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a b s t r a c t

Direct measurement of forces is not practical in many real-life applications since the

interfacial conditions may change. Thus indirect force estimation methods must be

developed though they pose special difficulty for nonlinear mounts or isolators. The

hydraulic engine mount is examined as an illustrative example in this article since it

time-invariant, nonlinear and quasi-linear fluid and mechanical system models. Second,

models are utilized to predict the transmitted force time history under sinusoidal

excitation conditions given measured (or calculated) motion and/or internal pressure

time histories. Experimental data from the non-resonant dynamic stiffness test is

investigated in both time and frequency domains. In particular, the super-harmonic

contents in fluid chamber pressure and force time histories are investigated using both

measurements and mathematical models. This paper examines several alternate

indirect schemes for estimating dynamic forces and highlights their strengths. The

quasi-linear model with effective system parameters, say in terms of force to pressure

or force to motion transfer functions, is found to correlate well with measured dynamic

forces though linear and nonlinear models could be employed as well.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Precise knowledge of the dynamic forces that are transmitted by machinery mounts and isolators to rigid or compliant
bases in vehicles, buildings, and equipment is critical to the dynamic design and vibration control considerations. Direct
measurement of forces (for example, using conventional force transducers) is not practical in many real-life applications
since the interfacial conditions may change [1,2]. Thus indirect force estimation methods must be developed [3,4]. For
instance, one could employ transfer path approaches, though they are applicable primarily in the frequency domain for a
linear time-invariant system [5,6]. Also, dynamic forces could be estimated by using other measured signals such as
operating motions, but then dynamic stiffness must be known a priori [7]. Such indirect force estimation methods pose
special difficulty for nonlinear mounts or isolators. For instance, hydraulic engine mounts exhibit spectrally varying and
amplitude-sensitive parameters [8].

To illustrate the concepts of this article, consider Fig. 1(a) that displays the internal configuration of the hydraulic
engine mount and its fluid system model; it will be discussed further in Section 3. Fig. 1(b) shows the non-resonant
dynamic stiffness test concept, as defined by the ISO standard 10846 [9]. Here, fm is the preload, xðtÞ ¼ xmþRe½ ~X eioot� is the
excitation displacement, xm is the mean displacement, ~X ¼ X eijX is the complex valued excitation amplitude, X is
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: +1 614 292 3163.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.06.026
mailto:singh.3@osu.edu
dx.doi.org/10.1016/j.jsv.2010.06.026


Fig. 1. Force transmitted fT(t) by a hydraulic mount in the context of non-resonant elastomeric test [1]: (a) fluid model of the hydraulic mount and its

parameters for rubber and hydraulic paths and (b) sinusoidal displacement excitation x(t) and dynamic forces transmitted by two paths (fTr and fTh).
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the amplitude of displacement, jX is the phase of x(t), oo is the excitation (fundamental) frequency (rad s�1), and Re[] is
the real value operator; tilde over a symbol implies that is complex valued. In addition, a pressure transducer, pu(t), is also
installed in the upper chamber in our laboratory experiments. As shown in Fig. 1(b), the steady state force transmitted fT(t),
in time (t) domain, is related to the excitation displacement x(t) and upper chamber response pu(t):

fT ðtÞ ¼ fTrðtÞþ fThðtÞ, (1)

fTrðtÞ ¼ cr _xðtÞþkrxðtÞ, (2)

fThðtÞ ¼ ArpuðtÞ: (3)

Here, fTr(t) is the rubber path force (subscript r), fTh(t) is the hydraulic path force (subscript h), kr and cr are the rubber
stiffness and damping coefficient, respectively, and Ar is the effective piston area. Our experiments show that pu(t) deviates
from the sinusoidal shape depending on X and oo, as discussed later in the paper. Likewise, kr and cr vary as well with X and
oo. The chief goal of this article is, therefore, to propose linear time-invariant (LTI), nonlinear (NL), and quasi-linear (QL)
models that could be utilized to predict the force time history under sinusoidal excitation conditions given measured (or
calculated) motion and/or internal pressure time histories. In particular, the super-harmonic contents in pu(t) and fT(t) time
histories are investigated using both measurements and mathematical models. Even though the focus of this article is on
hydraulic engine mounts, its concepts could be extended to real-life system problems [1,5,6]. For instance, we are
estimating forces in a nonlinear isolation system using a dynamic load sensing device.

2. Initial results and objectives

Fig. 2 presents the initial results based upon Eqs. (1) to (3) when only the fundamental measured (designated
with subscript M) xM(t) and puM(t) signal terms (as shown in Fig. 2(a)) are considered. At this juncture, the following nominal
(and constant) parameters are incorporated in Eqs. (1) to (3): kr=2�105 N m�1; cr=496.1 N-s m�1; Ar=4�10�3 m2. This
formulation is designated as a ‘simple prediction model’, and its results are compared in Fig. 2(b) with the direct
measurements of dynamic force; both single term and multi-term time histories are displayed. The results show the same
order of magnitudes, but the precise time history deviates from the sinusoidal shape. This suggests that super-harmonic
terms must be included in pu(t). Also, a better knowledge of the amplitude (X) and frequency sensitive parameters is needed.

Fluid and mechanical system models of hydraulic engine mounts, based on the linear time-invariant system theory,
have been extensively investigated for both fixed and free decoupler mounts [2,10,11]. Nevertheless, their dynamic
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Fig. 2. Measurement of upper chamber pressure and transmitted force time histories for the free decoupler mount, given sinusoidal displacement

xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz and X=1.5 mm: (a) xM(t) with X=1.5 mm and puM(t) time histories with single harmonic term; Key for part (a): ,

xM(t); , puM(t) with a single harmonic term; (b) measured and predicted forces, fT(t); Key for part (b); , measured force with many harmonics;

, measured force with a single harmonic term; , predicted force with nominal parameters and a single harmonic term.
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characteristics depend upon the amplitude and frequency of excitation [12]. Thus, nonlinear models have been suggested
under both steady state and transient conditions [13–20]. For instance, He and Singh [18] developed the discontinuous
nonlinear model when the hydraulic mount is excited by a step-up or step-down input. Lee and Singh [19,20] have found
that the nonlinear responses (of a quarter vehicle model with hydraulic mount) are affected by the super-harmonic terms
even though the system is excited by a pure sinusoidal force. Unlike prior articles [15–18] that describe various mount
models, this paper focuses on the prediction of dynamic forces by using alternate methods.

The scope of this article is limited to the mount only, and steady state experiments under sinusoidal excitation from 1 to
50 Hz with X from 0.15 to 1.5 mm (zero-to-peak) are considered. In all cases, xM(t), puM(t), and fTM(t) are measured on the
elastomer test machine for both fixed and free decoupler mounts. Specific objectives are as follows: (1) analyze the
measured puM(t) and fTM(t) in both time and frequency domains and examine their spectral contents; (2) develop linear
time-invariant and nonlinear models of both fixed and free decoupler mounts and compare their fT(t) predictions with
measurements; (3) propose a quasi-linear model with spectrally varying and amplitude-sensitive parameters at both oo

and noo (n=2, 3, 4, y) terms; both fluid and analogous mechanical system models are used to predict fT(t) and compare
with fTM(t); and (4) estimate fT(t) in the time domain by using the Fourier series expansion.

3. Linear time-invariant (LTI) model for fluid system

First, we develop the linear time-invariant (LTI) model for the fluid system of Fig. 1(a) with the following assumptions:
(1) the hydraulic mount is excited by a pure sinusoidal displacement x(t) under a mean load fm, and it reaches steady state
and (2) the hydraulic mount is attached to a rigid base. The momentum and continuity equations for the hydraulic path are
as follows [10–16]:

fT ðtÞ ¼ cr _xðtÞþkrxðtÞþArpuðtÞ, (4)

puðtÞ�plðtÞ ¼ Ii _qiðtÞþRiqiðtÞ, (5)

puðtÞ�plðtÞ ¼ Id _qdðtÞþRdqdðtÞ, (6)

Cu _puðtÞ ¼ Ar _xðtÞ�qiðtÞ�qdðtÞ, (7)

Cl _plðtÞ ¼ qiðtÞþqdðtÞ: (8)
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Here, Cu and Cl are the upper (#u) and lower (#l) chamber compliances, respectively; Ii and Id are the inertances of the
inertia track (#i) and decoupler (#d), respectively; Ri and Rd are the resistances of the inertia track and decoupler,
respectively; and qi and qd are the fluid flow through inertia track and decoupler, respectively. Transform Eqs. (4)–(8) into
the Laplace domain (s) with the assumption that the initial conditions are zeros

FT ðsÞ ¼ ðcrsþkrÞXðsÞþArPuðsÞ, (9)

PuðsÞ�PlðsÞ ¼ ðIisþRiÞQiðsÞ, (10)

PuðsÞ�PlðsÞ ¼ ðIdsþRdÞQdðsÞ, (11)

CusPuðsÞ ¼ ArsXðsÞ�QiðsÞ�QdðsÞ, (12)

ClsPlðsÞ ¼ QiðsÞþQdðsÞ: (13)

To facililate models and experimental estimations, we define dimensionless variables and parameters as: X ¼ X=Xref =

the dimensionless excitation displacement amplitude; Xref=reference displacement amplitude; Pu ¼ Pu=Puref =dimension-

less pressure; Puref=(krrefXref)/Ar=reference pressure; krref=reference stiffness; FT ¼ FT=FTref =dimensionless force; and

FTref=krrefXref=reference force. We now define three dimensionless transfer functions that relate FT to Pu and X

GðsÞ ¼
Pu

X
ðsÞ ¼

Ar

krref

Pu

X
ðsÞ ¼ gh

s2

o2
N1

þ
2z1

oN1
sþ1

 !
s2

o2
N2

þ
2z2

oN2
sþ1

 !
,

,
(14)

K ðsÞ ¼
FT

X
ðsÞ ¼

1

krref

FT

X
ðsÞ, (15)

HðsÞ ¼
F T

Pu

ðsÞ: (16)

Here, GðsÞ is the dimensionless pressure to displacement transfer function, KðsÞ is the dimensionless cross point

dynamic stiffness, and HðsÞ is the dimemsionless force transmissibility. Using Eqs. (9)–(16), the above transfer functions

are expressed in terms of natural frequencies (oN1 and oN2), damping ratios (z1 and z2), and hydraulic path static
stiffness gh as expressed below for both fixed and free decoupler mounts; these system parameters are derived in our
earlier paper [2]

oN1ðfixedÞ ¼

ffiffiffiffiffiffiffi
1

ClIi

s
, (17)

oN1ðfreeÞ ¼
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s
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s
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CuClR
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Ii CuþClð Þ

s
, (23)

z2ðfreeÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CuClRdR2

i

Ii CuþClð Þ RiþRdð Þ
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: (25)
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Here, subscripts (fixed) and (free) refer to the fixed and free decoupler mount designs, respectively. Next, decompose the
dynamic stiffness into rubber (subscript r) and hydraulic (subscript h) paths as

K ðsÞ ¼ K rðsÞþK hðsÞ, (26)

K rðsÞ ¼
F Tr

X
ðsÞ ¼ grð1þtrsÞ, (27)

K hðsÞ ¼
F Th

X
ðsÞ ¼ gh

s2

o2
N1

þ
2z1

oN1
sþ1

 !
s2

o2
N2

þ
2z2

oN2
sþ1

 !
,

,
(28)

Finally, decompose the force transmissibility as well:

HðsÞ ¼HrðsÞþHhðsÞ, (29)

HrðsÞ ¼
F Tr

Pu

ðsÞ ¼
gr

gh

ð1þtrsÞ
s2

o2
N2

þ
2z2

oN2
sþ1

 !
s2

o2
N1

þ
2z1

oN1
sþ1

 !
,

,
(30)

HhðsÞ ¼
F Th

Pu

ðsÞ ¼ 1, (31)

tr ¼
cr

kr
, (32)

gr ¼
kr

krref
: (33)

Here, tr is the time constant and gr is the rubber path static stiffness. Observe that the fixed decoupler case is derived
from the free decoupler formulations by assuming that Id=0 and Rd-N. In our study, the nominal parameters are as
follows: Ii=4�106 kg m�4; Id=509.3 kg m�4; Cu=2.5�10�11 m5 N�1; Cl=2.4�10�9 m5 N�1; Ri=2�108 N s m�5; Rd=5�
108 N s m�5. Reference values are selected as: krref=2.0�105 N m�1, Ar=4.5�10�3 m2; and Xref(�10�3 m) though
different values of Xref according to the experimental excitation amplitudes are utilized.

4. Linear time-invariant (LTI) model for analogous mechanical system

Fig. 3 illustrates the analogous mechanical system LTI model with effective parameters that could be related to the fluid
system properities. The governing equations are

mie €xieðtÞþcie _xieðtÞþðkuþklÞxieðtÞ ¼ kuxðtÞ, (34)

fT ðtÞ ¼ cr _xðtÞþkrxðtÞþklxieðtÞ: (35)

Here, the mechanical parameters are defined as follows: effective mass of inertia track fluid column mie=Ar
2Ii; effective

viscous damping of inertia track fluid cie=Ar
2Ri; equivalent stiffness of upper chamber compliance ku=Ar

2/Cu; and equivalent
stiffness of lower chamber compliance kl=Ar

2/Cl; and effective velocity of inertia track fluid _xieðtÞ ¼ qiðtÞ=Ar . By transforming
Eqs. (34) and (35) into the Laplace domain (s) and ignoring initial conditions, the dimensionless transfer functions, like the
Fig. 3. Analogous mechanical system model and its parameters for rubber and hydraulic paths.



J.-Y. Yoon, R. Singh / Journal of Sound and Vibration 329 (2010) 5249–52725254
fluid system model, are derived:

F T

X
ðsÞ ¼ K AðsÞ ¼

F Ar

X
ðsÞþ

F Ah

X
ðsÞ ¼ K ArðsÞþK AhðsÞ, (36)

K ArðsÞ ¼ grð1þtrsÞ, (37)

K AhðsÞ ¼ gh

s2

o2
N2

þ
2z2

oN2
sþ1

 !
:

,
(38)

Here, KAðsÞ indicates the dimensionless dynamic stiffness (with subscript A) of the analogous mechanical system. The
values of nominal parameters are: mie=81 kg; cie=4.1�103 N s m�1; ku=8.1�105 N m�1; kl=8.4�103 N m�1. Our study
will focus on KðsÞ and HðsÞ from the fluid system model as described by Eqs. (15)–(33), and KAðsÞ from the analogous
mechanical system model as given by Eqs. (36)–(38).

5. Nonlinear (NL) model for fluid system

The differntial equations for the fluid system as given in Eqs. (4) to (8) are now modified to include four nonlinearities
[15,16]. The sign convention is as follows: pu(t) is positive (in compression) corresponding to the upward (positive) motion
of x(t), qi(t); and qd(t); and pu(t) is negative (in expansion) for the downward motion of x(t), qi(t) and qd(t); fT(t) follows the
x(t) sign. First we express the governing equations in the state space form where the state variable is defined as
S tð Þ ¼ ½p1ðtÞp2ðtÞqiðtÞ _xdðtÞfT ðtÞ�

T ; here _xdðtÞ ¼ qdðtÞ=Ad, and Ad is the effective piston area of decoupler element

_SðtÞ ¼ B SðtÞþDðtÞ, (39)

B ¼

0 0 1=Cu Ad=Cu 0

0 0 �1=Cl �Ad=Cl 0

�1=Ii 1=Ii �Ri=Ii 0 0

�Ad=md Ad=md 0 �cd=md 0

0 0 �Ar=Cu �ArAd=Cu 0

26666664

37777775, (40)

DðtÞ ¼

�Ar _xðtÞ=Cu

0

0

0

ðA2
r =CuþkrÞ _xðtÞþcr €xðtÞ

26666664

37777775: (41)

where _xðtÞ and €xðtÞ are the excitation velocity and acceleration, respectively; the effective mass of decoupler element is
md ¼ A2

dId, and effecitve viscous damping of decoupler fluid is cd ¼ A2
dRd. The nominal parameters are: md=6.0�10�3 kg;

cd=100 N s m�1; Ad=1.96�10�3 m2.
The discontinuous motion of the decoupler element is given in terms of the switching mechanism as follows:

€xdðtÞ ¼

1

md
Adf�puðtÞþplðtÞg�cdxdðtÞ½ �, �

dd

2
oxdðtÞo

dd

2
,

0, _xðtÞ ¼ 0, xdðtÞ ¼�
dd

2
or xdðtÞ ¼

dd

2
,

8>>><>>>: (42)

where xd(t) and dd are the displcement of decoupler element and the net decoupler gap, respectively. The nonlinear
functions for Cu(pu(t)), Cl(pl(t)), and Ri(qi(t)) are described below based on prior work [15,16]

CuðpuðtÞÞ ¼ a0 when puðtÞZpa, (43)

CuðpuðtÞÞ ¼ a17½puðtÞ�
7þa10 when p1ðtÞopa, (44)

ClðplðtÞÞ ¼ a23½plðtÞ�
3þa22½plðtÞ�

2þa21plðtÞþa20, (45)

RiðqiðtÞÞ ¼ aR qiðtÞ
�� ��: (46)

Typical coefficients of Cu(pu(t)), Cl(pl(t)) and Ri(qi(t)) are as follows under fm=1200 N: a0=1.09�10�11; a17=�7�10�45;
a10=2.5�10�11, a23=1.51�10�18; a22=�6.82�10�14; a21=3.13�10�9; a20=5.19�10�6; aR=3.45�1011. Further, the
nonlinear model of the fixed decoupler mount is also examined with the assumptions that Id=0 and Rd-N by essentially
ignoring Eq. (42).

The nonlinear model is solved numerically using the Runge–Kutta integration technique. The initial values of pu(t) and
fT(t) are selected from the measurements as follows: xð0Þ ¼ Re½ ~X �; _xð0Þ ¼ Re½ioo

~X �; and fT ð0Þ ¼ crRe½ioo
~X �þkrRe½ ~X �þArpuð0Þ.
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The initial conditions of other states pl(t), qi(t), and _xdðtÞ are set to zeros. Here, the mean values xm and fm are assumed to be
known. Thus, only the dynamic terms are considered. Figs. 4 and 5 show typical time histories and their Fourier magnitude
spectra under sinusoidal excitation. The switching mechanism of the free decoupler is evident in pressure, decoupler
motion and flow rate predictions. Also, the super-harmonic terms are clearly observed in xd(t), pu(t), qi(t) and qd(t) as
shown in Fig. 5. The dynamic forces estimated by the nonlinear model including a comparison with measurements will be
addressed later.

6. Quasi-linear (QL) model with effective parameters and super-harmonic terms

6.1. Spectrally varying and amplitude sensitive parameters

Next, we develop a quasi-linear (QL) model, say in terms of the transfer functions of Sections 3 and 4 that would include
effective or empirical properties. Several issues must be considered since the hydraulic mount is a nonlinear device
[13–17]. First, the causality problem must be considered as the measured signals are transferred into the frequency
domain by using the fast Fourier transform (FFT) routine. This inherent problem could be understood by employing a
Hilbert transform pair to represent the causal system in terms of the real and imaginary parts of a QL model [21–23].
Second, we assume that the upper chamber pressure is most affected by the nonlinear phenomena, and thus, all
nonlinearities are lumped into the effective (subscript e) upper chamber compliance. The definition of Cun (static
compliance under nominal conditions, with subscript n) has to be changed, and thus we define complex valued parametereC ue o,Xð Þ that includes both amplitude-sensitive stiffness and damping properties at any frequency. Relate static and
dynamic compliances as: eC ue ¼

eluCun ¼ ðaþ ibÞCun , where elu ¼ aþ ibð Þ is an empirical parameter whose coefficients a and b
at any frequency would be determined from measurements. Similarly, the rubber path is formulated as disccused next. The
overall quasi-linear model concept is shown in Fig. 6; it will be addressed further in Section 7.

6.2. Estimation of effective rubber force path parameters

To investigate the rubber force path, the anti-freeze mixture (water) is drained from the mount and then the mount is
excited using the same method [7,9]. The spectrally varying and amplitude-sensitive parameters of the rubber path such as
kre(oo,X1) and cre(oo,X1) are determined only at the fundamental frequency (oo) where the subscript e designates the
effective value. Here X1 is the ‘virtual’ excitation displacement amplitude at oo as shown in Table 1, which will be further
explained in the next section. Fig. 7 shows sample kre(oo,X1) and cre(oo,X1) data with X=0.15 mm. In our study, the data set
consists of 7 cases corresponding to X=0.15, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 mm. Therefore, the quasi-linear model with curve-
fit functions can be developed given experimental data [2]. The goal is to develop continuous profiles of the quasi-linear
parameters lkr(oo,X1) as a function of frequency O(=oo/2p, Hz). However, the magnitude of lkr(oo,X1)(=kre(oo,X1)/krn) is
considered in two frequency regimes as illustrated in Fig. 7. The first curve-fit below O1 (=2.5 Hz) is a linear function and
the second one beyond O1 (=2.5 Hz) is represented by a 5th order polynomial function. Two smoothening functions are
Fig. 6. Force estimation using quasi-linear models of Table 2. Key: xM(t), measured displacement; puM(t), measured pressure; ~K eðnoo ,XnÞ, effective value

of ~K ðnoo ,XnÞ; ~Heðnoo ,XnÞ, effective value of ~Hðnoo ,XnÞ; fT(t), force estimated by simple prediction model and quasi-linear models.



Table 1
‘Virtual’ excitation displacements Xn used for the quasi-linear (QL) model.

Experimental excitation, X (mm) ‘Virtual’ displacement (mm)

X1 X2 X3 X4 X5

Fixed decoupler 0.15 0.15 4.1�10�4 2.0�10�3 4.4�10�4 7.6�10�4

0.75 0.75 2.7�10�3 8.7�10�3 5.2�10�4 1.8�10�3

1.5 1.5 6.8�10�3 3.1�10�2 3.4�10�3 3.0�10�3

Free decoupler 0.15 0.15 9.2�10�4 9.6�10�4 3.0�10�4 1.8�10�4

0.75 0.75 4.3�10�3 1.1�10�2 4.3�10�4 1.2�10�3

1.5 1.5 6.2�10�3 3.2�10�2 2.2�10�3 4.0�10�3
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Fig. 7. Empirical parameters of the rubber path at X=0.15 mm. Here magnitudes of lkr(oo,X1) and lcr(oo,X1) are displayed along with the smoothening

functions, GOv (v=1, 2). The frequency regimes are separated at O1=2.5 Hz. Key for GOv curves: , GO1(oo); GO2(oo).
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employed in terms of GO1(oo) and GO2(oo) as shown in Fig. 7 [24] to yield the continuous profiles of lkr(oo,X1):

kr1ðooÞ ¼ ak1ðoo=2pÞþak0, OoO1, (47)

kr2ðooÞ ¼ bk5ðoo=2pÞ5þbk4ðoo=2pÞ4þbk3ðoo=2pÞ3þbk2ðoo=2pÞ2þbk1ðoo=2pÞþbk0, O1oO, (48)

GO1ðooÞ ¼ 0:5 �tanh s1ðoo=2p�O1Þ
� �

þ1
� �

, (49)

GO2ðooÞ ¼ 0:5 tanh s2 oo=2p�O2

� 	� �
þ1

� �
: (50)

Here, kr1(oo) and kr2(oo) are the curve-fits of lkr(oo,X1) in the range of OoO1 and OZO1, respectively, and, GO1(oo) and
GO2(oo) are the smoothening functions over OoO1 and OZO1 regimes, respectively. The smoothening factors sv (v=1–2)
are selected as s1=s2=1�106. In our study, the coefficients akv(v=0, 1) and bkv (v=0–5) are determined corresponding to
each excitation X. For example, ak1=0.045, 0.038, 0.036, 0.034, 0.0324, 0.033, and 0.030 with X=0.15, 0.25, 0.5, 0.75, 1.0,
1.25, and 1.5 mm respectively; ak0=2.03, 2.02, 1.96, 1.92, 1.89, 1.86, and 1.85 with X=0.15, 0.25, 0.5, 0.75, 1.0, 1.25, and
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1.5 mm, respectively. Likewise, 6 sets of coefficients for bkv (v=0–5) are estimated corresponding to X=0.15, 0.25, 0.5, 0.75,
1.0, 1.25, and 1.5 mm. Thus, another set of curve-fits with respect to X1 is used as follows:

akvðX1Þ ¼
X7

w ¼ 1

akvw�1X1
w�1
ðv¼ 0,1Þ, (51)

bkvðX1Þ ¼
X7

w ¼ 1

bkvw�1X1
w�1
ðv¼ 0�5Þ, (52)

ak1ðX1Þ ¼ ak16X6
1þak15X5

1þak14X4
1þak13X3

1þak12X2
1þak11X1þak10: (53)

Here, akv(X1) and bkv(X1) are the coefficient curve-fits for akv(v=1, 0) and bkv (v=0–5) with the function of X1, respectively.
Eq. (53) describes a typical example of coefficient curve-fit as a function of X. Sample coefficients ak1w�1 are as follows:
a16=0.098; a15=�0.596; a14=1.411; a13=�1.652; a12=1.003; a11=�0.304; a10=0.073. Therefore, the overall procedure to
determine the spectrally varying and amplitude-sensitive parameters for lkr(oo,X1) is described as follows:

kreðoo,X1Þ ¼ krnlkrðoo,X1Þ, (54)

lkrðoo,X1Þ ¼ kO1ðoo,X1ÞþkO2ðoo,X1Þ, (55)

kO1ðoo,X1Þ ¼ kr1ðoo,X1ÞGO1ðooÞ, (56)

kO2ðoo,X1Þ ¼ kr2ðoo,X1ÞGO2ðooÞ, (57)

kr1ðoo,X1Þ ¼ ak1ðX1Þðoo=2pÞþak0ðX1Þ, (58)

kr2ðoo,X1Þ ¼ bk5 X1ð Þðoo=2pÞ5þbk4 X1ð Þðoo=2pÞ4þbk3ðX1Þðoo=2pÞ3þbk2 X1ð Þðoo=2pÞ2þbk1ðX1Þðoo=2pÞþbk0ðX1Þ: (59)

Here, kOv(oo,X1) (v=1, 2) is the smoothened function of krv(oo,X1) (v=1, 2) and krv(oo,X1) (v=1, 2) is the polynomial curve-
fit in the relevant frequency range. The coefficients akv (v=0, 1) and bkv (v=0–5) are described in Eqs. (51) to (53). Similarly,
lcr(oo,X1)=cre(oo,X1)/crn is estimated as follows. Note that lcr(oo,X1) is now considered on a loge scale, as indicated below,
since the damping varies over a large range:

creðoo,X1Þ ¼ crnelkr ðoo ,X1Þ, (60)

lcrðoo,X1Þ ¼ cO1ðoo,X1ÞþcO2ðoo,X1Þ, (61)

cO1ðoo,X1Þ ¼ cr1ðoo,X1ÞGO1ðooÞ, (62)

cO2ðoo,X1Þ ¼ cr2ðoo,X1ÞGO2ðooÞ, (63)

cr1ðoo,X1Þ ¼ ac1ðX1Þðoo=2pÞþac0ðX1Þ, (64)

cr2ðoo,X1Þ ¼ bc5ðX1Þðoo=2pÞ5þbc4ðX1Þðoo=2pÞ4þbc3ðX1Þðoo=2pÞ3þbc2ðX1Þðoo=2pÞ2þbc1ðX1Þðoo=2pÞþbc0ðX1Þ: (65)

Likewise, cOv(oo,X1) (v=1, 2) is the smoothened function of crv(oo,X1) (v=1, 2) and crv(oo,X1) (v=1, 2) is the polynomial
curve-fit in the relevant frequency range. Again, acv (v=0, 1) and bcv (v=0–5) are also calculated using the method
described by Eqs. (51)–(53). Finally, the estimated lkr(oo,X1) and lcr(oo,X1) are embedded in the quasi-linear model at the
fundamental harmonic term (oo).

6.3. Effective hydraulic force path parameter ~luðnoo,XnÞ at super-harmonics

The effective dynamic compliance ~C ueðnoo,XnÞ is next evaluated at the super-harmonics (noo). Note that the term Xn

should be viewed as the ‘virtual’ excitation displacement amplitude at noo. Even though x(t) is close to a pure sinusoid,
super-harmonic amplitudes Xn are observed via the FFT analysis of xM(t) signals even though their amplitudes are several
orders of magnitudes lower, as listed in Table 1. These can be employed to estimate ~C ueðnoo,XnÞ in terms of
~luðnoo,XnÞð ¼ anþ ibnÞ as follows where Cun is the nominal (static) value:

~C ueðnoo,XnÞ ¼ Cun
~luðnoo,XnÞ ¼ Cunðanþ ibnÞ, (66)

bn ¼ bðnoo,XnÞ,ðn¼ 1,2,3,. . .,Þ, an ¼ aðnoo,XnÞ: (67)

From Eqs. (9) to (13), the relationship between X(s) and Pu(s) is derived as follows for the fixed decoupler mount (with
IdE0 and Rd-N) under the steady state condition. The complex valued terms ~Puðnoo,XnÞ at n=1,2,3,y are expressed in
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the frequency domain (with multi-harmonic terms) by replacing s with i(noo):

~Puðnoo,XnÞ ¼
Ar 1�ðnooÞ

2ClIi


 �
þ iðnooÞClRi

h i
Xn

CuþCl�ðnooÞ
2CuClIi


 �
þ iðnooÞCuClRi

ðn¼ 1,2,3,. . .Þ: (68)

From Eqs. (66) and (67), ~luðnoo,XnÞ can be related in terms of an and bn in the frequency domain at the noo terms, and
this step leads to:

~Puðnoo,XnÞ ¼
Ar ð1�ðnooÞ

2ClIiÞþ iðnooÞClRi

h i
Xn

luCunþCl�ðnooÞ
2ClIiðluCunÞ

h i
þ iðnooÞClRiðluCunÞ

¼
Ar ð1�ðnooÞ

2ClIiÞþ iðnooÞClRi

h i
Xn

ðanþ ibnÞCunþCl�ðnooÞ
2ClIiðanþ ibnÞCun

h i
þ iðnooÞClRi anþ ibn

� 	
Cun

(69)

The measured ~PuMðnoo,XnÞ signal is considered as a complex quantity and given by magitude ~PuMn

��� ��� and phase fMn as

~PuMn ¼ PuRE nþ iPuIM n, (70)

PuRE n ¼ Re ~PuMn

h i
¼ ~PuMn

��� ���cosðfMnÞ, (71)

PuIM n ¼ Im ~PuMn

h i
¼ ~PuMn

��� ���sinðfMnÞ: (72)

From Eqs. (69) and (70), the empirical coeffifinets an and bn are determined at noo and Xn as follows:

PuREnþ iPuIMn ¼
Ar 1�ðnooÞ

2ClIi


 �
þ iðnooÞClRi

h i
Xn

Cun�ðnooÞ
2ClCunIi


 �
an� ClCunRiðnooÞð ÞbnþCl

h i
þ i ClCunRiðnooÞð Þanþ Cun�ðnooÞ

2ClCunIi


 �
bn

h i , (73)

an ¼
an4ðnooÞ

4
þan2ðnooÞ

2
þan0

dn4ðnooÞ
4
þdn2ðnooÞ

2
þdn0

, (74)

bn ¼
bn4ðnooÞ

4
þbn2ðnooÞ

2
þbn1ðnooÞþbn0

dn4ðnooÞ
4
þdn2ðnooÞ

2
þdn0

, (75)

an4 ¼ XnArC
2
l I2

i PuRE n, (76)

an2 ¼ XnArPuRE nCl ClR
2
i �2Ii

� 	
þC2

l P2
uRE nþP2

uIM n

� 	
Ii, (77)

an0 ¼ XnArPuRE n�Cl P2
uRE nþP2

uIM n

� 	
, (78)

bn4 ¼�XnArC2
l I2

i PuIM n, (79)

bn2 ¼ XnArPuIM nCl 2Ii�ClR
2
i

� 	
, (80)

bn1 ¼ C2
l P2

uRE nþP2
uIM n

� 	
Ri, (81)

bn0 ¼�XnArPuIM n, (82)

dn4 ¼ CunC2
l I2

i P2
uRE nþP2

uIM n

� 	
, (83)

dn2 ¼ CunCl ClR
2
i �2Ii

� 	
P2

uRE nþP2
uIM n

� 	
, (84)

dn0 ¼ Cun P2
uRE nþP2

uIM n

� 	
: (85)

Here, the subscripts RE and IM designate the real and imaginary numbers, respectively. Simillary, expressions for the free
decoupler mount (with assumptions such as IdE0 below 50 Hz) are derived leading to

ePuðnoo,XnÞ ¼
XnAr �ðnooÞ

2ClIiRdþ iðnooÞðClRiRdþ IiÞþðRiþRdÞ

h i
�ðnooÞ

2CuClIiRdþ iðnooÞ CuClRiRdþðCuþClÞIi½ �þðCuþClÞðRiþRdÞ
, (86)

an ¼
an4ðnooÞ

4
þan2ðnooÞ

2
þan0

dn4ðnooÞ
4
þdn2ðnooÞ

2
þdn0

, (87)
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bn ¼
bn4ðnooÞ

4
þbn3ðnooÞ

3
þbn2ðnooÞ

2
þbn1ðnooÞþbn0

dn4ðnooÞ
4
þdn2ðnooÞ

2
þdn0

, (88)

an4 ¼ XnArPuRE nCunC2
l I2

i R2
d , (89)

an2 ¼ XnArPuRE nCunC2
l R2

i R2
dþ Cl P2

uRE nþP2
uIM n

� 	
�2XnArPuRE n

� �
CunClIiR

2
dþ XnArPuRE n�Cl P2

uRE nþP2
uIM n

� 	� �
CunI2

i , (90)

an0 ¼ Cun XnArPuRE n�Cl P2
uRE nþP2

uIM n

� 	� �
ðRiþRdÞ

2, (91)

bn4 ¼�XnArPuIM nCunC2
l I2

i R2
d , (92)

bn3 ¼ CunC2
l P2

uRE nþP2
uIM n

� 	
I2
i Rd, (93)

bn2 ¼�XnArPuIM nCun C2
l R2

i R2
d�2ClIiR

2
dþ I2

i

� �
, (94)

bn1 ¼ CunC2
l RiRd P2

uRE nþP2
uIM n

� 	
ðRiþRdÞ, (95)

bn0 ¼�XnArPuIM nCunðRiþRdÞ
2, (96)
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Fig. 8. Effective parameter for the upper chamber compliance, displayed in terms of the magnitude spectra of 20Loge9 ~luðnoo ,XnÞ9 re lu ¼ 1:0 dB with

three harmonic terms given X=1.5 mm: (a) fixed decoupler mount and (b) free decoupler mount. Key: , n=1; , n=2; , n=3.
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dn4 ¼ P2
uRE nþP2

uIM n

� 	
C2

unC2
l I2

i R2
d , (97)

dn2 ¼ C2
un P2

uRE nþP2
uIM n

� 	
C2

l R2
i R2

d�2ClIiR
2
dþ I2

i

� �
, (98)

dn0 ¼ C2
un P2

uRE nþP2
uIM n

� 	
ðRiþRdÞ

2: (99)

Fig. 8 compares the magnitude spectra of ~luðnoo,XnÞ based upon Eqs. (66), (67), (74)–(85), and (87)–(99) up to n=3 term
with given excitation X=1.5 mm. When the results of both fixed and free decouplers are compared with those with the
fundamental oo only, dynamic characteristics seem to show similar responses. But, the magnitudes of 2nd and 3rd
harmonics show mount specific behavior. This illustrates the importance of nonlinear dynamics. For instance, the
~luðnoo,XnÞ spectra for the free decoupler mount show higher magnitudes around 20 Hz for the 3rd harmonic term, when
compared with results at oo. This is directly related to the switching mechanism as well as the nonlinear upper chamber
compliance [19,20].
7. Examination of super-harmonics and estimation of forces in time domain

7.1. Examination of super-harmonics in measured data

Typical puM(t) and fTM(t) measurements for the free decoupler mount at 8.5 Hz (with X=1.5 mm) are shown in Figs. 9(a),
(b) and Fig. 10(a). Spectral contents are determined by the FFT algorithm as shown in Fig. 10(b). Even though the
fundamental oo term (8.5 Hz) is quite dominant, responses reveal several noo terms (especially the second harmonic at
17 Hz and third harmonic at 25.5 Hz). Also, spectral contents of fTM(t) are similar to those of puM(t). Therefore, the super-
harmonic terms in fTM(t) can be assumed to be controlled by the nonlinear characteristics of the hydraulic path.

Figs. 11 and 12 map the magnitude spectra of ~PuMðnoo,XÞ and ~F TMðnoo,XÞ, respectively, up to 3rd harmonic term for the
fixed decoupler mount up to 50 Hz with X=1.5 mm. When the contents at oo are compared with those at noo in Fig. 11(a)
and (b), the magnitude of the oo term is dominant as observed in Fig. 10(b) as well. Also, the super-harmonic contents of
~F TMðnoo,XÞ seem to match the ~PuMðnoo,XÞ spectra in Fig. 11(a), (b) and 12. This is further investigated in the time domain
by marking key events in Fig. 10(a) as ‘‘A’’ and ‘‘B’’. Note that the fundamental ~F TMðnoo,XÞ term is also dependent upon the
initial conditions.
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7.2. Indirect force estimation given measured XMn(noo) and ePuMn noo,Xnð Þ

Based on the experimental data, we assume that the noo contents of fT(t) and ~F T ðnoo,XÞ are directly affected by the
corresponding terms of pu(t) and ~PuMðnoo,XÞ. Thus, all noo terms are lumped into the hydraulic path. This premise is
employed for estimating ~C ueðnoo,XÞ. Further, the Fourier series expansion is utilized by employing the reverse path
spectral method that has been well described by Richards and Singh [25], and Bendat [26].

Fig. 6 illustrates the procedure used to estimate the dynamic forces given measured xM(t) and puM(t) signals under
harmonic excitation at oo. The xM(t) and puM(t) time histories are then transformed into XMn(noo) and ~PuMnðnoo,XMnÞ,
respectively, where XMn(noo) is viewed as the ‘virtual’ sinusoidal input and ~PuMnðnoo,XMnÞ includes relevant noo terms.
Second, effective parameters from both rubber and hydraulic paths are identified, as illustrated in Fig. 13, by employing the
reverse path spectral method [25,26]. For example, ~C ueðnoo,XMnÞ is calculated by Eqs. (66)–(99) for both fixed and free
decoupler mounts. When the measured amplitudes ~PuMnðnoo,XMnÞ are employed in Eqs. (66)–(99), ~C ueðnoo,XMnÞ should be
given at noo such as ~C ueðnoo,XM1Þ from ~PuM1ðnoo,XM1Þ and ~C ueðnoo,XM2Þ from ~PuM2ðnoo,XM2Þ. Next, the quasi-linear
transfer functions ~Geðnoo,XMnÞ ¼ ðkrref=ArÞGðnoo,XMnÞ are used, as described in Fig. 13(a), at noo terms corresponding to
XMn(noo) and ~PuMnðnoo,XMnÞ. Also, as illustrated in Fig. 13(b), kre(oo,X1) and cre(oo,X1) are identified by using XM1(oo) at oo

as described by Eqs. (54)–(65). Further, other transfer functions such as ~K ðnoo,XnÞ ¼ krref Kðnoo,XnÞ and
~Hðnoo,XnÞ ¼ ArHðnoo,XnÞ from Eqs. (14) to (33) are now used to estimate the dynamic forces at noo terms. The overall
procedure with effective parameters kre(oo,X1), cre(oo,X1) and ~C ueðnoo,XnÞ is illustrated in Figs. 6 and 14. In particular,
Fig. 14 describes the reverse path spectral method which employs effective parameters of Fig. 13. Thus, ~K eðnoo,XnÞ and
~Heðnoo,XnÞ assume effective values at each noo term since both are affected by ~C ueðnoo,XnÞ.
8. Force estimations with quasi-linear models

Alternate force estimation schemes are summarized in Table 2, especially for the quasi-linear (QL) model that depends
upon the empirical parameters lkr(oo,X1), lcr(oo,X1), and ~luðnoo,XnÞ. When lkr(oo,X1)=1, lcr(oo,X1)=1, and ~luðnoo,XnÞ ¼ 1,
then the model is obviously linear time-invariant (LTI) with nominal values of kr, cr, and Cu as described earlier in
Sections 2 and 3. The LTI model (with calculated x(t) and pu(t)) is designated as I-A in Table 2; note that it is equivalent to
the ‘simple prediction model’ that employs measured xM(t) and puM(t). As illustrated in Table 2, many different calculation
schemes can be designed based on the combination of lkr(oo,X1), lcr(oo,X1) and ~luðnoo,XnÞ along with applicable transfer
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functions such as ~K eðnoo,XnÞ for schemes II-A, II-B, and II-C, ~Heðnoo,XnÞ for schemes III-A, III-B, and III-C, or ~K Aeðnoo,XnÞ for
schemes IV-A and IV-B. Finally, observe that the nonlinear model (NL) employs nominal nonlinear parameters as described
in Section 5, and thus effective (frequency domain) parameters are not considered in this formulation.

In order to estimate fT(t) from a transfer function ~K e or ~He with effective kre, cre and ~C ue, the Fourier series expansion is
employed for particular QL schemes as illustrated below. Assuming that the mount is excited under steady state condition,
define the input displacement x(t) as Re½ ~X n eiont� ¼ Re½Xn eiðontþjXnÞ�. Note that the ‘virtual’ sinusoidal inputs at noo are
included where Xn and jXn are the amplitude and phase at the nth harmonic. First, the dynamic force is estimated at n=1 or



Fig. 13. Identification of effective parameters for the reverse path spectral method: (a) identification of effective upper chamber compliance ( ~C ue) with

multi-harmonic terms and (b) identification of effective stiffness (kre) and damping (cre) with fundamental harmonic term. Key: ~K Rðoo ,XM1Þ, dynamic

stiffness from the rubber path; ~F Rðoo ,XM1Þ, rubber path force.

Fig. 14. Force estimation in frequency domain using the reverse path spectral method: (a) dynamic stiffness (eK e) concept and (b) force transmissibility

(eHe) concept.
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Table 2
Overview of linear, quasi-linear and nonlinear models used to estimate dynamic forces.

Model and scheme designation Sensor(s) or variables required Spectrally varying and

amplitude-sensitive

parameters

Harmonic

content

x(t) pu(t)

Fluid system model (Fig. 1)
Simple prediction model given measured data Yes Yes elkr ¼ 1, elcr ¼ 1 oo only

Nonlinear model (NL) Yes No elkr ¼ 1, elcr ¼ 1 noo (n=1,2,3, y)

Linear time-invariant model (LTI)
I-A Yes Yes elkr ¼ 1, elcr ¼ 1 oo only

Quasi-linear model (QL) I-B Yes Yes elkra1, elcra1 noo (n=1,2,3, y)

II-A Yes No elkr ¼ 1, elcr ¼ 1, elua1

II-B Yes No elkra1, elcra1, elu ¼ 1

II-C Yes No elkra1, elcra1, elua1

III-A No Yes elkr ¼ 1, elcr ¼ 1, elua1

III-B No Yes elkra1, elcra1, elu ¼ 1

III-C No Yes elkr ¼ 1, elcra1, elua1

Analogous mechanical system model (Fig. 3)
Linear time-invariant model (LTI) IV-A Yes No elkr ¼ 1, elcr ¼ 1, elu ¼ 1 oo only

Quasi-linear model (QL) IV-B Yes No elkra1, elcra1, elua1 noo (n=1,2,3, y)
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oo term as described below where the subscripts L, K, and H indicate the LTI model, dynamic stiffness ~K eðoo,X1Þ, and force
transmissibility ~Heðoo,X1Þ formulations. respectively:

wKL ¼ kref Xref , wHL ¼ ArPuðoo,X1Þ, (100)

puðtÞ ¼ Re½ ~Pun eioot� ¼ Re½Pun eiðootþjPunÞ�, (101)

fTKLðtÞ ¼ fmþwKL Keðoo,X1Þ
�� ��Re eiðootþjX1þjKLÞ

h i
, jKLðooÞ ¼+Keðoo,X1Þ, (102)

fTHLðtÞ ¼ fmþwHL Heðoo,X1Þ
�� ��Re eiðootþjPu1þjHLÞ

h i
, jHLðooÞ ¼+Heðoo,X1Þ: (103)

Here, jPun is the phase of pu(t) at noo term, jKL is the phase of ~K eðoo,X1Þ, and jHL is the phase of ~Heðoo,X1Þ. The above
models include measured XM1 and ~PuM1 contents at oo with X1. Next, the time domain force is constructed by using QL
models at relevant n terms as follows:

fTKQ ðtÞ ¼ fmþ fTKQ1ðtÞþ fTKQ2ðtÞþ � � � þ fTKQZðtÞ, (104)

fTKQ1ðtÞ ¼ wKL K eðoo,X1Þ
�� ��Re ei½ootþjX1þjKQ ðoo ,X1Þ�

h i
, (105)

fTKQ2ðtÞ ¼ wKL K eð2oo,X2Þ
�� ��Re ei½2ootþjX2þjKQ ð2oo ,X2Þ�

h i
, (106)

fTKQZðtÞ ¼ wKL K eðZoo,XZÞ
�� ��Re ei½zootþjXZ þjKQ ðZoo ,XZ Þ�

h i
, (107)

jKQ ðnoo,XnÞ ¼+Keðnoo,XnÞ, ðn¼ 1,2,. . .,ZÞ: (108)

Summing up Eqs. (105)–(108), the total force is defined as

fTKQ ðtÞ ¼ fmþwKL

XZ

n ¼ 1

K eðnoo,XnÞ
�� ��Re ei½nootþjXnþjKQ ðnoo ,XnÞ�

h i
: (109)

Likewise, the force is alternately estimated by using Heðnoo,XnÞ as

fTHQ ðtÞ ¼ fmþ
XZ

n ¼ 1

wHQ ðnoo,XnÞ Heðnoo,XnÞ
�� ��Re ei½nootþjPunþjHLðnoo ,XnÞ�

h i
, (110)

wHQ ðnoo,XnÞ ¼ Ar Puðnoo,XnÞ
�� �� ðn¼ 1,2,. . .,ZÞ: (111)
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Fig. 15. Comparison of LTI and quasi-linear (QL) models with experiment in time domain, given xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz and X=1.5 mm:

(a) fixed decoupler and (b) free decoupler. Key: , experiment; ??, LTI (scheme I-A with oo term only); – -, QL scheme I-B; , QL scheme II-C;

and , QL scheme III-C.
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Fig. 16. Comparison of fluid and analogous mechanical system models with experiment in time domain, given xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz and

X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: , experiment ; , QL scheme II-C; , QL scheme III-C; ??, QL scheme IV-C.
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Fig. 17. Comparison of nonlinear (NL) and quasi-linear (QL) models with experiment in time domain, given xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz and

X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: , experiment; , QL scheme II-C; , QL scheme III-C; – –, nonlinear (NL) model.
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Fig. 18. Comparison of super-harmonics between nonlinear (NL) and quasi-linear (QL) models with experiment given xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz

and X=1.5 mm: (a) fixed decoupler and (b) free decoupler. Key: , experiment; , QL scheme II-C; , QL scheme III-C; , nonlinear (NL) model.
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Using the same method, the analogous mechanical system model yields the following force:

fTKAðtÞ ¼ fmþwKL

XZ

n ¼ 1

K Aeðnoo,XnÞ
�� ��Re einootþjXnþjKAðnoo ,XnÞ�

h i
, (112)

jKAðnoo,XnÞ ¼+K Aeðnoo,XnÞ, ðn¼ 1,2,. . .,ZÞ: (113)
Table 3
Comparison of the model estimation errors at oo/2p=8.5 Hz and X=1.5 mm for alternate force estimation schemes.

Model and scheme designation RMS error, E (%)

Fixed decoupler Free decoupler

Fluid system model (Fig. 1)
Simple prediction model given measured data oo only 20.1 25.2

with noo terms (n=1, 2, 3, y) 6.9 11.4

Nonlinear model (NL) 11.7 10.9

Linear time-invariant model (LTI) I-A 20.1 25.2

Quasi-linear model (QL) I-B 1.82 2.56

II-A 19.0 23.0

II-B 61.9 51.0

II-C 1.82 2.56

III-A 19.0 23.0

III-B 65.8 101.3

III-C 1.82 2.60

Analogous mechanical system model (Fig. 3)
Linear time-invariant model (LTI) IV-A 23.6 38.6

Quasi-linear model (QL) IV-B 23.0 27.3
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Fig. 19. Comparison of alternate quasi-linear (QL) models in time domain for the fixed decoupler mount, given xðtÞ ¼ Re½ ~X eioo t � at oo/2p=8.5 Hz and

X=1.5 mm: (a) dynamic stiffness (eK e) concept and (b) force transmissibility (eHe) concept. Key: , experiment; , QL schemes II-C and III-C; ,

QL schemes II-A and III-A; – –, QL schemes II-B and III-B.
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Fig. 20. Comparison of alternate quasi-linear (QL) models in time domain for the free decoupler mount, given sinusoidal displacement xðtÞ ¼ Re½ ~X eioo t � at

oo/2p=8.5 Hz and X=1.5 mm: (a) dynamic stiffness (eK e) concept and (b) force transmissibility (eHe) concept. Key: , experiment ; , QL schemes

II-C and III-C; , QL schemes II-A and III-A; – –, QL schemes II-B and III-B.
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Fig. 21. Comparison between rubber and hydraulic path forces in time domain for the fixed decoupler mount given sinusoidal displacement

xðtÞ ¼ Re½ ~X eioo t � at X=1.5 mm: (a) oo/2p=8.5 Hz; (b) oo/2p=16.5 Hz; (c) oo/2p=20.5 Hz. Key: , total force fTH(t); , rubber path force fTHr(t);

??, hydraulic path force fTHh(t).
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9. Results and discussion

9.1. Comparison of models

Our study includes 12 harmonic terms in the quasi-linear (QL) models. Fig. 15 compares three QL schemes. Here, the LTI
(or the simple prediction) model employs measured xM(t) and puM(t) with oo term only. The QL schemes are based upon
Eqs. (1)–(3) and (104)–(111), and are designated by I-B, II-C and III-C. The forces estimated by the QL schemes match well
with measured force time histories. Conversely, the mechanical model, with QL scheme IV-C, fails to predict fT(t) as seen in
Fig. 16. This is due to the KAe formulation based upon the system of Fig. 3. In particular, the numerator of KAe does not
include any system properties unlike the fluid model. Also, the mechanical system does not properly incorporate the
dynamic compliance ~C ueðnoo,XnÞ in the fT(t) expression as observed in Fig. 3.

Fig. 17 compares the nonlinear (NL) model with two quasi-linear models (schemes II-C and III-C). Observe the NL model
shows some discrepancies in the time domain. To examine the underlying cause, spectral contents are compared in Fig. 18
for NL and QL models on a logarithmic scale. Specifically, the NL models predict lower magnitudes at 4oo and 5oo for both
fixed and free decouplers; conversely, two QL schemes match experimental data very well.

9.2. Comparison of model errors

The normalized error e(t) between measured force fTM(t) and predicted force fT(t) at any time t is calculated as

eðtÞ ¼ ðfT ðtÞ�fTMðtÞÞ=fTMðtÞ. The overall root-mean-square (RMS in %) error E is then given by E¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NmaxÞ

PNmax

v ¼ 1 ½eðtvÞ�
2

q
,

where Nmax is the maximum number of points in time domain. Table 3 lists E values for all models in Table 2. Errors from
the QL schemes such as I-B, II-C and III-C are much lower than other models. In particular, the nonlinear model shows more
than 10% error even though it includes four nonlinear expressions. The chief reason is that the nonlinear profiles were
measured under the static conditions as thus they do not fully capture the dynamic forces under the sinusoidal excitation
conditions.
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Fig. 22. Comparison between rubber and hydraulic path forces in time domain for the free decoupler mount given sinusoidal displacement

xðtÞ ¼ Re½ ~X eioo t � at X=1.5 mm: (a) oo/2p=8.5 Hz; (b) oo/2p=16.5 Hz; (c) oo/2p=20.5 Hz. Key: , total force fTH(t); , rubber path force fTHr(t);

??, hydraulic path force fTHh(t).
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9.3. Comparison of rubber and hydraulic paths

Figs. 19 and 20 compare the quasi-linear models with a combination of lkr(oo,X1), lcr(oo,X1), and ~luðnoo,XnÞ. The
results reveal significant discrepancies from the measured force time history. This suggests that ~luðnoo,XnÞ is the most
important parameter though all must be retained.

Figs. 21 and 22 compare the rubber path force fTHr(t) and the hydraulic path force fTHh(t) based upon the QL scheme III-C
at three excitation frequencies with X=1.5 mm. The peak-to-peak value of fTHh(t) is less than fTHr(t) below 10 Hz. The fTHh(t)
is larger than fTHr(t) for the fixed decoupler mount between 10 and 20 Hz. Beyond 20 Hz, fTHr(t) and fTHh(t) are almost the
same in terms of peak-to-peak values. However, fTHr(t) remains almost sinusoidal at all frequencies, but fTHh(t) consists of
multi-harmonic terms as observed in Figs. 21 and 22. Further, the rubber path forces fTHr(t) are similar in fixed and free
decoupler mounts, but, the contribution of hydraulic path force fTHh(t) is smaller in the free decoupler mount when
compared with the fixed decoupler mount. This is primarily due to the dynamic fluid flow through the decoupler element.
10. Conclusion

This article has proposed new methods to estimate dynamic forces (in both time and frequency domains) that are
transmitted by a hydraulic mount under sinusoidal excitation. The super-harmonic contents of measured upper chamber
pressure puM(t) and force fTM(t) are examined and correlated. Effective parameters kre(oo,X1), cre(oo,X1) and ~C ueðnoo,XnÞ at
the fundamental frequency and super-harmonics (noo) are quantified for rubber and hydraulic force paths. This leads to
the development of an improved quasi-linear model with spectrally varying and amplitude-sensitive parameters. The
rubber force path is considered only at oo, but the hydraulic path compliance ~C ueðnoo,XnÞ is quantified at noo terms.
Alternate relevant transfer function formulations with noo terms are also examined by employing the Fourier series
expansion as well as the reverse path spectral method. The causality problem should be carefully considered before
employing such formulations in time domain based on frequency domain measurements [21–23]. Finally, the hydraulic
mount also exhibits a sub-harmonic term response [15]. This period-doubling effect and a more refined nonlinear model
should be the subject of future research. We are also incorporating the load sensing device in a real system consisting of a
vehicle powertrain and its sub-frame. Overall, the methods of this paper can be extended to real-life systems where in-situ
dynamic forces must be assessed.
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