long filter size provides stronger noise suppression capability in the extremely low frequency
range than the standard filter size to the CFIR filter.

The Gibbs phenomenon is clearly observed in the plot of the accuracy function in Fig. 6. The rippling amplitudes for the
standard and long filter sizes are 1.4% and 0.06%, respectively. The rippling of the accuracy function is hardly noticeable for
the long filter size even in the large scale plot shown in Fig. 6(b). The accuracy functions for the standard filter size at two
different TSF ratios of 1/1000 and 10/1000 are presented in Fig. 7, and are almost identical up to the corresponding Nyquist
frequencies. The enlarged plot of the accuracy functions near the target frequency is also presented in Fig. 7(b). The rippling
amplitude of the accuracy function for the TSF ratio of 10/1000 increases slightly near the Nyquist frequency. The accuracy
at the target frequency is evaluated as 0.984 for the both TSF ratios.

The proposed CFIR filter exhibits uniform frequency responses from the target frequency to the Nyquist frequency, and
is able to reconstruct displacement with the same level of accuracy independent of the TSF ratio for the frequency range.
Noise components below the target frequency are effectively suppressed in the CFIR filter. The only restriction of the
proposed CFIR filter is that the filter size should be fixed at either the standard or long filter size, and cannot be adjusted
freely as needed in actual applications.

3.2. FEM-FIR filter

The direct discretization of the variation statement in Eq. (6) with the finite element method leads to a new class of FIR
filter, which is referred to as the FEM-FIR filter (FFIR filter). The FFIR filter is formulated purely in the time domain unlike
the other reconstruction schemes presented in this study, and is able to reconstruct displacement and velocity at the same
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time. A similar approach (FDM-FIR filter) has been proposed by Lee et al. [11] using the FDM to discretize Eq. (5), but the
reconstruction of velocity is not considered. The filter size of the FDM-FIR filter is proposed empirically without proper
considerations of the rippling amplitude, and the regularization factor is determined by the filter size. As discussed
previously, the regularization factor and the filter size govern the accuracy and stability of the filter, respectively, which are
two independent aspects of a numerical method. However, the accuracy and stability of the FDM-FIR filter cannot be
independently controlled because the regularization factor is defined as a function of the filter size.

As the CFIR filter, the FFIR filter reconstructs displacement and velocity using the moving time-window technique. The
standard and long filter sizes defined for the CFIR filter in the previous section are adopted for the FFIR filter. Eq. (6) is
discretized in time with 2k elements representing the time increments

dPðuÞ ¼
X2k

e ¼ 1

Z
Dt

d2due

dt2

d2ue

dt2
�ae

 !
dtþb2

X2k

e ¼ 1

Z
Dt
dueue dt¼ 0 (26)

Here, ue and ae denote the displacement and acceleration in element, e, respectively. The displacement is interpolated with
the Hermitian shape function, NH, and the measured acceleration is interpolated with the linear shape function, NL, in an
element [17]

ue ¼NHUue, ae
¼NLUae (27)

where ue and ae are the nodal unknown vector and measured nodal acceleration in element e, respectively, and are defined
as follows:

ue ¼ ðue
1,ve

1,ue
2,ve

2Þ
T, ae

¼ ðae
1,ae

2Þ
T (28)
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where ðUÞe1 and ðUÞe2 indicate nodal unknowns at the left and the right node of element e, respectively, and v is the velocity.
The definitions of the nodal variables are illustrated in Fig. 8. Notice that the measured acceleration may be modeled as a
constant in an element by averaging the two nodal accelerations if necessary.

The standard FEM formulation for a beam on an elastic foundation [12] is adopted to derive the following matrix
expression of Eq. (26):

ðKþb2
ðDtÞ4MÞu¼ ðDtÞ2Q a (29)

where u and a denote the nodal unknown vector and the measured acceleration vector associated with all sampling points
of measurement. The nodal unknown vector consists of the nodal displacements and the nodal velocities. The matrices in
Eq. (29) are defined as

K¼
X

e

Z 1

0

d2NT
H

dx2

d2NH

dx2
dx, M¼

X
e

Z 1

0
NT

HNH dn , Q ¼
X

e

Z 1

0

d2NT
H

dx2
NL dx (30)

where
P

e is the assembly operator of the FEM, and x is the natural coordinate [17] for the time variable ranging from
0 to 1. The nodal unknown vector is obtained by solving Eq. (29).

u¼ ðDtÞ2ðKþb2
ðDtÞ4MÞ�1Qa¼ ðDtÞ2Ca (31)

where C is the coefficient matrix of order 2ð2kþ1Þ � ð2kþ1Þ.
Since the Neumann type boundary conditions are enforced in a weak sense for Eq. (29), the reconstructed variables are

inevitably affected by errors in the boundary conditions. However, the errors rapidly decrease inside of the domain away
from the boundary due to the diffusive characteristics of the FEM for elliptic boundary value problems. The displacement
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and velocity at the center of a time window are least affected by the errors induced by the weak enforcement of the
boundary conditions, and are taken as the reconstructed solution in a time window. Assuming the time step at the center
of a time window represents time t as in the CFIR filter, the reconstructed displacement is expressed as

uðtÞ ¼ ukþ1 ¼ caðDtÞ2 ¼ ðDtÞ2
X2kþ1

p ¼ 1

C2kþ1,pap ¼ ðDtÞ2
Xk

p ¼ �k

cpþkþ1aðtþpDtÞ (32)
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where c denotes the (2k+1)th row of the C matrix. The FFIR and CFIR filters have the identical expression. The only
difference between the two filters is the method for determining the coefficients. The transfer function and accuracy
function of the FFIR filter in Eq. (32) are derived and normalized with the same method used in the CFIR filter, and are not
presented here.

The coefficients of the FFIR filter, cp+ k + 1, for various window sizes are plotted against p/k for the TSF ratio of 1/1000 in
Fig. 9 together with those of the CFIR filter with the standard and long filter size. The coefficients are symmetric with
respect to p=0 and converge smoothly to zero regardless of filter sizes dissimilar to the CFIR filter. Therefore, as far as the
rippling amplitude in the transfer function is concerned, the filter size can be selected freely as needed in specific problems.
The convergence to zero becomes smoother for a longer filter size, which yields the smaller rippling amplitude [5,6]. The
imaginary parts of the displacement transfer function vanish due to the symmetry of the coefficients, and thus no phase
error occurs in the reconstructed displacement with the FFIR filter. The coefficients of the FFIR and the CFIR filter appear to
be almost identical in the figure, and the differences in the coefficients between the two filters seem negligible. However,
the differences cause considerable effect on behaviors of the two filters.

The displacement transfer functions of the FFIR filters with various filter sizes for the TSF ratio of 1/1000 are presented
in Fig. 10. The transfer functions appear almost identical above the target frequency regardless of the filter size in the
figure, but the longer filter size provides stronger noise suppression capability for the FFIR filter. The transfer function of
the FFIR filter approximates the BEF transfer function better than that of the CFIR filter shown in Fig. 5 below the target
frequency for the same filter size. The severe oscillations in the transfer function of the CFIR filter found for Nw=5 do not
occur in the FFIR at all. The Gibbs phenomenon is clearly seen in the accuracy functions plotted for various filter sizes in
Fig. 11. The larger filter size yields the smaller rippling amplitude of the accuracy function, and virtually no rippling in the
accuracy function is observed for filter sizes larger than Nw=5 as shown in Fig. 11(b). Unlike the CFIR filter, the rippling
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amplitude damps out quickly for all filter sizes as the frequency increases. The accuracy at the target frequency varies
slightly with the filter size, which is caused by the rippling of the accuracy function. The standard and long filter sizes yield
an accuracy of 0.98 and 0.97 at the target frequency, respectively.

Fig. 12(a) presents the accuracy functions of the FFIR filters with the standard filter size for two different TSF ratios of
1/1000 and 10/1000 against the normalized frequency. The accuracy functions plotted against the frequency normalized to
the sampling frequency are also presented in Fig. 12(b). The FFIR filter yields identical accuracy functions independent of
the TSF ratios near the target frequency. Fig. 12(b) reveals that the accuracy functions begin to deviate from the exact value
1 at 4% of the sampling rate, and become smaller than the target accuracy of 0.97 after 9.7% of the sampling rate regardless
of TSF ratios. The FFIR filter yields less accurate transfer functions for high frequencies over 0.1fs than for frequencies near
the target frequency. Nevertheless, overall accuracy of the reconstructed displacement would not deteriorate much due to
the aforementioned inaccuracy because the transfer function decreases rapidly in proportion to 1=~f

2
, and the contribution

of high frequency contents in measured acceleration to the reconstructed displacement becomes negligible. To ensure the
accuracy of the reconstructed displacement, all dominant frequencies in measured accelerations should be smaller than
0.1fs. The frequency range to achieve the accuracy level of 0.97 is given as fTr fr0.1fs.

The accuracy functions of the CFIR and the FFIR filter are compared with that of the FDM-FIR filter proposed by
Lee et al. [11] in Fig. 13 at the TSF ratio of 1/1000. As the filter size governs the regularization factor in the original
formulation of the FDM-FIR filter, the original formulation is modified with the regularization factor defined in Eq. (14) and
the standard filter size for a fair comparison. The accuracy functions of the FDM-FIR and the FFIR filter appear almost
identical up to ~f ¼ 40, at which the accuracy functions begin to deviate from 1 to opposite directions. The accuracy function
of the FDM-FIR filter reaches 2.46 at the Nyquist frequency, and that of the FFIR filter reaches the minimum value of 0.693
at ~f ¼ 390.
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The velocity at the center of a time window is reconstructed using the (2k+2)th row of the coefficient matrix in Eq. (31)

vðtÞ ¼ vkþ1 ¼ ðDtÞ2
X2kþ1

p ¼ 1

C2kþ2,pap ¼Dt
Xk

p ¼ �k

ĉpþkþ1aðtþpDtÞ ¼ ĉaDt (33)

where ĉpþkþ1 ¼Dt C2kþ2,pþkþ1. The coefficients for the velocity reconstruction are shown in Fig. 14 for various filter sizes
at the TSF ratio of 1/1000, and always maintain anti-symmetry with respect to p=0. The anti-symmetry of the coefficients
is also held for different TSF ratios because the compositions of the system matrices in Eq. (30) are independent of the TSF
ratios. The velocity transfer function of the FFIR filter is obtained by applying the Fourier transformation of Eq. (33). All real
parts of the velocity transfer function vanish due to the anti-symmetry of the coefficients

VF ðf Þ ¼ 2iDt
Xk

p ¼ 1

ĉpþkþ1 sinð2ppf DtÞ (34)

where VF is the velocity transfer function of the FFIR. As the exact transfer function for velocity is 1/io, the normalized
transfer function ~V F and the accuracy function Vacc

F of velocity are defined as follows:

~V F ðf Þ ¼
VF ðf Þ

1=ioT
¼�4p~f T

Xk

p ¼ 1

ĉpþkþ1 sinð2pp~f T
~f Þ (35)

Vacc
F ðf Þ ¼

VF ðf Þ

1=io ¼�4p~f T
~f
Xk

p ¼ 1

ĉpþkþ1 sinð2pp~f T
~f Þ (36)
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The accuracy function of velocity is presented in Fig. 15 for two TSF ratios. As in the displacement reconstruction, most of
the frequency contents smaller than the target frequency in measured accelerations are suppressed in the velocity
reconstruction. The accuracy of the velocity reconstruction reaches 0.982 at the target frequency, and 0.97 at 0.1fs. The
accuracy decreases rapidly after 0.1fs, and becomes zero at the Nyquist frequency.
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An advantage of the FFIR filter over the CFIR filter is that the filter size can be flexibly selected as needed in actual
applications. For example, a filter size shorter than the standard filter size may be employed to reduce computational effort
for the real-time or near real-time reconstruction of displacement and/or velocity. However, shorter filter sizes lead to a
less accurate transfer function at the target frequency and a larger rippling magnitude of the accuracy function. To enhance
the accuracy of the FFIR filter for a shorter filter size than the standard size, the two algorithms proposed by the Lee et al.
[11] may be adopted. The first approach is applicable when measured acceleration contains only one dominant frequency,
and the target frequency is simply adjusted so that the accuracy at the actual target frequency becomes exactly 1. The
second approach is appropriate for the measurement with multiple frequency contents, and is based on a minimization
problem with respect to the target frequency. For details, refer to Ref. [11].
4. Numerical and experimental verification

Three examples are presented to verify the accuracy and effectiveness of the proposed FIR filters. The first two examples
are adopted from the work by Lee et al. [11] on the displacement reconstruction with the FDM-FIR filter. The flutter
derivatives are evaluated for a section model of a bridge using the reconstructed displacement from the measured
acceleration in the third example. The target accuracy of 0.97 is used for all examples. The reconstruction of displacement
and velocity is performed after the actual measurement of the acceleration. Both acceleration and displacement are
measured. The instance when the displacement reconstruction begins is set to t=0 throughout all the examples. The fast
Fourier transform (FFT) is utilized for the discrete Fourier transform. The results by the FDIA based on the BEF transfer
function are not presented as the behaviors of the FDIA are not primary concern of this paper. The FDIA yields slightly less
accurate results than the proposed filters with the standard filter size and nearly the same results as those with the long
filter size.
4.1. Numerical simulation study

The accelerations at the center of a simple beam with the span length of 40 m are measured. The excitation force is
applied at the location 12 m right of the left support of the beam, and is defined as follows:

FðtÞ ¼ 8:9sin15:4ptþ35:9sin31ptþ29:3sin56ptKN (37)

The flexural rigidity and the mass per unit length of the beam are 6.03�1010 N m2 and 1.5�103 kg/m, respectively. The
fundamental frequency of the beam is found as 6.22 Hz, and the frequencies of the excitation force are 7.70, 15.50 and
28.00 Hz. The excitation force is withdrawn after 6 s to induce the free vibration of the beam. The dynamic responses of the
beam are calculated by the finite element method with 10 beam elements. The Newmark b-method with the constant
acceleration assumption is adopted for the time integration in the analysis, and the time increment for the analysis is
0.001 s. The sampling frequency for the measurement of acceleration and displacement is 1000 Hz. The Rayleigh damping
model is utilized for structural damping. The first and the second modal damping ratios of 0.1% are assumed to evaluate the
coefficients of the Rayleigh damping model. Four dominant frequencies are found as 6.17, 7.67, 15.5 and 28.0 Hz by the FFT
on the accelerations calculated for 12 s. The differences between the identified and actual dominant frequencies are caused
by the discretization error in the FFT. The ratios of the amplitudes of the simulated displacement components
corresponding to the second, the third and the fourth dominant frequencies to that corresponding to the first frequency are
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1.14, 0.80 and 0.53, respectively. The target frequency is selected as 6.17 Hz, and the standard and long filter sizes are set to
0.684 and 1.230 s, respectively.

Fig. 16 compares the reconstructed displacement with the calculated displacement from 5 to 8 s. Only the
reconstruction results by the FFIR filter with the standard filter size are plotted because reconstruction results by the
CFIR and FFIR filters with the long filter size appear identical for the scale used in the figure. Neither the amplitude error
nor phase error is found in the reconstructed displacement. The details at the two peaks marked with circles in Fig. 16 are
presented in Figs. 17 and 18 for the proposed filters with the standard and long filter sizes. The reconstruction errors at the
peak shown in Fig. 17 by the FFIR filter for the standard and long filter sizes are evaluated as 0.8% and 0.6%, respectively,
and those by the CFIR filter for the two filter sizes as 1.3% and 0.5%, respectively. The FFIR filter yields 1.8% and 2.9% error
for the standard and long filter sizes at the peak shown in Fig. 18, respectively, and the CFIR filter yields 1.6% and 3.0%
errors for the two filter sizes. The accuracy of the reconstructed displacement by the proposed filters at the peak shown in
Fig. 18 almost coincides with the accuracy of the BEF transfer functions corresponding to the filter sizes at the target
frequency. This is because the displacement components corresponding to the excitation frequencies have damped out,
and only the displacement component corresponding to the fundamental frequency of the beam remains around the
second peak.

To investigate the effect of noise on reconstruction results, displacement is reconstructed from noise-polluted
accelerations and plotted in Fig. 19 together with those from noise-free accelerations. The noise-polluted accelerations are
simulated by adding 5% random proportional noise generated with the uniform probability function to the accelerations
calculated by the finite element analysis. The root mean square (rms) errors in the measured accelerations and the
displacement reconstructed by the proposed FIR filter with the standard filter size are shown in Table 1. The 5% random
proportional noise causes around 2.90% rms errors in the accelerations. The rms errors in the reconstructed displacements
are around 4% for the forced vibration, and less than 2% for the free vibration, which demonstrates the robustness of the
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Table 1
The rms errors in measured accelerations and reconstructed displacements of Example 1.

Type of vibration Acceleration (%) Reconstructed displacement (FFIR) (%) Reconstructed displacement (CFIR) (%)

Noise-free 5% Noise Noise-free 5% Noise Noise-free 5% Noise

Forced vibration 0.00 2.90 1.73 3.98 1.79 4.02

Free vibration 0.00 2.85 1.75 1.93 1.51 1.72
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proposed filters against noise. The reconstructed velocity from the noise-free accelerations is shown in Fig. 20. Only the
reconstruction results obtained by the FFIR filter with the standard filter size are presented because differences between
those with the long filter size and standard filter size are hardly noticeable for the scale of the figure. Although the details
of the reconstructed velocity are not shown, the FFIR filter reconstructs the velocity at the same level of accuracy as the
displacement.
4.2. Field test on a simply support railroad bridge

The acceleration and the displacement are measured at the center of a 40 m simply supported bridge on the Gyeongbu
line of the Korea Train Express (KTX). The field experiment is conducted by the Steel Structure Research Laboratory of
Research Institute of Industrial Science and Technology, Kyungki-do, Korea. The detailed figure on the experimental setup
is given in Ref. [11]. The measurements are taken at a sampling rate of 1000 Hz while an actual train passes the bridge
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during commercial operation. Three dominant frequencies of the bridge are identified as 2.86, 3.86 and 5.79 Hz from the
FFT of the measured accelerations. The first and the second dominant frequency correspond to the excitation frequency
induced by the moving train and the fundamental frequency of the beam, respectively. The target frequency is set
to 2.86 Hz, and the standard filter size of 1.474 s is employed for the reconstruction. As the static displacement is
included in the measured displacements, the pure dynamic displacement is extracted by the following formula proposed
by Lee at al. [11]:

udðtÞ ¼ umðtÞ�
1

T

Z tþT=2

t�T=2
umðtÞdt (38)

Here ud(t), um(t) and T are the extracted dynamic displacement, the measured displacement at time t and the target period,
respectively. The train enters the bridge at 0.5 s, begins to exit the bridge from 7.7 s and completely leaves the bridge at
8.4 s. The aforementioned instances are not measured values but estimated ones based on the measured displacements.

Fig. 21 shows the extracted dynamic displacement by Eq. (38) and the reconstructed displacement by the FFIR filter.
Results by the CFIR appear to be almost identical to those of the FFIR filter, and are not presented in the figure. When the
train is on the bridge, the forced vibration is dominant. After the train leaves the bridge, the free vibration governs the
responses of the bridge. The maximum differences between the reconstructed and extracted dynamic displacement at
peaks are found as about 10% during the forced vibration, and those during the free vibration as about 25%. The details of
reconstructed displacements by the CFIR filter, FFIR filter and the FDM-FIR filter proposed by Lee et al. [11] with the
optimized filter size of 0.98 s are compared with the extracted dynamic displacement in Fig. 22. The three FIR filters yield
almost identical results, and no noticeable difference is found in either the amplitude or the phase. Lee et al. point out
that the discrepancies between the extracted and reconstructed displacements are caused by the extraction scheme.
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Fig. 22. Details of reconstructed and extracted dynamic displacement.
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They demonstrate that the displacement component corresponding to the second dominant frequency is overestimated by
21% during the extraction, and that the reconstructed displacements represent actual dynamic displacements better than
the extracted displacements. For details, refer to their work.
4.3. Extraction of flutter derivatives from the reconstructed displacement responses

This example is presented to demonstrate the overall accuracy of the reconstructed displacement by investigating the
accuracy of dependent variables on displacement. The flutter derivatives of a section model representing a bridge deck
system with plate girders are evaluated using the measured and reconstructed displacements. Measurements on
displacement and acceleration taken from a wind tunnel test are utilized. The wind-induced motions of the deck in a
long-span bridge generate self-excited forces that have strong influences on the stability of a bridge. Scanlan and Tomko
[13] have formulated the flutter derivatives to express the self-excited forces in terms of the vertical and rotational
motions of a bridge deck. The aeroelastic behaviors of a long-span bridge are foreseen with the flutter derivatives obtained
from wind tunnel tests.

The experiment was performed by Kim and King at the Boundary Layer Wind Tunnel Laboratory of the University of
Western Ontario in Ontario, Canada [18]. Experimental setups are shown in Fig. 23. The section model undergoes the
vertical motion and the rotational motion with respect to the center of rotation of the cross section. The section model is
rigidly attached to the two rigid beams supported by two springs at each end. Acceleration and displacement are measured
at two points located symmetrically 38.1 cm away from the center of rotation of the section model in each rigid beam with
the sampling frequency of 100 Hz. The vertical displacements and the rotation angles of the cross section are obtained by
averaging the displacements measured at the four sensors and two differential displacements of two sensors in each rigid
beam, respectively. The displacement and the velocity are reconstructed from accelerations measured at each
accelerometer by the FFIR filter with the standard filter size, and the aforementioned averaging scheme is employed.

Sudden release tests are carried out for 16 different wind speeds, and 20 trials are performed for each wind speed. The
vibration of the section model is initiated by the sudden release of the rigid beams from an initial position. Table 2 shows
the fundamental dynamic characteristics of the section model for each wind speed. Two dominant frequencies are found
for each wind speed by the FFT of measured accelerations. The low and high frequencies correspond to the vertical and
rotational motion of the section model, respectively, and the low frequencies are selected as the target frequencies for the
reconstruction. The frequencies and filter sizes presented in the table are the averaged values obtained at the four sensors
in the 20 trials.

The reconstructed displacements agree well with measured displacements for all wind speeds except near the releasing
point. Fig. 24 shows the reconstructed and measured vertical displacement of the section model for the first trial of case 16,
which yields the largest reconstruction errors compared to the other wind speeds. Although case 16 is considered to be the
worst case in the reconstruction of displacement, the reconstructed displacement nonetheless agrees well with the
measured displacement. Some discrepancies between the measured and reconstructed displacement are observed for
0.69 s after the release of the section model. This is because measured accelerations before and after the sudden release are
simultaneously included in a time window up to 0.69 s, which is the equivalent of half the filter size. This phenomenon is a
fundamental property of the FIR filter, and commonly observed at all wind speeds.

The flutter derivatives are extracted by solving an inverse problem with the prediction-error minimization method
(PEM) [19] in the MATLAB library based on a state-space formulation [20]. The extraction is performed with displacement
data for the time duration shown in Table 2 starting after one period of the vertical motion from the sudden release. For the



Table 2
Wind speed, identified frequencies and other parameters of Example 3.

Case Wind speed

(m/s)

Identified frequency (Hz) Filter size (s) Data lengtha (s) No. of successful

trials

Vertical Rotational

1 0.000 3.052 5.127 1.381 3.280 (v) 19

2 0.679 3.047 5.136 1.383 3.280 (v) 11

3 1.679 3.059 5.135 1.378 3.270 (v) 18

4 2.647 3.066 5.082 1.375 3.260 (v) 9

5 2.964 3.062 5.110 1.377 3.270 (v) 16

6 3.620 3.022 5.153 1.395 3.310 (v) 16

7 3.935 3.008 5.204 1.401 3.320 (v) 20

8 4.265 3.031 5.162 1.391 3.100 (r) 12

9 4.601 3.055 5.175 1.380 2.900 (r) 14

10 4.911 3.108 5.250 1.356 2.490 (r) 8

11 5.243 3.140 5.166 1.342 2.090 (r) 14

12 5.562 3.204 5.145 1.316 1.230 (r) 11

13 6.517 3.214 4.752 1.312 1.100 (r) 15

14 7.495 3.374 4.674 1.249 2.200 (v) 16

15 8.162 3.273 4.612 1.288 1.610 (v) 5

16 8.875 3.308 4.638 1.274 1.210 (v) 4

a (v) and (r) indicates the vertical motion and the rotational motion.

Mass per unit length: 3.64 (kg/m)
Mass moment of inertia per unit length: 0.102 (kg-m2/m)
Air density: 1.25 (kg/ m3)

Accelerometer Laser displacement transducer

Fig. 23. Experimental setup of the plate girder section for wind tunnel test.
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slower wind speeds up to case 7, the time duration corresponds to 10 periods of the vertical motion. Since dynamic
responses damp out quickly for higher wind speeds, the time duration from case 8 is determined by the earlier instance
when either the vertical or rotational motion of the section model disappears. The letter in the parenthesis of the data
length column in Table 2 indicates the direction of motion that disappears first.

The PEM sometimes fails to converge or yield physically meaningful results due to the ill-posedness of the inverse
problem. The flutter derivatives presented in this paper are the averages of values obtained in successful trials for which
the PEM yields physically meaningful results for both the reconstructed and measured displacement. The number of
successful trials for each wind speed is shown in the last column of Table 2. It should be noted that velocity and
displacement are utilized simultaneously in the PEM to improve the accuracy and stability of results for noisy
measurement. Since, however, displacement is measured with very high accuracy in a wind tunnel test, the results of the
extraction with and without the reconstructed velocity are almost identical, and thus are not presented.
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Eight flutter derivatives are defined for a section model with two dofs under wind actions. Among them, two direct
derivatives H�1 and A�2 are of great importance in the design of a cross section for a long-span bridge [3,13]. The former
relates the lift force to the vertical velocity and the latter expresses the torsional moment in terms of the rotational velocity
of the section model. Moreover, the two derivatives are the most influential variables in estimating the aerodynamic
damping of a long-span bridge, which governs the stability of a cross section against wind actions. Figs. 25 and 26 show the
direct flutter derivatives extracted from the reconstructed displacements along with those from the measured
displacements. The centered symbols and the lines represent the extracted derivatives at the wind speeds shown in
Table 2, and the cubic spline fits of them, respectively. In the figures, the flutter derivatives are plotted against the non-
dimensional reduced velocity defined as follows:

~V m ¼
Vw

Bfm
, m¼ vertical, rotational (39)

Here, subscript m indicates the direction of a motion, and ~V m, Vw, B and fm are the reduced wind speed, the real wind speed,
width of the section model and the frequency, respectively.

The two sets of flutter derivatives agree very well with each other for all wind speeds. No noticeable differences are
found in the other flutter derivatives that are not presented here. This implies that the flutter derivatives may be extracted
based on the reconstructed displacements from accelerations measured with accelerometers rather than measured
displacements with displacement transducers. Accordingly, a strong potential feasibility of utilizing accelerometers in
assessing aerodynamic and aeroelastic characteristics of long-span bridges in service are recognized.



-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0

Reconstructed displacement
Measured displacement

A
2

Reduced velocity

*

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Fig. 26. Rotational direct flutter coefficient, A�2.

Y.H. Hong / Journal of Sound and Vibration 329 (2010) 4980–50035002
5. Summary and conclusion

This paper proposes two types of FIR filters, the CFIR and FFIR filter, to reconstruct displacement from measured
accelerations. The BEF transfer function is derived by taking the variation of the minimization problem that defines an
inverse problem for the reconstruction of displacement. The regularization factor in the inverse problem is determined
with the desired accuracy at the target frequency. The CFIR filter directly approximates the BEF transfer function in the
frequency domain by the truncated Fourier series, while the FFIR filter is obtained by discretizing the variational statement
of the minimization problem with the standard FEM for beam problems. The Hermitian shape function is utilized to
interpolate displacement in each finite element. Velocity as well as displacement can be reconstructed simultaneously
from the same measurement.

The proposed filters are capable of suppressing the low frequency noises below the target frequency, and reconstructing
displacement accurately above the target frequency. The longer filter size results in smaller rippling amplitude in both
filters. The CFIR filter exhibits a uniform frequency response from the target frequency to the Nyquist frequency in case the
filter size is set to either the standard or long filter size. The filter sizes other than the two filter sizes cause diverging
rippling amplitudes in the transfer function of the CFIR filter, which may be considered to be the one shortcoming of the
CFIR filter. On the other hand, the FFIR filter size can be adjusted freely as needed in applications and the rippling
amplitude damps out quickly for all filter sizes. Although the accuracy of the FFIR filter deteriorates in higher frequency
ranges, the overall performance is not affected seriously because the high frequency contents in measured accelerations
contribute little to the reconstructed displacement. From the aforementioned facts, it may be concluded that the CFIR filter
is a good choice for the reconstruction in systems with a wide frequency spectrum while the FFIR filter is suitable for low-
frequency dominant systems. To reconstruct velocity as well as displacement, however, the FFIR filter should be employed.

Three examples are presented to verify the proposed FIR filters. In the numerical simulation study and field experiment,
the CFIR and the FFIR filter yield very accurate displacement, and exhibit robust behaviors against measurement noises. In
the last example, the flutter derivatives for the section model of a bridge deck system with plate girders are identified by
the reconstructed displacement, and are compared with those by measured displacement. Both the identified derivatives
show good agreement with each other. Therefore, the proposed FIR filters can be applied to the identification of the flutter
derivatives of long-span cable-supported bridges in service, in which the measurements of displacement are considered to
be one of the major obstacles. It is believed that the proposed FIR filters provide accurate and reliable alternatives to direct
measurement of dynamic displacements, which is costly, difficult and almost impossible, especially for large-scale
structures.
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