
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 5017–5035
0022-46

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/jsvi
Partial pole placement in structures by the method of receptances:
Theory and experiments
Maryam Ghandchi Tehrani, Robin N.R. Elliott, John E. Mottershead n

Department of Engineering, University of Liverpool, Liverpool L69 3GH, UK
a r t i c l e i n f o

Article history:

Received 26 January 2010

Received in revised form

18 June 2010

Accepted 21 June 2010
Handling Editor: J. Lam
or to evaluate the structural matrices M, C, K and in practical experimentation the
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.06.018

esponding author.

ail address: j.e.mottershead@liv.ac.uk (J.E. Mo
a b s t r a c t

The theory and practical application of the receptance method for vibration suppression

in structures by multi-input partial pole placement is described. Numerous advantages

of the receptance method over conventional matrix methods such as state-space control

based on finite elements have been demonstrated, in particular there is no need to know

measurement of ‘receptance’ may be generalised so that explicit modelling of actuator

dynamics becomes unnecessary. Active vibration control is demonstrated experimen-

tally using two test rigs. In the first set of experiments partial pole placement is applied

to a lightweight glass-fibre beam using macro fibre composite (MFC) actuators and

sensors. In the second set of experiments active vibration control is implemented on a

heavy modular test structure representative of systems of differing dynamic complexity

using electromagnetic actuators and piezoelectric (ICP) accelerometers. It is demon-

strated that chosen poles may be assigned to predetermined values without affecting

the position of other poles of interest.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of pole placement has received considerable attention from the active-control and vibrations communities over
several decades [1]. Applications where it is desirable to set natural frequencies and damping to specified values include the
avoidance of damaging large-amplitude vibrations close to resonance, and the design of adaptive structures, capable of changing
their behaviour to respond in a desirable way to a varying demand. Eigenvalue assignment in active-control dates from the 1960s
when Wonham [2] showed that the poles of a system could be assigned by state feedback if the system was controllable. Porter
and Crossley [3] developed a modal control method for systems described using the first-order state-space. Chu and Datta [4]
addressed the problem of robust eigenvalue assignment in second-order systems, such as damped vibrating structures.

Del Vescovo and D’Ambrogio [5] described a receptance-based method for active vibration control and Ram and
Mottershead [6] presented a new and general formulation for pole-zero placement in structures also using measured
receptances. This approach has significant advantages over methods based upon finite element models, which are typically
very large and easily degraded by model reduction. Finite element models also have difficulty in accurately modelling
damping, which is critical to complex eigenvalue analysis. The receptance method does not require evaluation or
knowledge of the system matrices M, C, K, and in principle, a single input may be used to assign all the poles of the
system—when the poles are controllable. Conventional methods involve a tacit assumption that the dimension of the
system is finite and measurable at every coordinate. The resulting set of state equations is only complete when all the
displacements are available. However, when using the receptance method the system equations are inverted. This means
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that the equations are complete for each measured displacement when the control forces are known. Generally these
forces are measured and small in number. There is no need to estimate the unmeasured state using an observer or a
Kalman filter and no need for model reduction. The M,C,K matrices generally include modelling inaccuracies and
discretisation errors, which become increasingly significant at higher frequencies. Receptances, however, may be measured
with good accuracy over the entire range of frequencies of interest without loss of accuracy of the vibration modes.

In the partial pole placement problem a subset of poles of a structure are set to specified values, while leaving the other
poles of interest unchanged. The problem was considered in the single-input case by Datta et al. [7], and in the multi-input
case by Datta and Sarkissian [8]. Qian and Xu [9], Brahma and Datta [10] and Bai et al. [11] described various numerical
routines for minimising the condition number of the matrix of closed-loop eigenvectors, for robust partial pole placement.
However, these partial pole placement studies assume the system matrices are known (or estimated from methods such as
finite elements). The use of the receptance method for robust multi-input pole placement is derived by Tehrani et al. [12],
for the case where the system matrices are not known (nor required to be estimated).

Mottershead et al. [13] formulated a multiple-input–multiple-output (MIMO) approach by output-feedback control
using collocated actuators and sensors and completed the first experimental pole-zero placement tests by the receptance
method on a ‘T’ shaped thin plate, using small inertial actuators. The use of collocated actuators and sensors is helpful in
overcoming the spillover problem since it is a configuration that closely mimics a passive modification, when time delays are
negligible. Of course a structure cannot be destabilised by a passive modification since the system matrices maintain their
symmetry and definiteness properties. Unfortunately, there are numerous examples of systems where collocation of actuators and
sensors is impractical or impossible, usually because of inaccessible actuator locations. The multiple-input state feedback
method proposed and applied in this paper is applicable to the most general case of non-collocated sensors and actuators.
The use of the method to assign a subset of the poles of a system is demonstrated numerically, and in two set of experimental
tests on (i) a lightweight composite beam with macro fibre composite actuators and sensors and (ii) a modular test structure in
two configurations using electromagnetic actuators and piezoelectric (ICP) accelerometers. Another advantage of the
method is revealed in the experiments, where the receptance is generalised to the transfer function between outputs and
inputs of any measurable quantities (not necessarily displacement outputs and force inputs). In this way actuator dynamics may
be included in the measured ‘receptance’ and do not need to be modelled, as for example in Xing et al. [14]. In contrast to the
study by Datta et al. [7], which relies on ensuring modes not to be altered are unobservable, in this work these modes are rendered
uncontrollable.
2. Preliminary calculations

In conventional modelling the dynamic behaviour of a structure is determined from mass, damping and stiffness
matrices, M, C, K 2 Rn�n, usually obtained from finite elements and with the usual symmetry and definiteness properties.
In theory the receptance matrix, which is measurable experimentally, is the inverse of the dynamic stiffness matrix,

HðsÞ ¼ Z�1
ðsÞ (1)

ZðsÞ ¼Ms2þCsþK (2)

Orthogonality conditions for the quadratic pencil (2) were given by Fawzy and Bishop [15] and also by Datta et al. [7],

uT
k ½ðljþlkÞMþC�uj ¼ 0

uT
k ½ljlkM�K�uj ¼ 0
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, jak (3)
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k ½l

2
kM�K�uk ¼ lk (4)

where lk 2 flj,l
*
j g

n

j ¼ 1
denote the eigenvalues and uk 2 fuj, u*
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are the eigenvectors of the system. The receptance
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or by the ratio of two polynomials,

HðsÞ ¼
NðsÞ

dðsÞ
(6)
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where d(lk)=0 is the characteristic equation that defines the eigenvalues of the system. The polynomial d(s) and the matrix
N(s) may be expanded as

d sð Þ ¼ P
n

k ¼ 1
ððs�lkÞðs�l

*
kÞÞ (7)

and

NðsÞ ¼ U U*
h i

adj
diagðs�lkÞ 0

0 diagðs�l*
kÞ

 !
U U*
h iT

(8)

where U is the modal matrix of mass-normalised eigenvector columns,

U U*
h i

¼ u1 . . . un u*
1 . . . u*

n

h i
(9)

It follows from Eq. (8) that rank(N(s))=1 if and only if s=lk,

NðljÞ ¼uk

Yn

j ¼ 1
jak

ðlk�ljÞ
Yn

j ¼ 1

ðlk�l
*
j Þ

0
B@

1
CAuT

k (10)

The dynamic stiffness equation,

ZðsÞxðsÞ ¼ fðsÞ (11)

is a ‘force’ equation. Every term in x(s), the displacement or state vector, must be present for the equation to be complete.
This is the reason why, in state-space control problems, it is necessary to use an observer (or equivalent) to estimate the
unmeasured states. In industrial-scale problems the number of coordinates can be many thousands, or even millions, and
therefore it is necessary to use model reduction methods to condense the problem to an acceptable size. On the other hand,
the receptance equation, expressed as

HðsÞfðsÞ ¼ xðsÞ (12)

is a ‘displacement’ equation. For each row of the matrix equation to be complete it is only necessary to know the applied
forces, usually at a small number of coordinates. Therefore for every sensor location, the measured terms in x(s), one only
needs to know the non-zero terms in f(s), which are usually measured in an experiment. Therefore, there is no requirement
for an observer or for model reduction when using the receptance method.

In practical problems we may be interested to modify the spectrum (the natural frequencies and damping ratios) of a system,
usually to avoid resonances with excitation frequencies. This may be achieved by modifying the system, either passively by adding
mass, damping or stiffness terms, or by active control. The advantage of passive modification is that the modified system is
guaranteed to remain stable. However, practical modification requires difficult measurements, typically rotational receptances
[16]. The advantage of active control is that it offers much greater freedom in the ’form’ of the modification, but this is achieved at
the expense of ’compensation’ to ensure stability. The simplest modification is the unit-rank dynamic-stiffness modification,

ZðsÞ ¼ ZðsÞþuðsÞvTðsÞ (13)

and a straightforward solution is available for the modified receptance matrix by the Sherman–Morrison formula [17];

HðsÞ ¼HðsÞ�
HðsÞuðsÞvTðsÞHðsÞ

1þvTðsÞHðsÞuðsÞ
(14)

where ZðsÞ and HðsÞ are, respectively, the dynamic stiffness and receptance matrices of the modified system. The characteristic
equation is

1þvTðmkÞHðmkÞuðmkÞ ¼ 0 (15)

where fmkg
2n
k ¼ 1 are the eigenvalues of the modified system. Such characteristic equations form the basis of the method of

receptances. This approach, fully explained in [6] and restricted to the assignment of simple eigenvalues, is extended in the
present article.

3. Modal controllability and observability

The controllability and observability of vibration modes were considered by Hamdan and Nayfeh [18]. For the case of a
second-order system with single input, u(s), and output, y(s), they wrote,

ðMs2þCsþKÞxðsÞ ¼ buðsÞ (16)

yðsÞ ¼�ð fT gT Þ
sx

x

� �
¼�ðsfþgÞTx (17)



M. Ghandchi Tehrani et al. / Journal of Sound and Vibration 329 (2010) 5017–50355020
and showed that the kth mode is (i) controllable if and only if

rank l2
k MþlkCþK ^ b

h i
¼ n (18)

and (ii) observable if and only if

rank
gTþlkfT

l2
kMþlkCþK

" #
¼ n (19)

They defined measures of modal controllability and observability as the cosines of angles between one-dimensional
subspaces,

cos yðcÞk ¼
9uT

kb9
JukJJbJ

 !
, cos yðoÞk ¼

uT
kðgþsfÞ

�� ��
JukJJgþsfJ

 !
(20),(21)

where uk is the kth open-loop eigenvector.
The distance between the kth mode and the input distribution b becomes a maximum when uT

kb¼ 0 and the kth mode
is then said to be uncontrollable. Likewise the kth mode is said to be unobservable when uT

kðgþsfÞ ¼ 0.
We combine Eqs. (16) and (17) using u(s)=y(s). Then,

ðMs2þðCþbfT
ÞsþðKþbgTÞÞxðsÞ ¼ 0 (22)

which amounts to a rank-1 modification to the dynamic stiffness matrix.
Now by setting s=lk and premultiplying Eq. (22) by uT

k ,

uT
kðMl2

kþClkþKÞuk ¼�ðu
T
kbÞððgTþlkfT

ÞukÞ (23)

The right-hand side vanishes whenever ðuT
kbÞ ¼ 0, the uncontrollability condition, or ðgTþlkfT

Þuk ¼ 0, the unobservability

condition. We notice that under either of these conditions the eigenvalue lk remains unchanged by control action. The
eigenvectors uk in Eq. (23) do not have the effect of diagonalising M, C, K separately, but we see from the orthogonality

conditions (3)–(4) that the dynamic stiffness ðl2
k MþlkCþKÞ is indeed diagonalised. In general Eq. (23) leads to the

asymmetric quadratic eigenvalue problem:

ðMm2
kþðCþbfT

ÞmkþðKþbgTÞÞwk ¼ 0 (24)

where fwkg
2n
k ¼ 1 denote the closed-loop eigenvectors. We note that uncontrollability and unobservabilty are not the only

conditions under which right-hand side of Eq. (23) will vanish, but they are the only ones that will be considered in the
analysis and practical experiments that follow.

4. Partial pole placement

Datta et al. [7] developed a method for finding ff, gg such that a partial set of eigenvalues flk, l*
kg

m

k ¼ 1 are assigned to a

desired set fmk, m*
kg

m

k ¼ 1
, while keeping all other eigenvalues unchanged fmk ¼ lk, m*

k ¼ l*
kg

n

k ¼ mþ1
. The problem, termed

partial pole placement, is to solve the two systems of characteristic equations:

detðm2
kMþmkðCþbfT

ÞþKþbgTÞ ¼ 0

detðm*2
k Mþm*

kðCþbfT
ÞþKþbgTÞ ¼ 0

)m

k ¼ 1

(25)

detðl2
kMþlkðCþbfT

ÞþKþbgTÞ ¼ 0

detðl*2
k Mþl*

kðCþbfT
ÞþKþbgTÞ ¼ 0

)n

k ¼ mþ1

(26)

They showed the following solution satisfied Eqs. (25) and (26), for arbitrary vector b¼ ðb1 b2 . . . bm Þ
T,

f ¼�MðU1K1bþU*
1K

*
1b

*
Þ (27)

g¼KðU1bþU*
1b

*
Þ (28)

where U1 ¼ u1 u2 . . . um

h i
is the matrix composed of eigenvectors of the open-loop system (1) corresponding to the

small number of the altered eigenvalues,

K1 ¼ diagðmkÞ
m
k ¼ 1 (29)
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An explicit solution for b was given in the form:

fbkg
m
k ¼ 1 ¼

1

bTuk

mk�lk

lk

Ym
r ¼ 1
rak

mr�lk

lr�lk

�����
m

k ¼ 1

(30)

4.1. Partial pole placement using the unobservability condition

From the unobservability condition, ðgþmkfÞTuk ¼ 0, and using Eqs. (27) and (28),

�ðbTK1U
T
1þb*TK*

1U
*T
1 ÞMuklkþðb

TUT
1þb*TU*T

1 ÞKuk ¼ 0 (31)

Since

lk 2 ð lmþ1 lmþ2 . . . ln, l*
mþ1 l*

mþ2 . . . l*
n Þ (32)

and

uk 2 U2 U*
2

h i
, U2 ¼ umþ1 umþ2 . . . un

h i
(33)

it becomes clear from orthogonality, Eq. (3), that the terms K1U
T
1MuklkþUT

1Kuk and K*
1U

*T
1 MuklkþU*T

1 Kuk in
Eq. (31) are both null vectors. The unobservability condition is fulfilled so that mk=lk remains unchanged irrespective
of the choice of b. Thus, Datta’s method [7] is seen to work by causing the unchanged eigenvalues to be
unobservable.

The use of the orthogonality condition implies that a sensor must be located at every degree of freedom of the system,
which is impractical. It is not necessary for there to be an actuator at every degree of freedom. Also it is necessary to know
M and K, which we would like to avoid when using a receptance-based approach. However, partial pole placement may be
achieved by using the dual concepts of observability and controllability as will be explained in what follows, in other words
we seek partial pole placement by applying a condition of uncontrollability.
4.2. Partial pole placement using the uncontrollability condition

The uncontrollability condition may be expressed as bTuk ¼ 0, and if b 2 Rn then there will be many cases when the
condition cannot be met since b must be perpendicular to both the real and imaginary parts of uk (uk may be normalised
to be very close to being real but this is not possible in general). Therefore we now write the vector b in the form:

bðsÞ ¼ b1þ
b2

s
(34)

which is the case of integral force feedback [19]. Of course other forms of b(s) are possible. Then for the retained
eigenvalues, b(s) is sought that satisfies the expression:

UT
2 K�1

2 UT
2

h i b1

b2

 !
¼ 0 (35)

or

b1

b2

 !
¼Va, V¼ null UT

2 K�1
2 UT

2

h i
¼ null

RðUT
2Þ RðK�1

2 UT
2Þ

IðUT
2Þ IðK�1

2 UT
2Þ

2
4

3
5 (36),(37)

where K2 ¼ diagðlkÞ
n
k ¼ mþ1 is the diagonal matrix of retained eigenvalues and dim

RðUT
2Þ RðK�1

2 UT
2Þ

IðUT
2Þ IðK�1

2 UT
2Þ

2
4

3
5¼ 2ðn�mÞ � 2n.

The terms in a are used to select the columns of V so that the eigenvalues flkg
n
k ¼ mþ1,fl*

kg
n

k ¼ mþ1 are uncontrollable.

In this way we see that the measured spectrum may be separated into assigned modes and retained modes to achieve
partial pole placement without using the orthogonality conditions. This means that there is no need to know or to evaluate
the system matrices M, C, K, which is entirely consistent with the approach described by Ram and Mottershead [6], based
on measured receptances from vibration tests.



M. Ghandchi Tehrani et al. / Journal of Sound and Vibration 329 (2010) 5017–50355022
5. Numerical example—4 degree of freedom system

Consider the following 4 degree of freedom M, C, K system:

M¼

3

10

20

12

2
6664

3
7775, C¼

2:3 �1

�1 2:2 �1:2

�1:2 2:7 �1:5

�1:5 1:5

2
6664

3
7775, K¼

40 �30

�30 60 �30

�30 90 �30

�30 30

2
6664

3
7775

The open-loop poles are:

l1,2 ¼�0:010870:8736i

l3,4 ¼�0:080971:6766i

l5,6 ¼�0:133672:5280i

l7,8 ¼�0:398074:0208i

We wish to assign the first two pairs of poles while the remaining poles are unchanged,

m1,2 ¼�0:0371i

m3,4 ¼�0:172i

The terms b1 and b2 are obtained from the null-space of the unassigned open-loop eigenvectors:

uT
5

uT
5

l5

uT
7

uT
7

l7

2
6664

3
7775 b1

b2

 !
¼ 0

where

uT
5 ¼ �0:0941�0:2578i �0:0829�0:1727i 0:1056þ0:2807i �0:0738�0:1775i

� �
uT

7 ¼ �0:0535þ0:2107i 0:0220�0:0613i �0:0033þ0:0077i 0:0006�0:0014i
� �

In this case,
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CCCCCCCCCCCCCCA
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0:1996 �0:0023 �0:0649 0:0436

0:7146 0:0394 �0:2611 0:1725

0:2723 0:3580 �0:4771 0:3078

�0:5712 0:5065 �0:4113 0:2447

0:1143 0:1676 0:0730 �0:0610

0:1512 0:6275 0:3787 �0:2347
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We choose the first column so that

b¼

0:1996
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0
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s
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Fig. 1. Open-loop and closed-loop receptance for the 4 degree of freedom system.
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Now we use single-input state feedback by the receptance method [6] to assign the poles using this b. The control gains
are found to be

g¼

10:1513

12:1105

8:1401

7:2688

0
BBB@

1
CCCA, f ¼

4:4973

5:4989

6:4880

11:2309

0
BBB@

1
CCCA

Fig. 1 shows the open-loop and closed-loop receptance, where it can be seen that the first two peaks correspond to the
four assigned poles and the second two peaks to the four retained poles. The height of the third peak has changed as a
result of re-assigning the eigenvalues of the first two peaks but the two eigenvalues l5, l6 remain exactly as they were,
m5=l5, m6=l6.

6. Practical continuous structures

In the case of continuous structures with, in theory, infinite numbers of vibration modes the frequency range of
operation is known so that only that part of the spectrum within the frequency range needs to be controlled. Then the task
of the controller may be defined as assigning the selected eigenvalues while retaining unchanged the other open-loop
eigenvalues within the frequency range of operation, using a limited number of sensors and actuators and without
knowledge of the order of the system (the number of degrees of freedom). By this definition it is clear that the
orthogonality conditions are not available. Therefore partial pole placement by the unobservability condition is not
possible. It is however possible by using the uncontrollability condition.

To illustrate this capability we now re-define the matrices K2 and W2 as follows:

dimðK2Þ ¼mu�mu, dimðU2Þ ¼ nu�mu, nurn; murn�m (38),(39)

where the individual elements are selected from the available measured modes and sensors according to,

K2 ¼ diagðlkÞ, U2 ¼ ji,k

� �
, k 2 mþ1 . . . n

� �
, i 2 1 . . . n

� �
(40),(41)

A particular advantage is that the modes may be selected within the range of a vibration test from an engineering
structure with uncountably many modes of vibration; in theory n=N.

When the actuators are placed at the same locations as the sensors, then a sufficient condition for determining b(s) is
that n04m0, i.e. that there are more sensors than the number of retained modes. The gains, g, f may then be selected to
assign the closed-loop poles fmkg, fm*

kg as described by Ram and Mottershead [6].

7. Lightweight glass-fibre beam

The vibration of a 45�5 mm cross-section glass-fibre cantilever beam, 600 mm long, is considered, as shown in the
diagram in Fig. 2. Attached to opposite surfaces of the beam are two pairs of multi fibre composite (MFC) patches, labelled
in Fig. 2. The beam is clamped at the fixed end to a heavy rigid mass shown. The smaller pair of patches (Smart Materials
M-2807-P2) shown in Fig. 3(a) are used as sensors. The larger pair of patches (Smart Materials M-8528-P1) in Fig. 3(b) are



Fig. 3. MFC positions: (a) rear view, showing sensors and (b) front view, showing actuators.
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Fig. 2. Diagram of glass-fibre beam (MFC thickness increased for clarity).
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used as actuators, simultaneously delivering excitation and control forces. Although the sensors and actuators are placed at
the same coordinates they are not collocated in the sense of Clark et al. [20].

The input and output quantities are the voltages across the various MFC patches, the input voltage giving rise to a
moment and the output voltage being proportional to curvature of the beam. It is not necessary to know either the applied
moments or the resulting curvature since the receptance method is generalised to the transfer function relating the output
and input voltages. The first two bending mode shapes are predicted by a finite element model and shown in Fig. 4(a) and
(b), displacement and curvature, respectively.

The first actuator, at the first coordinate centred at 60 mm from the clamped end, tends to excite the first mode
strongly. The second actuator, at the second coordinate located at the antinode of the curvature mode shape of the second
mode (at 280 mm), excites the second mode strongly. Therefore the first and second bending modes are controllable
mainly by the first and second actuators, respectively. Likewise curvature of the first and second modes are observable
from the first and second sensors. The actuator/sensor positions are marked on Fig. 4.

A real time test was undertaken in dSPACE with a sampling time of 100 ms. The sensor signals were passed through a
Butterworth bandpass filter with cutoff frequencies of 3 Hz and 100 Hz, and digitally differentiated using MATLAB/
Simulink to enable rate and proportional feedback.

The open-loop generalised receptance H(io) between the sensor voltage/actuator voltage was obtained using random
excitations of 20 V, using the H1 estimator with 512 spectral lines in the range 0–64 Hz. A significant advantage of using
the measured transfer function is that the dynamics of the actuators and sensors are included. The transfer function H(s)
was approximated by a curve fit to the measured generalised receptance H(io) using the LMS PolyMAX method [21] so
that H(s) is defined by a pole-residue model.
7.1. Partial pole placement of the beam

Two example cases of pole placement are presented for the beam structure, altering the poles of each mode in turn
while the other mode is kept constant. The 2�2 open-loop generalised receptance H(io) was measured and PolyMAX
curve fits obtained as shown in Fig. 5. Each mode was fitted globally, and agreement close to the poles and the zero in
h11(io) is seen to be good.
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The two curvature mode shapes of the beam, from the PolyMAX fit, were given by

U¼
1 1

0:416 �1:457

	 


The open-loop poles were l1,2=�0.578753.322i (first bending mode, 8.49 Hz) and l3,4=�4.097322.944i (second
bending mode, 51.5 Hz). The next out of band modes were considerably higher, at 135 and 154 Hz.
7.1.1. Experiment 1: Partial pole placement of the second bending mode

To ensure a mode remains unchanged, b is calculated to be in the null-space of the mode shape. Thus, to avoid exciting
the first mode, b should be in the null-space of [1 0.416], i.e. b=[�0.36 0.93]T. Using this b and assigning m3,4=�207250i,

the control gains were calculated to be f ¼ 0:0029 �0:0011
� �T

and g¼ �0:75 1:59
� �T

. Figs. 6(a) and (b), for simulation

and experimental implementation, respectively, shows that the first mode was unchanged (rendered uncontrollable) and
the second mode appropriately reduced in frequency and damped.
7.1.2. Experiment 2: Partial pole placement of the first bending mode

To avoid exciting the second mode b should be in the null-space of [1 �1.457], i.e. b=[0.82 0.56]T. Using this b and

assigning m1,2=�4756i, the control gains were calculated to be f ¼ 0:0065 0:0044
� �T

and g¼ �1:31 �0:85
� �T

. The

first mode was increased in frequency and damped, and the second mode rendered uncontrollable, as shown in Fig. 6(c)
and (d).
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Fig. 6 shows excellent agreement of simulated and measured natural frequencies for both examples. The shape of the
simulated and measured placed peaks in Experiment 1 differ slightly, but the increase in damping compared to the open-
loop test is clearly visible. These two examples demonstrate that the receptance method may be used for partial pole
placement of a generalised system, using the uncontrollability condition. Furthermore, the physical meaning of the input
and output signals (in terms of moments and curvatures) is shown to be unnecessary for pole placement.

8. Sequential pole placement using multi-input state feedback

Multi-input state feedback for the assignment of eigenvalues is considered in this section. A significant advantage of the
multi-input approach is that it becomes possible to select a different b(s) for each assigned mode. Since the control force is
given by b(s)u(s) it is clear that each b(s) may be chosen readily to excite a particular mode,mk, while other modes j are
rendered uncontrollable uT

j bðljÞ ¼ 0, ljamk. The multi-input state feedback equations are usually expressed in the form:

ðMs2þCsþKÞxðsÞ ¼ BðsÞuðsÞþpðsÞ, uðsÞ ¼ ðGþsFÞTxðsÞ (42)

where

BðsÞ ¼ b1ðsÞ b2ðsÞ . . . bnðsÞ
h i

, G¼ g1 g2 . . . gn

h i
, F¼ f1 f2 . . . fn

� �
or,

ðMs2þCsþKÞxðsÞ ¼
Xn

i ¼ 1

biðgiþsf iÞ
TxðsÞ

 !
þpðsÞ (43)

so that apart from the disturbance p(s), the right-hand side of Eq. (43) represents a series of single-input control terms,
which may be applied sequentially [12]. To explain briefly here, we consider the simple case of a two-input system. Step 1:
The first pair of eigenvalues are assigned by single-input state feedback with the first control vector b1(s) chosen so that it
easily excites the first mode pair. Step 2: b2(s) is chosen so that wT

1b2 ¼ 0, wT
2b2 ¼ 0 ðw2 ¼w*

1Þ and the second mode pair are
easily excited, where w1, w2 denote the left eigenvectors of the first pair of closed-loop eigenvalues already assigned in
Step 1. Since the first mode pair is uncontrollable by the second input, the first pair of closed-loop eigenvalues remains
unchanged.

The second pair of eigenvalues are assigned using the Sherman–Morrison–Woodbury formula, an extension of the
Sherman–Morrison formula used in Section 2,

HðsÞ ¼HðsÞ�HðsÞBðsÞðIþðGþsFÞTHðsÞBðsÞÞ�1
ðGþsFÞTHðsÞ (44)

where g1, f1, b1(s) are fixed from the first assignment step and wT
1b2 ¼ 0, wT

2b2 ¼ 0. The characteristic equations for
assigning the second pair of eigenvalues are given by

detðIþðGþm3,4FÞTHðm3,4ÞBðm3,4ÞÞ ¼ 0, m4 ¼ m*
3 (45)

Subsequently a third pair of eigenvalues may be assigned when b3 is chosen so that
wT

1

wT
3

2
4

3
5b3 ¼ 0,

wT
2

wT
4

2
4

3
5b3 ¼ 0, which may

be achieved using Eqs. (34)–(37) but substituting the closed-loop left eigenvectors W¼ w1 w3

h i
for the open-loop

eigenvectors U2. A full derivation of the sequential pole placement procedure using the Sherman–Morrison–Woodbury formula
is described in [12]. In practical lightly damped metallic structures the closed-loop right and left eigenvectors change very little
from the open-loop eigenvectors—advantage is taken of this observation in the experiments described in the following section.

9. Heavy modular test structure

Two configurations of a modular test structure are considered for active vibration control, as shown in Fig. 7. The
structure consists of up to six box-section steel beams of 3 mm wall-thickness and up to six block-masses. The principal
dimensions are given in Fig. 8. The two main (vertical) beams have cross-sections of 75�50 mm, and the four arms
(horizontal) have cross-sections of 50�25 mm. Each of the two central block-masses is 120 mm deep, and each of the four
block-masses on each arm is 95 mm deep. The structure is attached at the root to a large suspended mass. The first set of
tests is upon the ‘T’ configuration shown in Fig. 7(a), where the two upper arms and their block-masses have been
removed, representing a physically symmetric system. The second set of tests is upon the ‘H’ configuration shown
in Fig. 7(b), also representing a physically symmetric system.

Up to four Data Physics IV40 inertial shakers, simultaneously supplying the excitation and control forces, were attached
to heavy rigid masses at their bases and connected to the test structure via stingers. Kistler type 8636C50 sensors at the
arm-tip masses were used to measure the acceleration signals, which were passed through a Butterworth bandpass filter
with cutoff frequencies of 25 and 250 Hz. The signals were digitally integrated twice using MATLAB/Simulink, thereby
enabling both velocity and displacement feedback. In both configurations, coordinates 1 and 2 are the z-direction
displacements at the accelerometer locations on the lower arm block-masses. In the ‘H’ configuration, coordinates 3 and 4



Fig. 8. Test structure configurations: (a) ‘T’ and (b) ‘H’.

Fig. 7. Modular test structure for active vibration control: (a) ‘T’ configuration and (b) ‘H’ configuration.
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are the z-direction displacements at the accelerometer locations on the upper arms. As in the previous section the sensors
and actuators are not collocated in the mathematical sense [20], although they are of course placed at the same locations
physically.

The open-loop transfer function between the acceleration/input voltage was obtained using random excitations of
0.1 V, using the H1 estimator with 2048 spectral lines in the range 0–256 Hz. The open-loop receptance, generalised here to
mean displacement/input voltage, was obtained by dividing the acceleration/input voltage by –o2. As with the glass-fibre
beam experiment the measured receptance includes the dynamics of the actuators and sensors.
9.1. Partial pole placement for the ‘T’ configuration

Three example cases of pole placement are presented for this ‘T’ configuration, to alter the natural frequencies and
damping of the modes. Open-loop tests were undertaken to obtain the full 2�2 receptance matrix H(io), plotted in Fig. 9.

The first natural frequency (at 54 Hz, 339 rad/s) represents the first bending mode of the ‘T’ in the z direction. The
second natural frequency (at 80 Hz, 503 rad/s) is the first torsional mode of the arms about the x-axis. The third natural
frequency (at 167 Hz, 1050 rad/s) is the second bending mode of the arms in the z direction.

Fig. 9 shows the good agreement between measured and fitted receptances for h11(io) and h12(io). Due to the
geometric symmetry of the test structure, h11(io) and h22(io) are almost exactly alike; h12(io) and h21(io) are also similar
due to reciprocity.
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The open-loop poles were found from the fitted transfer function as

l1,2 ¼�2:07339i

l3,4 ¼�8:77503i

l5,6 ¼�20:071050i

9.1.1. Experiment 1: Partial pole placement of the bending mode

In this experiment, partial pole placement theory was applied to assign the first pair of poles to m1,2=�87350i, while

rendering the second pair unchanged. The control distribution vector was chosen to be b¼ 1 1
� �T

, which is in the

null-space of the eigenvector of the second mode. The single-input state-feedback introduced by Ram and Mottershead [6]
was used to obtain the control gains,

g¼
19000

19000

	 

, f ¼

34

34

	 


Note that the identical terms in each control vector are due to the physical symmetry of the structure. The closed-loop
receptance h11 was simulated using the control gains above and the measured open-loop receptance, and is plotted in
Fig. 10(a). As expected, the poles are assigned at the prescribed values. A real time test was undertaken in dSPACE with a
sampling time of 100 ms. The measured closed-loop receptance h11 is plotted in Fig. 10(b). A comparison of the two plots
shows very good agreement between the simulated and measured closed-loop behaviour.

9.1.2. Experiment 2: Partial pole placement of the torsional mode

In this experiment, the second pair of poles was assigned to m3,4=�607535i. The control gains were found to be

b¼
1

�1

	 

, g¼

10 862

�10 862

	 

, f ¼

30

�30

	 


Fig. 11(a) and (b) again show very good agreement between the simulated and experimental results.

9.1.3. Experiment 3: Simultaneous assignment of the two modes using multi-input state feedback

In this experiment, two pairs of poles were assigned using multi-input state feedback described in Section 8. In the first
step, the bending mode was assigned and the control gains f1 and g1 were obtained. In the second step, the torsional mode
was assigned while the assigned bending mode was unchanged. The prescribed poles and the control gains are shown for
two different cases.

Case 1:

m1,2 ¼�137350i

m3,4 ¼�307610i
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Fig. 10. Partial pole placement of the bending mode, h11: (a) simulation and (b) experiment.
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B¼
1 1

1 �1

	 

, G¼

17900 34000

17900 �34000

	 

, F¼

61 13

61 �13

	 


Case 2:

m1,2 ¼�117352i

m3,4 ¼�407680i

B¼
1 1

1 �1

	 

, G¼

22 000 60 000

22 000 �60 000

	 

, F¼

52 20

52 �20

	 


Fig. 12 shows the full range of measurements taken, where two outlying modes can also be seen: a rigid body mode at
10 Hz in the y direction (labelled mode 1) and the second bending mode of the ‘T’ in the z direction (mode 4). The system is
stable over the range 0–1600 rad/s. Note that due to the similarity of the mode shapes of modes 2 and 4 in the simplified
2DOF model used, control on one of these modes will affect the other. The addition of an actuator at the centre of the ‘T’
would allow the two modes to be controlled independently. Results obtained from simulation and experiments are plotted
in Fig. 13. The results are in very good agreement, and the poles are assigned to prescribed values.

9.2. Partial pole placement for the ‘H’ configuration

A second configuration was considered with all the arms attached to the main beams, as in Fig. 7(b). Four inertial
actuators (Data Physics IV40) and four sensors (Kistler accelerometer type 8636C50) were used to assign four pairs of
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complex conjugate poles corresponding to the first four flexural modes of the structure. The test setup was the same as
with the ‘T’ configuration. The mode shapes of the first five natural frequencies of the open-loop system are shown in
Fig. 14. The first mode (54 Hz, 338 rad/s) was a bending mode of the main beams. The second mode (60 Hz, 377 rad/s) was
the torsional mode of the main beams, with the upper and lower arms in-phase. The third mode (86 Hz, 538 rad/s) showed
the in-phase bending of the upper arms. The fourth mode (96 Hz, 603 rad/s) was the torsional mode of the main beams
with the upper and lower arms out of phase. The fifth mode (167 Hz, 1050 rad/s) showed the in-phase bending of the lower
arms.

The point receptance terms h11(io) and h22(io) were almost identical to h33(io) and h44(io), respectively, because of
geometric symmetry of the structure, and due to reciprocity the cross-receptance terms such as h12(io) and h21(io) were
found to be similar. The fitted receptances are presented for measured receptance terms h11(io), h12(io), h33(io) and
h34(io) in Fig. 15, where measurements are represented by full lines and fitted curves are shown as dashed-dotted lines.
There is a good agreement between the measured and the curve-fitted data.

The open-loop poles were found from the fitted transfer function as

l1,2 ¼�1:317338i

l3,4 ¼�4:087377i

l5,6 ¼�4:527538i

l7,8 ¼�6:167603i
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Fig. 14. ‘H’ test configuration mode shapes.
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9.2.1. Experiment 1: Partial pole placement of the bending modes

Poles were to be assigned at m1,2=�127340i and m5,6=�307550i. The control force distribution b¼ 1 1 1 1
� �T

was chosen so that the two bending modes were excited easily while retaining the torsional modes without change. The
control gains were found to be g¼ 5700 5700 9760 9760

� �T
and f ¼ 57 57 32 32

� �T
. Fig. 16 shows simulation

and experimental displacement/input voltage for the open-loop system as the full lines and the closed-loop system as
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dashed-dotted lines for h11 and h33. It can be seen that the two bending modes were controlled with significant increases in
damping, and that the torsional modes were not affected by the control force.
9.2.2. Experiment 2: Partial pole placement of the torsional modes

Poles were to be assigned at m3,4=�127410i and m7,8=�657640i. The control force distribution

b¼ 1 �1 1 �1
� �T

was chosen so that the two torsional modes were easily excited. The control gains were found to

be g¼ 20 000 �20 000 840 �840
� �T

and f ¼ �55 55 16 �16
� �T

. Fig. 17 shows the simulated and measured

displacement/input voltage for the open-loop system as the full lines and the closed-loop system as dashed-dotted lines,
for h11and h33. Both simulated and measured results show that the torsional mode poles were assigned to the prescribed
values, while the bending modes were rendered uncontrollable. The mode at 54 Hz, labelled mode 1 in Fig. 12, disappears
in h33 and h44, since the upper arms are at a node of the bending mode in Fig. 14(a). Similarly, the mode at 85 Hz (labelled
mode 3) almost disappears in h11 and h22, since the lower arms are very close to a node of the mode shape shown
in Fig. 14(c).
9.2.3. Experiment 3: Simultaneous assignment of all four modes using multi-input state feedback

In this experiment two tests were carried out. In the first test, the two pairs of poles correspond to bending modes were

assigned to m1,2=�47342i and m5,6=�127545i by single-input state feedback using b1 ¼ 1 1 1 1
� �T

and the control

gains g1 ¼ 4200 4200 3500 3500
� �T

and f1 ¼ 15 15 10 10
� �T

were obtained. Then the other two pairs

corresponding with the torsional modes were assigned to m3,4=�67435i and m7,8=�257645i using partial pole

placement. The force distribution vector was chosen as b2 ¼ 1 �1 1 �1
� �T

so that the previously assigned poles

remained unchanged. The control gains were obtained from the theory of the sequential multi-input state feedback [12]
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Fig. 17. Partial pole placement of the bending modes: simulation—(a) h11, (b) h33, experiment—(c) h11 and (d) h33.
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as g2 ¼ 24 500 �24 500 10 500 �10 500
� �T

and f2 ¼ 20 �20 �3 3
� �T

. Therefore,

B¼

1 1

1 �1

1 1

1 �1

2
6664

3
7775, G¼

4200 24500

4200 �24500

3500 10500

3500 �10500

2
6664

3
7775 and F¼

15 20

15 �20

10 �3

10 3

2
6664

3
7775

In the second test, the poles were assigned to

m1,2 ¼�107340i

m3,4 ¼�127440i

m5,6 ¼�207540i

m7,8 ¼�457660i

with

B¼

1 1

1 �1

1 1

1 �1

2
6664

3
7775, G¼

3162 30 000

3162 �30 000

1187 6000

1187 �6000

2
6664

3
7775 and F¼

44 37

44 �37

20 �2:5

20 2:5

2
6664

3
7775

Fig. 18 shows the measured receptances in the range 0–1600 rad/s. As with the ‘T’ configuration, the outlying modes at
approximately 10 and 167 Hz are seen. There is an unavoidable spillover effect on the mode at 167 Hz but the system
remains stable over the entire range.
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Fig. 18. Assignment of all four modes using multi-input state feedback: (a) h11 and (b) h33.
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Fig. 19. Assignment of all four modes using multi-input state feedback: simulation—(a) h11,(b) h33; experiment—(c) h11, (d) h33.
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The simulated and experimental receptances are shown in Fig. 19. The open-loop receptance is shown using full lines
and for the closed-loop system the dashed and dashed-dotted lines show the closed-loop receptances for the first and
second test respectively.
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10. Conclusions

In this research, the theory of the receptance method for single-input and multi-input state feedback partial pole
placement were developed and demonstrated using two experimental rigs: (1) a lightweight glass-fibre beam with MFC
actuators and (2) a heavy modular test structure in two configurations using electromagnetic actuators and piezoelectric
accelerometers. The receptance method does not require knowledge or evaluation of the system matrices M, C, K, or of the
actuator dynamics, which may be included in the measurement by generalisation of the receptance. Poles were assigned
sequentially, the force distribution vector in each step being selected from the null-space of previously assigned modes to
easily excite the next mode, thereby ensuring that previously assigned poles are uncontrollable and remain unchanged.
Very good agreement between simulated and measured poles was demonstrated, both in the assigned natural frequencies
and damping.
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