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1. Introduction

Precise knowledge of the dynamic forces that are transmitted by machinery mounts and isolators to rigid or compliant
bases in vehicles, buildings, and equipment is critical to the dynamic design and vibration control considerations. Direct
measurement of forces (for example, using conventional force transducers) is not practical in many real-life applications
since the interfacial conditions may change [1,2]. Thus indirect force estimation methods must be developed [3,4]. For
instance, one could employ transfer path approaches, though they are applicable primarily in the frequency domain for a
linear time-invariant system [5,6]. Also, dynamic forces could be estimated by using other measured signals such as
operating motions, but then dynamic stiffness must be known a priori [7]. Such indirect force estimation methods pose
special difficulty for nonlinear mounts or isolators. For instance, hydraulic engine mounts exhibit spectrally varying and
amplitude-sensitive parameters [8].

To illustrate the concepts of this article, consider Fig. 1(a) that displays the internal configuration of the hydraulic
engine mount and its fluid system model; it will be discussed further in Section 3. Fig. 1(b) shows the non-resonant
dynamic stiffness test concept, as defined by the ISO standard 10846 [9]. Here, f,, is the preload, x(t) = X, + Re[X el®!] is the
excitation displacement, x,, is the mean displacement, X =Xe!¥x is the complex valued excitation amplitude, X is
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Fig. 1. Force transmitted fi(t) by a hydraulic mount in the context of non-resonant elastomeric test [1]: (a) fluid model of the hydraulic mount and its
parameters for rubber and hydraulic paths and (b) sinusoidal displacement excitation x(t) and dynamic forces transmitted by two paths (fr and fr,).

the amplitude of displacement, ¢y is the phase of x(t), w, is the excitation (fundamental) frequency (rad s~ '), and Re[] is
the real value operator; tilde over a symbol implies that is complex valued. In addition, a pressure transducer, p,(t), is also
installed in the upper chamber in our laboratory experiments. As shown in Fig. 1(b), the steady state force transmitted f{t),
in time (t) domain, is related to the excitation displacement x(t) and upper chamber response p,(t):

Jr(@®) = fre(©) +fmn (D), (1)
Jrr(®) = X () + krx(0), (2)
S (®) = Arpu(d). (3)

Here, fr,(t) is the rubber path force (subscript r), frs(t) is the hydraulic path force (subscript h), k. and c, are the rubber
stiffness and damping coefficient, respectively, and A, is the effective piston area. Our experiments show that p,(t) deviates
from the sinusoidal shape depending on X and w,, as discussed later in the paper. Likewise, k. and c, vary as well with X and
w,. The chief goal of this article is, therefore, to propose linear time-invariant (LTI), nonlinear (NL), and quasi-linear (QL)
models that could be utilized to predict the force time history under sinusoidal excitation conditions given measured (or
calculated) motion and/or internal pressure time histories. In particular, the super-harmonic contents in p,(t) and f{t) time
histories are investigated using both measurements and mathematical models. Even though the focus of this article is on
hydraulic engine mounts, its concepts could be extended to real-life system problems [1,5,6]. For instance, we are
estimating forces in a nonlinear isolation system using a dynamic load sensing device.

2. Initial results and objectives

Fig. 2 presents the initial results based upon Egs. (1) to (3) when only the fundamental measured (designated
with subscript M) x(t) and p,(t) signal terms (as shown in Fig. 2(a)) are considered. At this juncture, the following nominal
(and constant) parameters are incorporated in Eqs. (1) to (3): k=2 x 10° Nm™'; ¢,=496.1 N-sm~!; A,=4 x 10~ > m2. This
formulation is designated as a ‘simple prediction model’, and its results are compared in Fig. 2(b) with the direct
measurements of dynamic force; both single term and multi-term time histories are displayed. The results show the same
order of magnitudes, but the precise time history deviates from the sinusoidal shape. This suggests that super-harmonic
terms must be included in p,(t). Also, a better knowledge of the amplitude (X) and frequency sensitive parameters is needed.

Fluid and mechanical system models of hydraulic engine mounts, based on the linear time-invariant system theory,
have been extensively investigated for both fixed and free decoupler mounts [2,10,11]. Nevertheless, their dynamic
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Fig. 2. Measurement of upper chamber pressure and transmitted force time histories for the free decoupler mount, given sinusoidal displacement
X(t) = Re[X ei®!] at w,/2m=8.5 Hz and X=1.5 mm: (a) x(t) with X=1.5 mm and p,(t) time histories with single harmonic term; Key for part (a): ===« s
Xpm(t); =, pum(t) with a single harmonic term; (b) measured and predicted forces, fi{t); Key for part (b); ——, measured force with many harmonics;
«=ss, measured force with a single harmonic term; ««««« , predicted force with nominal parameters and a single harmonic term.

characteristics depend upon the amplitude and frequency of excitation [12]. Thus, nonlinear models have been suggested
under both steady state and transient conditions [13-20]. For instance, He and Singh [18] developed the discontinuous
nonlinear model when the hydraulic mount is excited by a step-up or step-down input. Lee and Singh [19,20] have found
that the nonlinear responses (of a quarter vehicle model with hydraulic mount) are affected by the super-harmonic terms
even though the system is excited by a pure sinusoidal force. Unlike prior articles [15-18] that describe various mount
models, this paper focuses on the prediction of dynamic forces by using alternate methods.

The scope of this article is limited to the mount only, and steady state experiments under sinusoidal excitation from 1 to
50 Hz with X from 0.15 to 1.5 mm (zero-to-peak) are considered. In all cases, xy(t), pum(t), and frp(t) are measured on the
elastomer test machine for both fixed and free decoupler mounts. Specific objectives are as follows: (1) analyze the
measured p,(t) and fry(t) in both time and frequency domains and examine their spectral contents; (2) develop linear
time-invariant and nonlinear models of both fixed and free decoupler mounts and compare their f{{t) predictions with
measurements; (3) propose a quasi-linear model with spectrally varying and amplitude-sensitive parameters at both w,
and nw, (n=2, 3, 4, ...) terms; both fluid and analogous mechanical system models are used to predict f{t) and compare
with fry(t); and (4) estimate fi(t) in the time domain by using the Fourier series expansion.

3. Linear time-invariant (LTI) model for fluid system

First, we develop the linear time-invariant (LTI) model for the fluid system of Fig. 1(a) with the following assumptions:
(1) the hydraulic mount is excited by a pure sinusoidal displacement x(t) under a mean load f;,,, and it reaches steady state
and (2) the hydraulic mount is attached to a rigid base. The momentum and continuity equations for the hydraulic path are
as follows [10-16]:

fr(®) = k(&) +keX(£)+Arpul(t), (4)
Pu(®)—pi(®) = 1;g;(t) +Riqi(t), (5)
Pu(®)=pi(t) = Iaq 4(H) +Rqaqq(t), (6)
Cup(t) = Arx(t)—qi(t)—qa(0), (7)

Cipi(t) = qi(H) +qq(b). (8)
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Here, C, and C; are the upper (#u) and lower (#[) chamber compliances, respectively; I; and I; are the inertances of the
inertia track (#i) and decoupler (#d), respectively; R; and Ry are the resistances of the inertia track and decoupler,
respectively; and g; and qq are the fluid flow through inertia track and decoupler, respectively. Transform Eqgs. (4)-(8) into
the Laplace domain (s) with the assumption that the initial conditions are zeros

Fr(s) = (crs+kr)X()+ArPu(s), 9
Pu(s)—Pi(s) = (is+R)Qi(s), (10)
Py(s)—Pi(s) = (Ias +Rq)Qa(S), (11)
CusPu(s) = ArsX(s)—Qi(s)—Qq(5), (12)
CGisPi(s) = Qi(s) + Qa (). (13)

To facililate models and experimental estimations, we define dimensionless variables and parameters as: X = X/Xef =
the dimensionless excitation displacement amplitude; X,.r=reference displacement amplitude; P, = P, /P,;=dimension-
less pressure; Pyrer=(krretXrer)/Ar=reference pressure; k.r=reference stiffness; Fr = Fr/Frs=dimensionless force; and
Frrer=KkretXre=reference force. We now define three dimensionless transfer functions that relate Fr to P, and X

o P AP 522 s 20
G(S)_)_((S)_krrefX(S)_/h<a)[2\“+(DN]S+1>/<(,O[2VZ+Q)[\QS+1 , (14)
o Fr.. 1 Fr
K(s)= ?(S) = my(-?). (15)
= F
Hs) = 5-(6)- (16)

Here, G(s) is the dimensionless pressure to displacement transfer function, K(s) is the dimensionless cross point
dynamic stiffness, and H(s) is the dimemsionless force transmissibility. Using Eqs. (9)-(16), the above transfer functions
are expressed in terms of natural frequencies (wy; and wy), damping ratios ({; and (), and hydraulic path static
stiffness y;, as expressed below for both fixed and free decoupler mounts; these system parameters are derived in our

earlier paper [2]
/1
WN1(fixed) = ﬁ- (17)
1

[Ri+R
le(free) = élI-Rdd' (] 8)
1
Cu+C
ON2(fixed) = é’ C,I-l' (19)
u 1
Cu+C)(Ri+R
Onaree = %‘ (20)
1
1 /CR?
Cl(fixed) = j ’Ii - ) (21)
1 CiRqR? I;
= = ’ 22
Ciree = 5 (\/Ii(Ri+Rd)+ GiR4(Ri+Rq) 22)
1 | GGR?
CZ(ﬁxed) = j Ii(icuﬂ-cl)' (23)
1 CuGRyR? G+ O
o) = = 24
Qm)ZNMH@@#N_QMMﬁM' )
2
y 4; (25)

h krref(cu + Cl) ’
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Here, subscripts (fixed) and (free) refer to the fixed and free decoupler mount designs, respectively. Next, decompose the
dynamic stiffness into rubber (subscript r) and hydraulic (subscript h) paths as

K(s) =K (s)+Kp(s), (26)
k74 FTr
K. (s) = 7(5):34(1 +7rS), (27)
Kois)— Moy (52 200 s 26
Kn(s)= X (8) =" (co,%] erms+1>/<w[2V2 +wN25+1>, (28)

Finally, decompose the force transmissibility as well:

H(s)=H;(s)+Hp(s), (29)
_ Fr y 2 20 s 24
Hi(S)= =)= L1418 | —5 +—=5+1 ——+——5+1, 30
r( ) Pu ( ) yh( Tr. )<CU,2\,2 wNZ 6012\” le ( )
7o Fmoo
Hy(s)= ="(s)=1, (31)
Py
n=1, (32)
T
ke
T krref. (33)

Here, 7, is the time constant and v, is the rubber path static stiffness. Observe that the fixed decoupler case is derived
from the free decoupler formulations by assuming that I;=0 and R;— oo. In our study, the nominal parameters are as
follows: ;=4 x 106 ke m~%; [,=509.3 ke m~%; C,=2.5x 10" m°> N~ 1; ;=24 x 107 m> N~ 1; R;=2 x 108 Ns m~>; R4=5 x
108 Nsm~>. Reference values are selected as: Kyer=2.0x 10°Nm~!, A,=4.5x10"3m?; and Xf x 107> m) though
different values of X,.¢ according to the experimental excitation amplitudes are utilized.

4. Linear time-invariant (LTI) model for analogous mechanical system

Fig. 3 illustrates the analogous mechanical system LTI model with effective parameters that could be related to the fluid
system properities. The governing equations are

MieXjo(t) + CieXie (£) 4 (Ku + kpXie(£) = kyX(t), (34)

fr(t) = crX(t) +kex(t) + kixie (t). (35)

Here, the mechanical parameters are defined as follows: effective mass of inertia track fluid column m;.=AZl;; effective
viscous damping of inertia track fluid c;=A?R;; equivalent stiffness of upper chamber compliance k,=A%/C,; and equivalent
stiffness of lower chamber compliance k;=A%/C;; and effective velocity of inertia track fluid x;(t) = q;(t)/Ar. By transforming
Egs. (34) and (35) into the Laplace domain (s) and ignoring initial conditions, the dimensionless transfer functions, like the

lﬁ x(1)
i_

Fig. 3. Analogous mechanical system model and its parameters for rubber and hydraulic paths.
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fluid system model, are derived:

F _ Fu F _ _
%(s) =Ka(s)= 7"(s)+ %”(s) =Kar(8)+Kan(s), (36)
Kar(9) =y,(1+75), (37)

Roisy—n /(55 26
K an(s) = ”’/(60?@ + wstH). (38)

Here, K4(s) indicates the dimensionless dynamic stiffness (with subscript A) of the analogous mechanical system. The
values of nominal parameters are: m;=81kg; cie=4.1 x 103 Nsm~"'; k,=8.1 x 10° Nm~!; k;=8.4 x 10> N m~". Our study
will focus on K(s) and H(s) from the fluid system model as described by Eqs. (15)-(33), and Ka(s) from the analogous
mechanical system model as given by Egs. (36)-(38).

5. Nonlinear (NL) model for fluid system

The differntial equations for the fluid system as given in Eqs. (4) to (8) are now modified to include four nonlinearities
[15,16]. The sign convention is as follows: p,(t) is positive (in compression) corresponding to the upward (positive) motion
of x(t), gi(t); and q4(t); and p,(t) is negative (in expansion) for the downward motion of x(t), q;(t) and q4(t); fi{t) follows the
x(t) sign. First we express the governing equations in the state space form where the state variable is defined as
S(t) = [p1(OP2(OG(DOXa(O)fr(D)]; here x4(t) = qq(t)/Ag, and A, is the effective piston area of decoupler element

S(t)=BS(H)+D(®), (39)
0 0 1/Ci A4/Ci O
0 0  -1/G -AyJG 0
B=| —1/k 1/ =R/l 0 0], (40)
—Ag/mg  Ag/Mmy 0 —cg/mg 0O
0 0 —A/C —AAg/Cs O
—Arx(t)/Cy
0
D(t) = 0 : (41)
0

(Af /Cu + kr)x(t) + Crk(t)

where x(t) and X(t) are the excitation velocity and acceleration, respectively; the effective mass of decoupler element is
mg = A2l,, and effecitve viscous damping of decoupler fluid is ¢; = A2R,. The nominal parameters are: my=6.0 x 103 kg;
cg=100Nsm~1; A4=1.96 x 10~ 3 m?.

The discontinuous motion of the decoupler element is given in terms of the switching mechanism as follows:

1 0 0
o Bal=PuO+pi(t) —caxa(D], —= <Xa(H) < =5,
5oy d
Xa(t)= 5 5 (42)
0, X0)=0, x(t)=—7 orxgH)= ",

where x4(t) and J,4 are the displcement of decoupler element and the net decoupler gap, respectively. The nonlinear
functions for C,(py(t)), C(pi(t)), and Ry{qi(t)) are described below based on prior work [15,16]

Cu(pu(t)) = ap when py(t) = pa, (43)
Cu(pu(®)) = a17[pu(®))’ +aio when p;(t) < pa, (44)
G@i(t) = az3[PUOF +aza[PUOF +a21P1(6) +az0, (45)
Ri(qi(t)) = ag|qi(t)|- (46)

Typical coefficients of C,(p,(t)), C(pi(t)) and Ri(gi(t)) are as follows under f,,=1200 N: ap=1.09 x 10~ '1; a;7,= -7 x 10~%>;
a10=2.5x 107", ay3=1.51 x 107 '%; ay=—6.82 x 107" @3;=3.13 x 1077; @30=5.19 x 10~%; ag=3.45 x 10"". Further, the
nonlinear model of the fixed decoupler mount is also examined with the assumptions that I;=0 and R;— oo by essentially
ignoring Eq. (42).

The nonlinear model is solved numerically using the Runge-Kutta integration technique. The initial values of p,(t) and
fi(t) are selected from the measurements as follows: x(0) = Re[X]; X(0) = Re[iwoX]; and fr(0) = c;Re[iwoX]+ k-Re[X]+Ap,(0).
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Fig. 4. Typical predictions of the nonlinear model for a free decoupler mount given sinusoidal exaction with X=1.5 mm and w,/27=8.5 Hz (observe the

effect of the switching phenomena in pressure and flow rate time histories). Key: =, xp;(t); ===, p,(t) and q;(t); ===== , X4(t), pi(t) and qq(t).
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Fig. 5. Magnitude of X4, Py, Q; and Q4 from the FFT analysis with a free decoupler mount by using the nonlinear model given sinusoidal excitation with
X=1.5 mm and w,/27=8.5 Hz. Key: X4, FFT of x4(t); Py, FFT of p,(t); Q;, FFT of qi(t); Q4, FFT of g4(t).
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The initial conditions of other states p,(t), gi(t), and x4(t) are set to zeros. Here, the mean values x,, and f;,, are assumed to be
known. Thus, only the dynamic terms are considered. Figs. 4 and 5 show typical time histories and their Fourier magnitude
spectra under sinusoidal excitation. The switching mechanism of the free decoupler is evident in pressure, decoupler
motion and flow rate predictions. Also, the super-harmonic terms are clearly observed in x4(t), pu(t), qi(t) and qq(t) as
shown in Fig. 5. The dynamic forces estimated by the nonlinear model including a comparison with measurements will be
addressed later.

6. Quasi-linear (QL) model with effective parameters and super-harmonic terms
6.1. Spectrally varying and amplitude sensitive parameters

Next, we develop a quasi-linear (QL) model, say in terms of the transfer functions of Sections 3 and 4 that would include
effective or empirical properties. Several issues must be considered since the hydraulic mount is a nonlinear device
[13-17]. First, the causality problem must be considered as the measured signals are transferred into the frequency
domain by using the fast Fourier transform (FFT) routine. This inherent problem could be understood by employing a
Hilbert transform pair to represent the causal system in terms of the real and imaginary parts of a QL model [21-23].
Second, we assume that the upper chamber pressure is most affected by the nonlinear phenomena, and thus, all
nonlinearities are lumped into the effective (subscript e) upper chamber compliance. The definition of C,, (static
compliance under nominal conditions, with subscript n) has to be changed, and thus we define complex valued parameter
Cue(®,X) that includes both amplitude-sensitive stiffness and damping properties at any frequency. Relate static and
dynamic compliances as: Cue = AyCun = (¢ +1p)Cyn , where }u( =o+if5) is an empirical parameter whose coefficients « and
at any frequency would be determined from measurements. Similarly, the rubber path is formulated as disccused next. The
overall quasi-linear model concept is shown in Fig. 6; it will be addressed further in Section 7.

6.2. Estimation of effective rubber force path parameters

To investigate the rubber force path, the anti-freeze mixture (water) is drained from the mount and then the mount is
excited using the same method [7,9]. The spectrally varying and amplitude-sensitive parameters of the rubber path such as
kre(0,X1) and cre(wo,X1) are determined only at the fundamental frequency (w,) where the subscript e designates the
effective value. Here X is the ‘virtual’ excitation displacement amplitude at @, as shown in Table 1, which will be further
explained in the next section. Fig. 7 shows sample k;.(®,,X1) and ce(,,X1) data with X=0.15 mm. In our study, the data set
consists of 7 cases corresponding to X=0.15, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 mm. Therefore, the quasi-linear model with curve-
fit functions can be developed given experimental data [2]. The goal is to develop continuous profiles of the quasi-linear
parameters A, {®,,X1) as a function of frequency Q(=w,/27, Hz). However, the magnitude of A {®o,X1)(=kre(®0,X1)/krn) 1S
considered in two frequency regimes as illustrated in Fig. 7. The first curve-fit below Q; (=2.5 Hz) is a linear function and
the second one beyond Q; (=2.5 Hz) is represented by a 5th order polynomial function. Two smoothening functions are

Time Domain Frequency Domain
' e e m e e e
! : :
: L Xe(nw) |
E v v Pun(nw,.X,,) !
] 1 1
E H 1 Quasi-Linear Parameters H
1 1 1
: 1 1 e —~
; L [G(ne, Xy, Cue (n,, Xo0,)| | |1
i N i
: P‘r diction Model
i Ao e i E Rubber k, (@, X,;) E
: ' ! Mount LTy Xj” '
! x‘, (') %, (1) +Ap,, (1) o Test (90 X,01) ]
i T i
E Quasi-Linear Model : i i
' P '
' adl | ~ '
E -f;'(t) ) J K"(nmmxn) Xm(na)p) ]
; P !
: - :
| g1 ! ' —~— — 1
E f;.(t) E E He(na)u,X") PuMn(!la)a,X") E
1 1 1
i o g

Fig. 6. Force estimation using quasi-linear models of Table 2. Key: x)(t), measured displacement; p,(t), measured pressure; K(nw,,Xy), effective value
of K(nwo,Xn); He(nw,, Xy), effective value of H(nw,,X,); fi(t), force estimated by simple prediction model and quasi-linear models.
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Table 1
‘Virtual’ excitation displacements X, used for the quasi-linear (QL) model.
Experimental excitation, X (mm) ‘Virtual’ displacement (mm)
X X, X3 X4 Xs
Fixed decoupler 0.15 0.15 41x104 20x1073 44x104 7.6x10°4
0.75 0.75 2.7x1073 8.7x1073 52x107% 1.8x1073
1.5 15 6.8x1073 3.1x1072 34x1073 3.0x10°3
Free decoupler 0.15 0.15 92x10~4 9.6x10~4 3.0x10"4 1.8x10°*
0.75 0.75 43x1073 11x1072 43x104 12x1073
1.5 15 62x103 32x10°2 22x1073 40x1073
24 .
= :
2.2 .
<]
2=
) 10 15 20 25 30 35 40 45 50
3 —
n -
2 . i
3 H
< 18
S 0f -
L2 :
S
-2 -
1 H
>
o] L 4
i 0.5
0 =t

5 10 15 20 25 30 35 40 45
Frequency (Hz)

50

Fig. 7. Empirical parameters of the rubber path at X=0.15 mm. Here magnitudes of 4;(,,X1) and A.{(@,X;) are displayed along with the smoothening
functions, I'g, (v=1, 2). The frequency regimes are separated at Q;=2.5 Hz. Key for I'g, curves: ——, I'q1(®,); === I"o5(®,).

employed in terms of I'g1(w,) and I'gy(w,) as shown in Fig. 7 [24] to yield the continuous profiles of A, {®e.X;):

Kr2(20) = bys (10 /27)° + bra(o/27)* + i3 (o /270)° + bia (o /270 + by (w0 /270) + byo, 21 < R,

ki1 (wo) = a1 (@0 /21) +ago, 2 < £y,

I'o1(wo) = 0.5{—tanh[o(we/27—Q1)] +1},

I ga(wo) = 0.5{tanh [0 (w0 /27—Q;)] +1}.

(47)
(48)
(49)

(50)

Here, k:1(w,) and k;2(w,) are the curve-fits of A,,{®,,X1) in the range of Q < Q; and Q > 4, respectively, and, I'g1(w,) and
I ox(w,) are the smoothening functions over 2 < 2, and Q > Q, regimes, respectively. The smoothening factors o, (v=1-2)
are selected as o1=0,=1 x 10°. In our study, the coefficients a,,(v=0, 1) and by, (v=0-5) are determined corresponding to
each excitation X. For example, a,;=0.045, 0.038, 0.036, 0.034, 0.0324, 0.033, and 0.030 with X=0.15, 0.25, 0.5, 0.75, 1.0,
1.25, and 1.5 mm respectively; a,n=2.03, 2.02, 1.96, 1.92, 1.89, 1.86, and 1.85 with X=0.15, 0.25, 0.5, 0.75, 1.0, 1.25, and
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1.5 mm, respectively. Likewise, 6 sets of coefficients for by, (v=0-5) are estimated corresponding to X=0.15, 0.25, 0.5, 0.75,
1.0, 1.25, and 1.5 mm. Thus, another set of curve-fits with respect to X; is used as follows:

7
akv(xl) = Z akvw—lxl Wﬁl(v = Ovl)v (5] )
w=1
g 1
biX1) =Y brw-1X:"" (v =0-5), (52)
w=1
A1 (X1) = AQa6X5 + Qa5 X3 + Ap1aX + Q13 X3 + Q12 X3 + Qi Xi + o (53)

Here, ay,(X1) and by,(X;) are the coefficient curve-fits for a,(v=1, 0) and b, (v=0-5) with the function of Xj, respectively.
Eq. (53) describes a typical example of coefficient curve-fit as a function of X. Sample coefficients a;,,_; are as follows:
a16=0.098; a;5=—0.596; a;4=1.411; a;3=—1.652; a;,=1.003; a;,= —0.304; a,0=0.073. Therefore, the overall procedure to
determine the spectrally varying and amplitude-sensitive parameters for A,{(®,.X;) is described as follows:

kre(00,X1) = Kin Akr(000,X1), (54)
Zir(@0,X1) = ka1 (w0,X1) +koa(0,X1), (55)
ko1(0,X1) = kr1(o,X1)I 01(o), (56)
ka2 (0,X1) = kra (o, X1)I g2 (o), (57)
kr1(w0,X1) = aja (X1)(@o /27) + Ao (X1), (58)

Kr2(90,X1) = bis (X1 (@0 /27) + bia(X1)(@0o /270)* + b3 (X1 )(o /27)? + bya (X1 (@ /270)? + by (X1 )(@0 /27) + bio (X1). (59)

Here, ko, (wo,X1) (v=1, 2) is the smoothened function of k,,(®,,X;) (v=1, 2) and k- (w,,X1) (v=1, 2) is the polynomial curve-
fit in the relevant frequency range. The coefficients ay, (v=0, 1) and by, (v=0-5) are described in Eqs. (51) to (53). Similarly,
Ac{@6,X1)=Cre(0,X1)/Crn is estimated as follows. Note that A.{®,,X;) is now considered on a log, scale, as indicated below,
since the damping varies over a large range:

Cre(o,X1) = Crpelir(@oX1), (60)
Ler(@0,X1) = €01(00,X1) +Ca(®0,X1), (61)
Ca1(@0,X1) = Cr1(Wo,.X1)I 01(o), (62)
Ca2(Wo,X1) = Cra (o, X1)I 22(o), (63)
€r1(Wo,X1) = Ac1(X1)(Wo /27) + e (X1), (64)

Cr2(W0,X1) = bes(Xy )(w0/2n)5 +bea(Xq )(wo/zn)4 +be(Xq )(U)a/zrl:)3 +b52(X1)(w0/27'C)2 +be1 (X1)(@o/27)+beo(X7). (65)

Likewise, co,(e,X1) (v=1, 2) is the smoothened function of c,,(®,X1) (v=1, 2) and c(we,X1) (v=1, 2) is the polynomial
curve-fit in the relevant frequency range. Again, a., (v=0, 1) and b, (v=0-5) are also calculated using the method
described by Eqgs. (51)-(53). Finally, the estimated A;{®,,X;) and A.{®,,X;) are embedded in the quasi-linear model at the
fundamental harmonic term (w,).

6.3. Effective hydraulic force path parameter ,(nwo,X,) at super-harmonics

The effective dynamic compliance Ce(nw,,Xy) is next evaluated at the super-harmonics (nw,). Note that the term X,
should be viewed as the ‘virtual’ excitation displacement amplitude at nw,. Even though x(t) is close to a pure sinusoid,
super-harmonic amplitudes X,, are observed via the FFT analysis of x(t) signals even though their amplitudes are several
orders of magnitudes lower, as listed in Table 1. These can be employed to estimate C(nw,,X;) in terms of
(N0, Xn)( = an+ip,) as follows where C,, is the nominal (static) value:

6ue(nwoyxn) = Cun}bu(nwmxn) = Cun(0tn +iﬂn)v (66)

Bn=PMwo,Xn),(n=1,2,3,...,), on=0UNWe,Xpn). (67)

From Egs. (9) to (13), the relationship between X(s) and P,(s) is derived as fol[ows for the fixed decoupler mount (with
I~ 0 and R;— oo ) under the steady state condition. The complex valued terms P,(nw,,X,) at n=1,2,3,... are expressed in
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the frequency domain (with multi-harmonic terms) by replacing s with i(nw,):
Ar [ (1-@0)Gly) +i(mwo) GR | X
(Cut-C=(neo)2CuGily) +ineo) CuCiR;

Pu(nwo,Xn) = n=1.23,.). (68)

From Eqs. (66) and (67), Au(n®,,X,) can be related in terms of o, and f8, in the frequency domain at the nw, terms, and
this step leads to:

i Ar [(1-(1020)* Gl +i(n06) iR | X
Py(nwe,Xn) =

[7uCun+Ci= (10 il Cu) | + (106 CR (ot Cun)

Ar [(1=(no)* Gl +inwo)CRi X
= (69)
[(an +iB.)Cun + C— (Mo )2 Cili(0tn + iﬁn)qm] +i(nwe)CR; (ot + i) Cun

The measured P, (nw,,Xy) signal is considered as a complex quantity and given by magitude [Py, | and phase ¢, as
Pquz: uREn+iPuanv (70)

PuREn =Re [PuMn] = PuMn COS(¢Mn)v (71)

Pypn =Im [f)uMn] = f)uMn Sin(d)Mn)- (72)

From Egs. (69) and (70), the empirical coeffifinets o, and f, are determined at nw, and X, as follows:

Ar[ (1-(@0)*Gly) +i(nwo) R | X

Purgn +1iPuivin = - , (73)
[(Cun— (1090 ? CiCuny ) 20— (CICunRi(n2) By + Ci] +i [ (G CunRitnewo))etn + (Cun— (M0 2CiCunli) B
o ocn4(nwo)“+ocnz(nwo)2+ocno, (74)
Ana(n@o)* +dya (o) +dno
g - ﬁn4(nwo)“+ﬁni(nwo>z+/3n;<nwo)+/3no (75)
Ana(N@o)” +dn2(No) +dno
Otng = XnArC2I2 Pygen, (76)
ttnz = XnA Puren G (CRZ =21}) + CF (Pl + P2 i (77)
0tno = XnArPuren—Ci (P2pen +Pnin)» (78)
Bua = —XnArCEIZ Pupn, (79)
Bz = XnArPumnCi (2L —CiR?), (80)
B = C7 (Pigen+Pinan) Ris (81)
Bno = —XnArPumvn, (82)
dna = Cun G I} (PgREn"_Pgan)' (83)
dn2 = CunCi(GIR? —21;) (Plgen + Paan)» (84)
dno = Cun (Pigen+Pimnin)- (85)

Here, the subscripts RE and IM designate the real and imaginary numbers, respectively. Simillary, expressions for the free
decoupler mount (with assumptions such as I; ~ 0 below 50 Hz) are derived leading to

XnAr {—(leo)2 GliRg +i(nwo)(GRiRy+1)+ (R +Ry)
—(No)> CuGliRq +i(nwo)[Cu CiRRy +(Cu+ CI1+(Cu + C)(Ri +Ry)”

ﬁu(nwo-xn)z (86)

_ OC,,4(HCL)0)4 + fan(nwo)z ~+0no
L= ,
dna(no)* +dn2 (NWo)? +dno

(87)
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g — Bra@0)* + Brs(100)° + B (1006)° + By (1020) + o
! Ana(no)* +dna(120) +dno '

Otna = XnArPurenCun CPI2RZ,
Oz = XnArPuren CunCERZRE + [ (P2ren +P2nin) —2XnArPuren] Cun CiliRS + [XnArPuren—Ci (P2 +P2ngn )] Cunl?,
0tno = Cun [XnArPuren—Ci (P2ren+P2pn) | (Ri+Rg)%,
Brna = —XnArPuminCunCPIZRE,
Bz = CunCf (Piggn +Piimnan) 1f Ras
Brz = —XnArPuminCun [CERERG—2G LR +17],
Bt = CunC7 RiRa (Pigen + Pan) (Ri++ Ra),

ﬂno = —XnAr uIMnCun(Ri+Rd)2v
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Fig. 8. Effective parameter for the upper chamber compliance, displayed in terms of the magnitude spectra of 20Log, \Zu(nwo,xm re Ay = 1.0dB with

three harmonic terms given X=1.5 mm: (a) fixed decoupler mount and (b) free decoupler mount. Key: -, n=1; =&=, n=2; —1-, n=3.
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dng = (PLZJREn +P51Mn)C5nClzli2R5v (97)
dn2 = Cin (Piigen +Pinin) [CPRERG—2CLiRG + 1], (98)
dno :an(PgREn +P51Mn)(Ri+Rd)2' (99)

Fig. 8 compares the magnitude spectra of Zu(nwe,Xy) based upon Eqgs. (66), (67), (74)-(85), and (87)-(99) up to n=3 term
with given excitation X=1.5 mm. When the results of both fixed and free decouplers are compared with those with the
fundamental w, only, dynamic characteristics seem to show similar responses. But, the magnitudes of 2nd and 3rd
harmonics show mount specific behavior. This illustrates the importance of nonlinear dynamics. For instance, the
Ju(ne,Xy) spectra for the free decoupler mount show higher magnitudes around 20 Hz for the 3rd harmonic term, when
compared with results at w,. This is directly related to the switching mechanism as well as the nonlinear upper chamber
compliance [19,20].

7. Examination of super-harmonics and estimation of forces in time domain
7.1. Examination of super-harmonics in measured data

Typical pum(t) and fry(t) measurements for the free decoupler mount at 8.5 Hz (with X=1.5 mm) are shown in Figs. 9(a),
(b) and Fig. 10(a). Spectral contents are determined by the FFT algorithm as shown in Fig. 10(b). Even though the
fundamental w, term (8.5 Hz) is quite dominant, responses reveal several nw, terms (especially the second harmonic at
17 Hz and third harmonic at 25.5 Hz). Also, spectral contents of fr,(t) are similar to those of p,(t). Therefore, the super-
harmonic terms in fry(t) can be assumed to be controlled by the nonlinear characteristics of the hydraulic path.

Figs. 11 and 12 map the magnitude spectra of P, (nw,,X) and Fry(nw,,X), respectively, up to 3rd harmonic term for the
fixed decoupler mount up to 50 Hz with X=1.5 mm. When the contents at w, are compared with those at nw, in Fig. 11(a)
and (b), the magnitude of the w, term is dominant as observed in Fig. 10(b) as well. Also, the super-harmonic contents of
Fr(nwo,X) seem to match the Py (nw,,X) spectra in Fig. 11(a), (b) and 12. This is further investigated in the time domain
by marking key events in Fig. 10(a) as “A” and “B”. Note that the fundamental Fpy(nw,,X) term is also dependent upon the
initial conditions.

(a)

c T
x £
= =
Q <
0.15 0.2 0.25 0.3 0.35
Time (sec)
(b)
-500 t - o
13
z -1000 1 £
< | 4 E
E =
he X
-1500 . 1.5
1 1 1 1 1 1 _6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (sec)

Fig. 9. pum(t) and fru(t) for the free decoupler mount given X=1.5 mm, ¢x=68.7° and w,/2m=8.5 Hz: (a) time history of p,n(t); (b) time history of fr(t).
Key: =e=== L Xpi(t); ==, puri(t) and fr(t); To, period (=27m/w,).
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Fig. 10. Measured pressure (and force) time histories and spectra for the free decoupler mount given X=1.5 mm, ¢x=68.7° and w,/2n=8.5 Hz: (a) time
history of pum(t) and fry(t); (b) magnitude spectra (Pyy and Fry). Key for part (@) s, puy(t); ===, frum(t); To, period (=27/w,). Key for part (b) ¢, \IN’Wl;
-@- [Punl.

7.2. Indirect force estimation given measured Xpm(nw,) and Puym(nwe,Xn)

Based on the experimental data, we assume that the nw, contents of fr(t) and Fr(nw,,X) are directly affected by the
corresponding terms of py(t) and Py (nw,.X). Thus, all nw, terms are lumped into the hydraulic path. This premise is
employed for estimating Cue(nwo,X). Further, the Fourier series expansion is utilized by employing the reverse path
spectral method that has been well described by Richards and Singh [25], and Bendat [26].

Fig. 6 illustrates the procedure used to estimate the dynamic forces given measured xp(t) and puu(t) signals under
harmonic excitation at w,. The xy(t) and p,u(t) time histories are then transformed into Xum(nw,) and Puym(nwe,Xum),
respectively, where Xy,(nw,) is viewed as the ‘virtual’ sinusoidal input and PuMn(nwo,XMn) includes relevant nw, terms.
Second, effective parameters from both rubber and hydraulic paths are identified, as illustrated in Fig. 13, by employing the
reverse path spectral method [25,26]. For example, Cy (N, Xyy) is calculated by Eqs. (66)-(99) for both fixed and free
decoupler mounts. When the measured amplitudes Pyuym(nwo,Xun) are employed in Egs. (66)—-(99), Cye(no,Xun) should be
given at nw, such as Cue(nwo,Xp1) from Py (nwo,Xm1) and Cue(nwoe,Xuz) from Puyz(nwe,Xu2). Next, the quasi-linear
transfer functions Ge(nwe,Xum) = (et /Ar)G(no, Xpm) are used, as described in Fig. 13(a), at nw, terms corresponding to
Xvn(n@o) and Punin(newe,Xum). Also, as illustrated in Fig. 13(b), ke(o,X1) and cre(wo,X;) are identified by using Xu1(w,) at we
as described by Eqs. (54)-(65). Further, other transfer functions such as K(nwoX,) = kr,eff(nwo,xn) and
H(nwo,Xn) = ArHnw,,X,) from Eqs. (14) to (33) are now used to estimate the dynamic forces at nw, terms. The overall
procedure with effective parameters Kye(o,X1), Cre(®0,.X1) and Cue(nwo,Xy) is illustrated in Figs. 6 and 14. In particular,
Fig. 14 describes the reverse path spectral method which employs effective parameters of Fig. 13. Thus, K.(nw,,X;) and
I:Ie(ncoo,Xn) assume effective values at each nw, term since both are affected by fue(nwo,xn).

8. Force estimations with quasi-linear models

Alternate force estimation schemes are summarized in Table 2, especially for the quasi-linear (QL) model that depends
upon the empirical parameters Ax{0,X1), Ac{®o0,X1), and Zu(nwo,Xn). When Ap{0,X1)=1, Ae{wo,X1)=1, and Zu(nw,,,X,,) =1,
then the model is obviously linear time-invariant (LTI) with nominal values of k,, ¢, and C, as described earlier in
Sections 2 and 3. The LTI model (with calculated x(t) and p,(t)) is designated as I-A in Table 2; note that it is equivalent to
the ‘simple prediction model’ that employs measured x,(t) and pym(t). As illustrated in Table 2, many different calculation
schemes can be designed based on the combination of A{6,X1), Ae{@WoX1) and Lu(nwo,X,) along with applicable transfer
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Fig. 11. Magnitude spectra of P,y and Fpy for the fixed decoupler mount given X=1.5 mm: (a) magnitude of P,y with four harmonic terms;
(b) magnitude of Fry with four harmonic terms. Key: 4=}, 1st harmonic; 4=, 2nd harmonic; ==, 3rd harmonic; and —[~, 4th harmonic.
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Fig. 12. Magnitude spectra of Puy ang Fy for the fixed decoupler mount given X=1.5 mm. Key: m====, 2nd harmonic of \IN-'TM(w,X)\; =, 2nd harmonic of
[Pum(@,X)|; = =, 3rd harmonic of |[Fry(®,X)|; = =, 3rd harmonic of |Pum(®,X)|.

functions such as K.(nw,,X;,) for schemes II-A, 11-B, and 1I-C, H.(nw,,X) for schemes I1I-A, I1I-B, and III-C, or K 4.(nw,,X;) for
schemes IV-A and IV-B. Finally, observe that the nonlinear model (NL) employs nominal nonlinear parameters as described
in Section 5, and thus effective (frequency domain) parameters are not considered in this formulation.

In order to estimate f{t) from a transfer function K. or H, with effective k., ¢, and Cy., the Fourier series expansion is
employed for particular QL schemes as illustrated below. Assuming that the mount is excited under steady state condition,
define the input displacement x(t) as Re[X, ei®n{] = Re[X, e/@nf+®x)]. Note that the ‘virtual' sinusoidal inputs at nw, are
included where X, and @y, are the amplitude and phase at the nth harmonic. First, the dynamic force is estimated at n=1 or
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Fig. 13. Identification of effective parameters for the reverse path spectral method: (a) identification of effective upper chamber compliance (C ) with
multi-harmonic terms and (b) identification of effective stiffness (k..) and damping (c,.) with fundamental harmonic term. Key: Kg(co,Xy1), dynamic

stiffness from the rubber path; Fg(w,,Xp1), rubber path force.
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Fig. 14. Force estimation in frequency domain using the reverse path spectral method: (a) dynamic stiffness (I? ¢) concept and (b) force transmissibility
(H.) concept.
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Table 2
Overview of linear, quasi-linear and nonlinear models used to estimate dynamic forces.

Model and scheme designation Sensor(s) or variables required Spectrally varying and Harmonic
amplitude-sensitive content
parameters

x(t) pu(t)

Fluid system model (Fig. 1)

Simple prediction model given measured data Yes Yes ;kr =1, iy =1 w, only

Nonlinear model (NL) Yes No ;kr =1, Zcr -1 nw, (n=1,2,3, ...)

Linear time-invariant model (LTI)

I-A Yes Yes Ikr =1, Je=1 ®, only

Quasi-linear model (QL) I-B Yes Yes }kr £1, Zcr <1 nw, (n=1,2,3, ...)

II-A Yes No Ikr =1, Icr =1, Zu #1
I-B Yes No Zkr #1, zcr #1, Zu =1
1-c Yes No T # 1, A A1, Ay A1

I-A No Yes Ikr =1, Zcr =1, zu %1
II-B No Yes Ikr £1, Zcr £1, Zu -1
I-c No Yes Ikr =1l ZC,;&]_ Iu %1

Analogous mechanical system model (Fig. 3)

Linear time-invariant model (LTI) IV-A Yes No dw=1, Aa=1,du=1 w, only

Quasi-linear model (QL) IV-B Yes No T2, Far A1, Tyl nw, (n=1,2,3, ...)

@, term as described below where the subscripts L, K, and H indicate the LTI model, dynamic stiffness K¢(wo,X1), and force
transmissibility H.(w,,X1) formulations. respectively:

XKL= krefxrefv XHL = ArPy(w0,X1), (100)

Pu(t) = Re[Pyy "] = Re[Pyp e+ Prun)], (101)

Frie®) =fn+ A1 ‘Re(wmxl)“{e [ei(wor+¢x1 +wm)]‘ Pr (@) = £ Ke(wo, X1), (102)
St (® = fin+ Y1 |He(wo,X1)|Re [ei(wot+ P +</JHL)] s Ou(@o) = £ He(@o,Xy). (103)

Here, @py, is the phase of p,(t) at nw, term, @i, is the phase of K.(,,X1), and ¢y is the phase of H.(,.X;). The above
models include measured X,;; and P,y contents at w, with X;. Next, the time domain force is constructed by using QL
models at relevant n terms as follows:

1KQ (D) = Jm +JTKQ1 TKQ2 -+ FJ1kez(D),
Jrio(®) = fn +frr1 (O +frre2(O+ - - - +frroz(t) (104)
frka1(0) = 2y [Ke(0,X1)[Re [ei[wﬂp’” * Pra(e )]} ' (105)
fTI(QZ =1 ‘Re(zwo X5) | Re [ei[Zw.;t +¢x2 + (pm(z(u.,.xz)]} , (106)
frraz(®) = Y }RE(Z(DO X7) } Re [ei[zwotJr Pxz+ (/)KQ(ZU)onZ)]] , (107)
Pro (Mo, Xn) = L Ke(nwo,Xn), (n=1,2,...,2). (108)

Summing up Eqgs. (105)-(108), the total force is defined as
z
fTKQ(t) :fm + kL Z |Re(nwo.X,,)|Re [ei[non Pxn+ (/)KQ(n(L)o.Xn)]} . (109)
n=1

Likewise, the force is alternately estimated by using He(nm,,X,) as

z
frug(t) = fin+ Z L0 (100, Xn) | He(o,Xn)| Re [ei[n(0ut+(/)pun ﬂ/)m(nwo,xn)]], (110)
n=1

Lo (N0 Xn) = Ar|Pu(no X)|  (1=1.2....2). (111)



5266 J.-Y. Yoon, R. Singh / Journal of Sound and Vibration 329 (2010) 5249-5272

(a)

-600

-800
-1000
-1200
-1400
-1600
-1800

fr(N)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (Sec)

-500

-1000

fr(N)

-1500

-2000 L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time (Sec)

Fig. 15. Comparison of LTI and quasi-linear (QL) models with experiment in time domain, given x(t) = Re[X ei®*!] at w,/27=8.5 Hz and X=1.5 mm:
(a) fixed decoupler and (b) free decoupler. Key: ===, experiment; --- --- , LTI (scheme I-A with w, term only); - -, QL scheme I-B; == = , QL scheme II-C;
and = -, QL scheme III-C.
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Fig. 16. Comparison of fluid and analogous mechanical system models with experiment in time domain, given x(t) = Re[X e/®°!] at w,/27=8.5 Hz and
X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: ===, experiment ; == = , QL scheme II-C; = ===, QL scheme III-C; ------ , QL scheme IV-C.
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Fig. 17. Comparison of nonlinear (NL) and quasi-linear (QL) models with experiment in time domain, given x(t) = Re[X e®!] at w,/27=8.5 Hz and
X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: ===, experiment; == = , QL scheme II-C; == = s, QL scheme III-C; - -, nonlinear (NL) model.
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Fig. 18. Comparison of super-harmonics between nonlinear (NL) and quasi-linear (QL) models with experiment given x(t) = Re[X ei®!] at w,/27=8.5 Hz
and X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: -@-~, experiment; <=, QL scheme II-C; <5-~, QL scheme III-C; %, nonlinear (NL) model.
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Using the same method, the analogous mechanical system model yields the following force:

zZ
fra® =fin+ 1 D [Kae(no,Xn)|Re {emwgt+ Pxnt wm(nmu,xm] '

n=1

Table 3

Pra®o,Xn) = L Kpe(nwo, Xn), (n=1,2,...2).

Comparison of the model estimation errors at w,/2n=8.5 Hz and X=1.5 mm for alternate force estimation schemes.

(112)

(113)

Model and scheme designation

RMS error, E (%)

Fixed decoupler

Free decoupler

Fluid system model (Fig. 1)

Simple prediction model given measured data

Nonlinear model (NL)
Linear time-invariant model (LTI)
Quasi-linear model (QL)

Analogous mechanical system model (Fig. 3)

Linear time-invariant model (LTI)
Quasi-linear model (QL)

w, only 20.1
with nw, terms (n=1, 2, 3, ...) 6.9
11.7
I-A 20.1
I-B 1.82
II-A 19.0
1I-B 61.9
-c 1.82
II-A 19.0
1I-B 65.8
m-c 1.82
IV-A 23.6
IV-B 23.0

25.2
114
10.9
25.2
2.56
23.0
51.0
2.56
23.0
101.3
2.60

38.6
273
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Fig. 19. Comparison of alternate quasi-linear (QL) models in time domain for the fixed decoupler mount, given x(t) = Re[X ei®!] at w,/27=8.5 Hz and
X=1.5 mm: (a) dynamic stiffness (K.) concept and (b) force transmissibility (H.) concept. Key: m==, experiment; === = , QL schemes II-C and IlI-C; s = = =,
QL schemes II-A and III-A; - -, QL schemes II-B and III-B.
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Fig. 20. Comparison of alternate quasi-linear (QL) moslels in time domain for the free decoupler mount, given sinusoidal displacement x(t) = Re[X ei®!] at
o[27=8.5 Hz and X=1.5 mm: (a) dynamic stiffness (K.) concept and (b) force transmissibility (H,) concept. Key: ===, experiment ; == = , QL schemes
II-C and I1I-C; = = = », QL schemes II-A and III-A; - -, QL schemes II-B and III-B.
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Fig. 21. Comparison between rubber and hydraulic path forces in time domain for the fixed decoupler mount given sinusoidal displacement
X(t) =Re[X ] at X=1.5 mm: (a) w,/27=8.5 Hz; (b) w,/27=16.5 Hz; (C) ,/27=20.5 Hz. Key: ===, total force fr(t); == = , rubber path force fry(t);
------ , hydraulic path force fryp(t).
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9. Results and discussion
9.1. Comparison of models

Our study includes 12 harmonic terms in the quasi-linear (QL) models. Fig. 15 compares three QL schemes. Here, the LTI
(or the simple prediction) model employs measured xy(t) and p,m(t) with w, term only. The QL schemes are based upon
Egs. (1)-(3) and (104)-(111), and are designated by I-B, II-C and III-C. The forces estimated by the QL schemes match well
with measured force time histories. Conversely, the mechanical model, with QL scheme IV-C, fails to predict fi{t) as seen in
Fig. 16. This is due to the K,, formulation based upon the system of Fig. 3. In particular, the numerator of K4, does not
include any system properties unlike the fluid model. Also, the mechanical system does not properly incorporate the
dynamic compliance Cye(nw,,Xy) in the fi(t) expression as observed in Fig. 3.

Fig. 17 compares the nonlinear (NL) model with two quasi-linear models (schemes II-C and III-C). Observe the NL model
shows some discrepancies in the time domain. To examine the underlying cause, spectral contents are compared in Fig. 18
for NL and QL models on a logarithmic scale. Specifically, the NL models predict lower magnitudes at 4w, and 5w, for both
fixed and free decouplers; conversely, two QL schemes match experimental data very well.

9.2. Comparison of model errors

The normalized error &(t) between measured force fry(t) and predicted force fy{t) at any time t is calculated as

&(t) = (fr(O—fmm () /frm(t). The overall root-mean-square (RMS in %) error E is then given by E =100 \/ (1/Nmax) S0 [a(t)T?,
where Np.x is the maximum number of points in time domain. Table 3 lists E values for all models in Table 2. Errors from
the QL schemes such as I-B, II-C and III-C are much lower than other models. In particular, the nonlinear model shows more
than 10% error even though it includes four nonlinear expressions. The chief reason is that the nonlinear profiles were
measured under the static conditions as thus they do not fully capture the dynamic forces under the sinusoidal excitation
conditions.
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Fig. 22. Comparison between rubber and hydraulic path forces in time domain for the free decoupler mount given sinusoidal displacement
X(t) = Re[X ei®!] at X=1.5 mm: (a) wo/27=8.5 Hz; (b) w,/2m=16.5 HZ; (C) w,/27=20.5 Hz. Key: ===, total force fr(t); == = , rubber path force fry(t);
~~~~~~ , hydraulic path force fryp(t).
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9.3. Comparison of rubber and hydraulic paths

Figs. 19 and 20 compare the quasi-linear models with a combination of A (6,X1), Ac{®oX1), and Au(nwo,Xy). The
results reveal significant discrepancies from the measured force time history. This suggests that 4,(nw,,X,) is the most
important parameter though all must be retained.

Figs. 21 and 22 compare the rubber path force fry,(t) and the hydraulic path force fry,(t) based upon the QL scheme III-C
at three excitation frequencies with X=1.5 mm. The peak-to-peak value of fry(t) is less than fry,(t) below 10 Hz. The fryn(t)
is larger than frp,(t) for the fixed decoupler mount between 10 and 20 Hz. Beyond 20 Hz, fry,(t) and fryp(t) are almost the
same in terms of peak-to-peak values. However, fry,(t) remains almost sinusoidal at all frequencies, but fry,(t) consists of
multi-harmonic terms as observed in Figs. 21 and 22. Further, the rubber path forces fry,(t) are similar in fixed and free
decoupler mounts, but, the contribution of hydraulic path force fryx(t) is smaller in the free decoupler mount when
compared with the fixed decoupler mount. This is primarily due to the dynamic fluid flow through the decoupler element.

10. Conclusion

This article has proposed new methods to estimate dynamic forces (in both time and frequency domains) that are
transmitted by a hydraulic mount under sinusoidal excitation. The super-harmonic contents of measured upper chamber
pressure p,(t) and force fy,(t) are examined and correlated. Effective parameters kye(6,X1), Cre(0,X71) and Ce(no,X,) at
the fundamental frequency and super-harmonics (nw,) are quantified for rubber and hydraulic force paths. This leads to
the development of an improved quasi-linear model with spectrally varying and amplitude-sensitive parameters. The
rubber force path is considered only at w,, but the hydraulic path compliance Ce(n,,X,) is quantified at nw, terms.
Alternate relevant transfer function formulations with nw, terms are also examined by employing the Fourier series
expansion as well as the reverse path spectral method. The causality problem should be carefully considered before
employing such formulations in time domain based on frequency domain measurements [21-23]. Finally, the hydraulic
mount also exhibits a sub-harmonic term response [15]. This period-doubling effect and a more refined nonlinear model
should be the subject of future research. We are also incorporating the load sensing device in a real system consisting of a
vehicle powertrain and its sub-frame. Overall, the methods of this paper can be extended to real-life systems where in-situ
dynamic forces must be assessed.
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