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An active, standalone vibration absorber utilizing the state feedback taken from the

absorber mass is proposed. Expressions of the optimum absorber parameters are obtained

both by optimizing the HN norm of the frequency response function. For improved

transient response featuring low peak response and fast attenuation, the design procedure

interesting feature of the proposed absorber is that the performance of the absorber does

not require having its natural frequency close to the natural frequency of the primary

system as is generally the case for tuned passive absorbers or other active and semi-active

tuned vibration absorbers. In fact, the performance of the proposed system can be

progressively enhanced by increasing the absorber frequency. Compared to the optimum

passive absorber, the optimal active absorber can yield wider bandwidth of operation

around the natural frequency of the primary system and lower frequency response within

the suppression band. The active absorber also offers better transient response compared

to the passive absorber both optimized for the best transient responses. The efficacy of the

absorber is analyzed both for a single-degree-of-freedom and beam like primary structure.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Tuned vibration absorbers (TVA) have been used and studied innumerable times in different ways since Frahm [1]
patented it. When tuned to the frequency of forced vibration of a structure, the device can completely eliminate the
vibration by creating an anti-resonance at the frequency of vibration. However, any change in the frequency of vibration
from the tuned frequency renders the device largely ineffective. Additional damping [2] in the absorber can limit the
maximum response of the primary system at resonances sacrificing the performance at the tuned frequency. The major
drawback of the passive TVA is that it is suitable only for a narrow bandwidth of operation and therefore, it is useful in
eliminating single frequency resonant vibrations. However, multiple TVAs can suppress vibrations with number of tonal
frequencies [3].

Past few decades have witnessed a large number of research works aiming to overcome the aforesaid shortcoming of
the passive TVA by increasing the suppression bandwidth of the TVA. A major proportion of these studies consider the
application of active TVAs. Active TVAs utilize an actuator in parallel with the spring and the damper of the passive TVA.
This adds flexibility to incorporate control theory to provide cancellation forces. In order to reduce the energy expenditure
of the active devices, several semi-active versions of the TVAs are also proposed. Semi-active TVAs can alter the system
parameters using minimal energy. Systems can have variable inertia, variable damping, variable stiffness, or variable initial
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conditions. Adaptive tuned vibration absorbers use an algorithm that tunes the absorber as conditions change. Since the
adaptive TVA is capable of changing its resonance frequency, it has an increased effective bandwidth over classical devices.
The majority of works in this area focus on the control law issues. The active vibration absorber is still a very relevant field
of research. Exhaustive reviews of the literature on the subject are available in Refs. [4–6].

A majority of the earlier studies focus on the suitable control law for the active vibration absorber that widens the
operating bandwidth. Most of these control laws are based on the displacement, velocity and/or acceleration feedback
taken from the primary structure. The present paper studies the efficacy of an active absorber that runs on its internal
feedback, i.e., the feedback is taken from the absorber mass itself. This standalone feature of the absorber has an attractive
commercial value because of its user friendliness, because the user has to simply attach the device to the vibrating body.
Only a very few studies on such class of devices are available as reported below.

Olgac and co-workers [7–10] develop the delayed resonator (DR) concept to provide active control of a TVA. The delayed

resonator absorber (DRA) provides an interesting approach; it uses time-delayed position, velocity or acceleration feedback
of the absorber mass. As a result, the active absorber turns into a standalone device that runs on its internal feedback
without requiring any feedback from the primary structure. The device operates on the principle of converting the absorber
into a perfect resonator by placing a pair of dominant poles on the imaginary axis. An adaptive tuning algorithm decides
the location of the pair of poles, and hence the natural frequency of the absorber. The vibration absorption is achieved
when the natural frequency of the absorber is tuned to the operating frequency. Knowles et al. [11] introduce the concept
of active resonator absorber (ARA) very akin to the concept of the DR absorber. In ARA, the absorber can be converted into a
perfect resonator by utilizing any type of feedback. Elmali et al. [12] study the efficacy of the ARA using the state (position
and velocity) feedback of the absorber mass. They also show that ARA has theoretically infinite frequency range of
tunability whereas the DR has only limited frequency range of tunability.

When adaptively used, a DR absorber or ARA can tune only to a single excitation frequency and perfectly (theoretically
zero amplitude of vibration) control the vibration at that frequency. However, just below and above the control frequency,
the DR (or ARA), like the passive absorber, introduces two resonant frequencies. As a result, the combined system becomes
vulnerable to any excitation containing spectral components at these two frequencies. Widening the operating bandwidth
around resonant frequency of the primary structure can overcome this problem. This is achieved by using the device in the
optimal active absorber mode without the auto-tuning feature. Under these circumstances, the optimum absorber is tuned
to the resonant frequency of the primary structure and the poles of the combined system are placed in the desired location
by optimally selecting the control parameters. The device is particularly suitable for controlling wide-band vibrations
around the resonant frequency of the primary structure. Jalili and Olgac [13,14] study the performance of the optimal
absorber utilizing the time-delayed acceleration feedback of the absorber mass. They show that the optimal active
absorber performs better than an optimal passive absorber.

Okada et al. [15] study the effectiveness of an active absorber with voice coil actuator. They present a novel circuit to
provide sensing and actuation in a voice coil design. The velocity is estimated based on the driving voltage and current.
This self-sensing active TVA is experimentally demonstrated. Rivaz and Rohling [16] report the efficacy of an active
absorber (PI-DVA) for hand-held devices. The absorber is controlled by the acceleration feedback taken from the absorber
mass. Their study concentrates on the transient response of the combined system. Comparisons with the other types of the
control, like PD (proportional derivative) and DR reveal that the PI-DVA can be slightly more efficient in controlling the
vibration of hand-held devices.

The present paper analyses the dynamic characteristics of an optimal standalone active vibration absorber running on the
internal state feedback (PD control) taken from the absorber mass. Fundamentally, the absorber comprises of a spring–mass
system attached to a rigid base and an actuator placed parallel to the spring in between the base and the mass. The actuator is
controlled by the state feedback taken from the oscillating mass of the absorber itself. The optimal frequency and transient
response characteristics of the absorber are first analyzed considering a single-degree-of-freedom primary system. The
performance of the optimal active absorber is compared with that of an optimal passive vibration absorber. The analysis is
further extended to an elastic Euler–Bernoulli beam.

2. Single-degree-of-freedom primary system

2.1. Mathematical model

A model of the single-degree-of-freedom primary system with the active absorber attached to it is illustrated in Fig. 1. The
primary structure is a single-degree-of-freedom undamped oscillator having the primary mass M suspended by a spring of
stiffness K. The absorber consists of a secondary mass m attached to the primary structure by a spring of stiffness Ka. An actuator
placed in between the primary and the secondary mass exerts the control force Fc. X and Y are the absolute displacements of the
primary and the secondary mass, respectively. Equations of motion of the combined two-degrees-of-freedom system illustrated
in Fig. 1 read as

MX00 þKXþKaðX�YÞ ¼ Fðt�Þ�Fc , (1)

mY 00 þKaðY�XÞ ¼ Fc , (2)



Fig. 1. Model of the single-degree-of-freedom oscillator with the active absorber.
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where F(tn) is the dynamic load acting on the primary system and the ‘dash’ denotes the derivative with respect to time tn in
Eqs. (1) and (2).

In order to simplify the analysis, the actuator is considered to be an ideal force generator. This is indeed a valid
assumption within a specific range of the operating frequency depending upon the actuator. For example, an electro-
magnetic actuator may be treated as an ideal force generator within the bandwidth of its LR circuit [17]. Thus, neglecting
the actuator dynamics the control force (Fc) is expressed as

Fc ¼ KpY�KvY u, (3)

where Kp and Kv are the control gains.
Eqs. (1) and (2) can be recast in the following non-dimensional form:
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with the following non-dimensional quantities:

Non-dimensional deflection of the primary mass : x¼
X

x0
,

non-dimensional deflection of the secondary mass : y¼
Y

x0
,

mass ratio : m¼ m

M
,

non-dimensional absorber frequency : oa ¼
o�a
o0

,

where x0 is an arbitrary length (may be the static deflection of the primary oscillator), o0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
is the natural frequency

of the primary system and o�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ka=m

p
is the natural frequency of the absorber.

The ‘dot’ denotes differentiation with respect to the non-dimensional time t=o0tn.
The non-dimensional control force is obtained from Eq. (3) and given as

fc ¼ kpy�kv _y, (5)

where the non-dimensional control gains are kp ¼ Kp=Mo2
0 and kv=Kv/Mo0.

2.2. Frequency response analysis

Taking the Laplace Transformation of Eqs. (4) and (5), yields the transfer function relating the displacement of the
primary system and the excitation force as

GðsÞ ¼
XðsÞ

FðsÞ
¼

s2þðkv=msÞþo2
a�ðkp=mÞ

s4þa3s3þa2s2þa1sþa0
: (6)



S. Chatterjee / Journal of Sound and Vibration 329 (2010) 5397–54145400
And the transfer function relating the absorber deflection and the excitation force is obtained as

GaðsÞ ¼
XðsÞ�YðsÞ

FðsÞ
¼

s2þðkv=msÞ�ðkp=mÞ
s4þa3s3þa2s2þa1sþa0

, (7)

where a3=a1=kv/m, a2 ¼ 1þmo2
aþo2

a�kp=m, and a0 ¼o2
a�kp=m.

The stability of the static equilibrium of the combined system can be analyzed by applying the Routh–Hurwitz criterion
to the characteristic equation of the system given by

s4þa3s3þa2s2þa1sþa0 ¼ 0: (8)

The combined system is stable if the following conditions are satisfied:

a1 ¼ a340, a24a0þ1 and a040: (9)

As the mass ratio m40, the conditions given in Eq. (9) finally culminate into the following two conditions:

kv40 and kpomo2
a : (10)

2.2.1. Optimization of the control parameters: HN optimization

One of the major objectives of the present study is to find the optimal parameters of the absorber. Several optimization
criteria have been discussed in the literature, viz., HN and H2 optimization, etc. [18]. In HN optimization, the objective is to
minimize the maximum value of the frequency response function (FRF) (called the HN norm) of the primary system. In the
present section, HN optimization criterion is used for obtaining the expressions of the optimal control parameters (kp and
kv) of the absorber. The formal fixed-point theory [19] is employed for the purpose.

The influence of the control parameters on the frequency response characteristics can be understood from Fig. 2. It is
observed from Fig. 2 that for a selected value of kp, the displacement frequency response curves of the primary mass with
the absorber always intersect the frequency response curve without the absorber at the two fixed points the locations of
which are independent of the value of kv. The analytical proof of the existence of these two fixed points irrespective of the
value of kv is given in Appendix A. The frequencies (o1 and o2) corresponding to these two fixed points mark the upper
and the lower threshold of the suppression band, where the FRF values of the system with the absorber stays below that
without the absorber. The location as well as the width of the suppression band is controlled solely by the gain parameter
kp. One finds these two frequencies o1 and o2 by solving the following equation:

o4�
1

2
ða2þa0þ1Þo2þa0 ¼ 0: (11)

As o1 and o2 are the two roots of Eq. (11), one can write

o2
1þo

2
2 ¼

1

2
ða2þa0þ1Þ ¼ 1þo2

aþ
1

2
mo2

a�
kp

m
: (12)
Fig. 2. Typical frequency response plots of the system with and without absorber: - - - - , without absorber; _______, with absorber, kp=0.3,

oa=1.5, m=0.2.
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Clearly the optimum value of the parameter kp should yield equal FRF values [19] at these two frequencies, when one
writes (as the FRF is independent of kv at these frequencies, consider kv=0)

1

o2
2�1
¼

1

1�o2
1

: (13)

Eq. (13) simplifies to

o2
1þo

2
2 ¼ 2: (14)

Substituting (12) in Eq. (14), yields the optimum value of kp as

ðkpÞopt ¼ m o2
a

m
2
þ1

� �
�1

h i
: (15)

For the optimum value of kp given above, the two frequencies o1 and o2 are obtained after solving Eq. (11) as

o2
1,2 ¼ 17oa

ffiffiffiffi
m
2

r
: (16)

After obtaining the optimal value of the parameter kp, the other gain parameter kv should be appropriately adjusted to
shape the FRF optimally such that the two peaks of the frequency response plot become equal and occur at the two fixed
points. Thus, one writes the optimality conditions as

Gðjo1Þ
�� ��¼ Gðjo2Þ

�� ��, (17)

@

@o
9GðjoÞ9o ¼ o1

¼ 0, (18)

@

@o
9GðjoÞ9o ¼ o2

¼ 0: (19)

Clearly Eq. (17) is automatically satisfied by the optimal selection of the parameter kp. However, Eqs. (18) and (19) cannot
be satisfied simultaneously. Under this situation, one can obtain the two quasi-optimal solutions of kv as the positive
solutions of Eqs. (18) and (19), respectively. Rewriting Eq. (18), yields

g4k4
vþg2k2

vþg0 ¼ 0, (20)

where

g4 ¼
oað2

ffiffiffi
2
p
þ

ffiffiffi
2
p

mo2
a�4oa

ffiffiffiffimp Þ
2m7=2

, g2 ¼�
1

2
mo6

aþ

ffiffiffiffi
m
2

r
o5

aþo
4
a�

ffiffiffiffi
2

m

s
o3

a and

g0 ¼
o5

a

16

ffiffiffi
2
p

m9=2o4
a�12

ffiffiffi
2
p

m7=2o2
aþ32m3oa�12

ffiffiffi
2
p

m5=2
� �

The positive solution of Eq. (20) gives one quasi-optimal value of kv=(kv)1 as
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Similarly rewriting Eq. (19), yields

h4k4
vþh2k2

vþh0 ¼ 0, (22)

where h4 ¼�o2
a=m3�o3

a=
ffiffiffi
2
p

m5=2�
ffiffiffi
2
p
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The positive solution of Eq. (22) gives the other quasi-optimal value of kv=(kv)2 as
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Finally, the average of the two values of kv as computed from Eqs. (21) and (23) is accepted as the optimal solution of kv

given in Eq. (24)

ðkvÞopt ¼
1

2
ðkvÞ1þðkvÞ2

 �

: (24)

Fig. 3 shows the typical displacement frequency response plots of the primary system with the active absorber for the
optimum values of the control gains. Using Eqs. (15) and (24) in Eq. (6), one finds the following approximate expression of



Fig. 3. Optimal displacement frequency response plots of the primary mass: oa=1.5, m=0.2.
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the peak value of the displacement FRF of the primary mass of the system with the optimal absorber:

9GðjoÞ9max �

ffiffiffi
2
p

oa
ffiffiffiffimp : (25)

From Eqs. (16) and (25) one can infer that for a chosen value of the mass ratio (as permitted by practical circumstances), the
width of the suppression band increases and the peak value of the frequency response decreases with the increasing value of
the absorber frequency. An interesting feature of the proposed absorber is that the performance of the absorber does not
require having its natural frequency close to the natural frequency of the primary system as is generally required in case of
the tuned passive absorber or other active and semi-active tuned vibration absorbers. The higher is the absorber frequency
the better is its performance. However, the maximum value of the absorber frequency is limited by the stability requirement
as spelt out in Eq. (10). Using Eq. (15) in Eq. (10), one can show that the upper threshold value of oa is limited by

oao

ffiffiffiffi
2

m

s
: (26)

Eqs. (25) and (26) clearly suggest that under no circumstances, the peak value of the frequency response can be less than
unity.

Fig. 4 illustrates the frequency response plots of the absorber deflection for the optimal control gains and different
values of the absorber frequency. It is apparent from these plots that the maximum value of the absorber deflection
increases with the increasing value of the absorber frequency. The absorber deflection increases significantly in the low
frequency range with the increasing value of the absorber frequency. Thus, (along with the stability requirement) the
permissible absorber (actuator) deflection also limits the maximum value of the absorber frequency that can be used in
practice.
2.3. Design optimization for improved transient response

It may be noted that the HN optimization discussed in the previous section is suitable for the optimal shaping of the
displacement FRF of the primary mass. In this section, the optimization objective is to have a good transient response
characteristic featuring low peak response and fast attenuation. For achieving good transient response, the poles of
the system should be placed in the left half s-plane at a maximum possible distance from the imaginary axis (for faster
attenuation) and minimum possible distance from the real axis (minimum oscillation cycle). Ideally the optimal condition
corresponds to equal real parts and zero imaginary parts of the four poles (see Appendix B for proof). However, this makes
the poles real and equal, hence critically damped. To be slightly more flexible, one can keep the poles complex (hence
underdamped) and the two feedback gains are adjusted such that the damping ratio and the natural frequency of each
mode of vibration are optimized for the chosen values of the mass ratio and the absorber frequency. The influences of the
absorber frequency and the zeros of the system on the transient response are studied subsequently.



Fig. 4. Frequency response plots of the absorber deflection: m=0.2.
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For complex poles, the design objective is fulfilled by making the two pairs of the complex conjugate eigenvalues of the
characteristic equation (Eq. (8)) identical. The proof is as follows.The characteristic equation (Eq.(8)) is expressed in the
following form:

ðs2þ2x1on1sþo2
n1Þðs

2þ2x2on2sþo2
n2Þ ¼ 0, (27)

where x1 and x2 are the damping ratios and on1 and on2 are the natural frequencies of the two modes.Comparing Eqs. (27)
and (8) one obtains

2r1þ2r2 ¼ a3, (28)

4r1r2þo2
n1þo

2
n2 ¼ a2, (29)

2r1o2
n2þ2r2o2

n1 ¼ a1 ¼ a3, (30)

o2
n1o

2
n2 ¼ a0, (31)

where -r1 and -r2 are the real parts of the complex poles and are expressed as ri=xioni40, i=1, 2.
Eqs. (28) and (30) can be combined to yield

2r1ðo2
n2�1Þþ2r2ðo2

n1�1Þ ¼ 0: (32)

For any desired values of the real parts of the poles, Eq. (32) is satisfied by one natural frequency higher than unity and the
other less than unity. However, as a higher value of natural frequency ensures faster response the optimal choice is
on1=on2=1, for which Eq. (32) is identically satisfied. Under these circumstances, Eq. (31) yields the optimal value of kp as

ðkpÞopt ¼ mðo2
a�1Þ, (33)

when Eqs. (28) and (29) give

r1,2 ¼
kv7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

v�4m3o2
a

p
4m : (34)

Clearly for the chosen values of the mass ratio and the absorber frequency satisfying k2
vZ4m3o2

a , r1 increases and r2

decreases with the increasing value of kv. Therefore, the optimal transient response is obtained for r1=r2 corresponding to
the following optimal value of kv:

ðkvÞopt ¼ 2oam3=2: (35)

Thus, the statement that the optimal transient response of the system corresponds to two identical pairs of complex
conjugate poles is correct.
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The optimal damping (equal for both modes) of the combined system can be obtained as

xopt ¼ r1 ¼ r2 ¼
ðkvÞopt

4m ¼
1

2
oa

ffiffiffiffi
m
p

: (36)

It is apparent from Eq. (36) that the optimal damping of the system increases with the increasing frequency of the
absorber. Thus, the optimal transient response is achieved through the mode equalization followed by the maximization of
the damping. However, as the optimal damping should be less than or equal to unity (as required by the complex pole
assumption), the theoretical value of the upper threshold of the absorber frequency should be 2=

ffiffiffiffimp . Clearly, with this
value of the absorber frequency, both modes of the system are critically damped.

For any value of the absorber frequency higher than 2=
ffiffiffiffimp , the two complex conjugate pairs of poles transform to two

pairs of identical real poles, with one equal pair moving away from the imaginary axis and the other equal pair migrating
towards the imaginary axis (this can be proved following the similar analysis as done for the complex poles). Obviously the
system becomes overdamped for higher values of the absorber frequency oa42=

ffiffiffiffimp . At this point, it is pertinent to look
into the characteristics of the zeros of the system as discussed below.

It is noteworthy that for the optimum gain values, the zeros of the transfer function G(s) given in Eq. (6) are located at
z1,2 ¼�oa

ffiffiffiffimp 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

am�1
p

. Clearly, for oao1=
ffiffiffiffimp , the zeros are complex and shift away from the imaginary axis with the

increasing value of the absorber frequency thereby rendering the effect of the zeros on the transient response less
important. However, beyond oa41=

ffiffiffiffimp the zeros become real and one of the zeros starts moving towards the imaginary
axis and at very high absorber frequency tend to compensate for the adverse effect of the real pole moving towards the
imaginary axis. As a whole, the transient response progressively improves with the increasing absorber frequency. The
variations of the poles and zeros of the system with the absorber frequency are numerically illustrated in Table 1.

Fig. 5(a) and (b) illustrate the transient response plots of the primary system and the absorber deflection, respectively,
with the active absorber optimized according to Eqs. (33) and (35). The transient responses are obtained by direct
numerical simulations of equations of motion (Eqs. (4) and (5)). All simulations are run from the initial conditions (1,0,0,0).
It is evident from Fig. 5(a) that the transient response of the primary system can be improved by increasing the absorber
frequency. However, the maximum absorber deflection increases with the increasing value of the absorber frequency as
evident from Fig. 5(b). Therefore, the maximum value of the absorber frequency is limited by the allowable absorber
deflection.

Although the absorber optimized according to Eqs. (33) and (35) should ideally be used for improving the transient
response of the system, it is also interesting to look into the frequency response characteristics of the system with the
absorber optimized for the improved transient response. Such plots are illustrated in Fig. 6(a) and (b). It may be observed
from Fig. 6(a) that for a given value of the mass ratio and the absorber frequency, the HN optimal absorber produces
relatively reduced amplitude response of the primary mass around the resonance frequency as compared to the absorber
Table 1
Variations of the poles and zeros with the absorber frequency (m=0.1).

k (oa=km�0.5) (kp)opt (kv)opt Poles of G(s) Zeros of G(s)

0.5 0.15 0.1 �0.2500+0.9682i �0.5000+0.8660i

�0.2500�0.9682i �0.5000�0.8660i

�0.2500+0.9682i

�0.2500�0.9682i

1 0.9 0.2 �0.5000+0.8660i �1

�0.5000�0.8660i �1

�0.5000+0.8660i

�0.5000�0.8660i

1.1 1.11 0.22 �0.5500+0.8352i �0.6417

�0.5500�0.8352i �1.5583

�0.5500+0.8352i

�0.5500�0.8352i

1.5 2.15 0.3 �0.7500+0.6614i �0.3820

�0.7500�0.6614i �2.6180

�0.7500+0.6614i

�0.7500�0.6614i

2 3.9 0.4 �1 �0.2679

�1 �3.7321

�1

�1

5 24.9 1.0 �4.7913 �0.1010

�4.7913 �9.8990

�0.2087

�0.2087



Fig. 5. Numerically simulated transient response plots with the active absorber designed for the improved transient response (maximum damping

design): m=0.2.

Fig. 6. Comparing frequency response plots of the system with HN-optimum active absorber and improved transient response (maximum damping

design): (a) displacement of the primary mass; (b) absorber deformation: m=0.2. _____, maximum damping; - - -, HN-optimum; y., without absorber.
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optimized for the transient response. However, the deformation characteristics of the absorber optimized for the transient
response is relatively better than that of the HN optimal absorber as illustrated in Fig. 6(b).

2.4. Passive absorber vs. the proposed active absorber

A comparative analysis between the optimal performances of the passive DVA and that of the proposed active absorber
is presented in this section. The mathematical model of the system with the passive DVA is obtained by substituting the



S. Chatterjee / Journal of Sound and Vibration 329 (2010) 5397–54145406
following expression of the control force in Eq. (4):

fc ¼ cð _x� _yÞ, (37)

where c is the non-dimensional viscous damping coefficient of the DVA.
The transfer function of the system with the passive absorber relating the displacement of the primary mass and the

exciting force is given by

GPðsÞ ¼
XðsÞ

FðsÞ
¼

s2þðc=msÞþo2
a

s4þc3s3þc2s2þc1sþc0
, (38)

where c3=c+c/m, c2 ¼ 1þo2
aþmo2

a , c1=c/m, and c0 ¼o2
a .

2.4.1. Comparing HN optimal performances

The exact solutions of the optimum values (optimum HN norm) of the damping and the frequency of the passive
absorber are obtained in Ref. [17] and are given below

ðoaÞopt ¼
2

1þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ46mþ18m2þ4ð2þmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ3m

p
192þ240mþ81m2

s
, (39)

copt ¼
1

2
mðoaÞopt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ9m�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ3m

p
1þm

s
: (40)

An approximate expression of the optimized peak frequency response is obtained as

9GPðjoÞ9max �

ffiffiffiffiffiffiffiffiffiffiffi
2þm
m

s
: (41)

It is already mentioned that, unlike the passive absorber, the active absorber does not require having its frequency close
to the natural frequency of the primary system and a higher value of the frequency of the active absorber is always
beneficial. From Eqs. (41) and (25) one obtains the ratio (R) of the peak value of the displacement frequency response of the
primary system with the active tp that with the passive absorber as

R¼
9GðjoÞ9max

9GPðjoÞ9max

¼
1

oa

ffiffiffiffiffiffiffiffiffiffiffi
2

2þm

s
: (42)

From Eq. (42) it is apparent that R is less than unity if the frequency of the active absorber oa4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=2þm

p
. Indeed, a higher

value of the frequency of the active absorber yields a smaller value of R entailing a better performance of the active
absorber as compared to the passive one. Fig. 7(a) compares the displacement frequency response plots of the primary
mass with the passive and the active absorber both optimized (HN optimization) for the mass ratio m=0.2. Clearly, the
active absorber produces a better frequency response characteristic over a wider frequency band around the resonance
frequency of the primary system. It is observed from Fig. 7(b) and (c) that with the increasing values of the absorber
frequency and the mass ratio, the performance of the active absorber turns progressively superior to that of the passive
absorber in terms of both the suppression bandwidth as well as the FRF, particularly around the resonance frequency of the
primary system.

2.4.2. Comparing performances for optimal transient response

Following the similar procedure as discussed in Section 2.3, one obtains the expressions of the optimum absorber
frequency and damping corresponding to the optimal transient response of the combined system with the passive
absorber as

ðoaÞopt ¼
1

1þm , (43)

and

copt ¼ 2
m

1þm

� 
3=2

: (44)

The corresponding optimum damping of the combined system with the passive absorber becomes

xopt ¼
1

2

ffiffiffiffimp : (45)

From Eq. (45) it is known that the optimal damping of the system with the passive absorber can be increased only by
increasing the mass ratio. However, as the maximum value of mass ratio that can be used in practice is usually small, the
maximum achievable damping is also limited. However, Eq. (36) suggests that for a given value of the mass ratio, the



Fig. 7. Comparisons of the frequency responses of the system with the HN-optimum active and passive absorbers: (a) m=0.2, (b) m=0.1, and (c) oa=2.0.

Passive absorber is optimized according to Eqs. (37) and (38). Active absorber is optimized according to Eqs. (15) and (22).
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optimal damping of the system with the active absorber can be increased by increasing the absorber frequency. Comparing
Eq. (36) with Eq. (45) it is evident that for a given value of the mass ratio, the optimal damping produced by the active
absorber is higher than that produced by the passive absorber if the frequency of the active absorber is selected greater
than unity. Thus, a better transient response as well as the frequency response can be achieved with the proposed active
absorber.

The transient responses of the primary system with the passive and the active absorber both designed for the optimal
transient response are compared in Fig. 8. It is observed from Fig. 8 that the transient response performance of the system
with the optimized active absorber is better than that with the optimum passive absorber. Fig. 9 confirms that the active
absorber designed for optimum transient response can produce better frequency response characteristics compared to that
is achievable with the optimized (any of the two forms of the optimization discussed) passive absorber.
3. Elastic beam as the primary system

3.1. Mathematical model

In this section, the primary system is considered as a general Euler–Bernoulli beam. The beam is excited by a point force
Fe at the location b and the absorber is attached at the location a as illustrated in Fig. 10. The geometric and physical
properties of the beam are assumed to be uniform along the length. The elastic deformation of the beam about the neutral
axis is denoted by X(t, Z), where t is the time variable and Z is the position variable along the beam.



Fig. 8. Comparison of the simulated transient response of the system with the active and passive absorbers both designed for improved transient

response (maximum damping design): m=0.2. Initial conditions are (1,0,0,0).

Fig. 9. Comparisons of the frequency response plots of the system with the active absorber designed for improved transient response (maximum

damping design) and the optimum passive absorber: m=0.2.
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Using the Galerkin approximation [20], the beam deflection can be represented by a finite sum (up to n modes) as

Xðt�,ZÞ ¼
Xn

i ¼ 1

fiðZÞqiðtÞ, (46)

where fi(Z) is the mode shape function and qi(t) is the modal displacement of the ith mode of the beam vibration.
The control force is the linear combination of the states of the absorber mass as expressed below

Fc ¼�ðKpqa�Kv _qaÞ, (47)

where Kv and Kp are the control gains and qa is the displacement of the absorber mass. The dot ( � ) denotes the derivative
with respect to the time variable t.



Fig. 10. Beam with the attached active absorber.
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The dynamics of the beam-absorber system is governed by the following differential equations:

Mi €qiðtÞþKiqiðtÞþka

Xn

i ¼ 1

fiðaÞqiðtÞ�qaðtÞ

( )
fiðaÞ ¼�fiðaÞfKPqaðtÞ�Kv _qaðtÞgþfiðbÞFeðtÞ, i¼ 1,2,. . .,n, (48)

ma €qaðtÞ�ka

Xn

i ¼ 1

fiðaÞqiðtÞ�qaðtÞ

( )
¼ KPqaðtÞ�Kv _qaðtÞ: (49)

Mi and Ki are defined as

Mi ¼ rA

Z L

0
f2

i ðZÞ dZ, (50)

and

Ki ¼ EI

Z L

0

@2

@Z2
ðfiðZÞÞ

( )2

dZ, (51)

where r is the density, E is the elastic modulus, I is the area moment of inertia, A is the cross-sectional area, and L is the
length of the beam.

Considering the normalization criterion as
R L

0 f
2
i ðZÞ dZ ¼ L, one can rewrite Eqs. (48) and (49) in the following non-

dimensional forms:

€xiðtÞþo2
nixiðtÞþmo2

a

Xn

i ¼ 1

fiðaÞxiðtÞ�yðtÞ
( )

fiðaÞþfiðaÞfkpyðtÞ�kv _yðtÞg ¼fiðbÞf ðtÞ, i¼ 1,2,. . .,n (52)

m €yðtÞþkv _yðtÞþðmo2
a�kpÞyðtÞ ¼ mo2

a

Xn

i ¼ 1

fiðaÞxiðtÞ: (53)

The non-dimensional quantities in Eqs. (52) and (53) are as defined below

Non-dimensional ith Modal displacement of the beam : xi ¼
qi

dst
,

where dst is the static deflection of the beam under unit load at the location of the point force.

Non-dimensional absorber displacement : y¼
qa

dst
:

Mass ratio : m¼ ma

mb
where the mass of the beam mb ¼ rAL:

Non-dimensional natural frequency of the absorber : oa ¼
1

o0

ffiffiffiffiffiffiffi
ka

ma

s
,

where o0 is the reference frequency, which may be conveniently taken as the first natural frequency of the beam.oni is the
ith natural frequency of the beam normalized by the reference frequency o0.

The non-dimensional excitation force : f ¼
Fe

mbo2
0dst

:
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The non-dimensional control gains are kp ¼
Kp

mbo2
0

and kv ¼
Kv

mbo0
:

The dot ( � ) in Eqs. (52) and (53) denotes differentiation with respect to the non-dimensional time t=o0t.

3.2. Stability and frequency response characteristics of the combined system

In the Laplace domain, Eqs. (52) and (53) can be written as

½PðsÞ�fUðsÞg ¼ fUðbÞgFðsÞ, (54)

where fUðsÞg ¼ X1ðsÞ X2ðsÞ : : : XnðsÞ YðsÞ

 �T

, fUðbÞg ¼ f1ðbÞ f2ðbÞ : : : fnðbÞ 0
n oT

, and

½PðsÞ� ¼

s2þo2
n1þmo2

af
2
1ðaÞ mo2

af1ðaÞf2ðaÞ : : mo2
af1ðaÞfnðaÞ a1ðsÞ

mo2
af2ðaÞf1ðaÞ s2þo2

n2þmo2
af

2
2ðaÞ : : mo2

af2ðaÞfnðaÞ a2ðsÞ

: : : : : :

: : : : : :

mo2
afnðaÞf1ðaÞ mo2

afnðaÞf2ðaÞ : : s2þo2
nnþmo2

af
2
nðaÞ anðsÞ

b1 b2 : : bn ms2þkvsþl

2
66666666664

3
77777777775

(55)

with ai(s)=�fi(a){l+kvs}, i=1, 2, 3, ..., n, bi ¼�mo2
afiðaÞ and l¼ mo2

a�kp.
The stability of the system is determined by the characteristic equation given by

detð½PðsÞ�Þ ¼ 0: (56)

Using the Routh–Hurwitz criterion one can show after lengthy algebraic manipulations that the combined system is stable
if conditions given in Eq. (10) are satisfied, i.e., both kv and l are positive.

The transfer function relating the beam deflection at the point of attachment of the absorber and the exciting force can
be obtained as

GðsÞ ¼
Xn

i ¼ 1

fiðaÞGiðsÞ, (57)

where the ith modal transfer function Gi(s) is defined as the ith row of the matrix ½PðsÞ��1fUðbÞg.

3.2.1. Quasi-optimal absorber

Unlike the single-degree-of-freedom case, the MDOF system does not seem to have a closed form solution for the optimum
parameter values of the absorber. However for the primary systems having widely separated modal frequencies, one can still
use the methods developed in Section 2 for obtaining the quasi-optimal values of the absorber parameters (kp and kv) for a
single mode if the effects of the other modes are neglected. Neglecting the effects of the other modes, the dynamics of the
combined system considering only the ith mode of the primary system are obtained from Eqs. (52) and (53) as

€xiðtÞþo2
nixiðtÞþmo2

af
2
i ðaÞxiðtÞþfiðaÞfkpyðtÞ�kv _yðtÞg ¼fiðbÞf ðtÞ, (58)

m €yðtÞþkv _yðtÞþðmo2
a�kpÞyðtÞ ¼ mo2

afiðaÞxiðtÞ: (59)

Now following the similar procedure as described in Section 2.2.1, one obtains the following expression for HN optimal value
of the parameter kp:

ðkpÞopt ¼ m
mf2

i ðaÞ

2
þ1

 !
o2

a�o
2
ni

( )
: (60)

The corresponding optimal expression of the parameter kv is obtained according to Eq. (24), where (kv)1 and (kv)2 are obtained
as the positive solutions of Eqs. (61) and (62), respectively

~g4k4
vþ ~g2k2

vþ ~g0 ¼ 0, (61)

where

~g4 ¼o2
ni 4onioafiðaÞm�

ffiffiffi
2
p

o2
af

2
i ðaÞm

3=2�2
ffiffiffi
2
p

o2
ni

ffiffiffiffimpn o
,

~g2 ¼onio2
af

2
i ðaÞm

3 �2o2
nioafiðaÞmþ2

ffiffiffi
2
p

o3
ni

ffiffiffiffimp þo3
af

3
i ðaÞm

2�
ffiffiffi
2
p

onio2
af

2
i ðaÞm

3=2
n o

and

~g0 ¼�
1

8
o4

af
4
i ðaÞm

6 32o3
nioafiðaÞm�12

ffiffiffi
2
p

o2
nio

2
af

2
i ðaÞm

3=2�12
ffiffiffi
2
p

o4
nim

1=2þ
ffiffiffi
2
p

o4
af

4
i ðaÞm

5=2
n o

~h4k4
vþ

~h2k2
vþ

~h0 ¼ 0, (62)
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where

~h4 ¼o2
ni 4onioafiðaÞmþ

ffiffiffi
2
p

o2
af

2
i ðaÞm

3=2þ2
ffiffiffi
2
p

o2
ni

ffiffiffiffi
m
pn o

,

~h2 ¼onio2
af

2
i ðaÞm

3 �2o2
nioafiðaÞm�2

ffiffiffi
2
p

o3
ni

ffiffiffiffimp þo3
af

3
i ðaÞm

2þ
ffiffiffi
2
p

onio2
af

2
i ðaÞm

3=2
n o

and

~h0 ¼�
1

8
o4

af
4
i ðaÞm

6 32o3
nioafiðaÞmþ12

ffiffiffi
2
p

o2
nio

2
af

2
i ðaÞm

3=2þ12
ffiffiffi
2
p

o4
nim

1=2�
ffiffiffi
2
p

o4
af

4
i ðaÞm

5=2
n o

:

In order to maintain the stability of the combined system, the absorber frequency must satisfy the following relationship:

oao
oni

fiðaÞ

ffiffiffiffi
2

m

s
: (63)

Following the similar procedure as described in Section 2.2.1, the optimal parameter values for the transient response of a
particular mode can be obtained as

ðkpÞopt ¼ mðo2
a�o

2
niÞ, (64)

and

ðkvÞopt ¼ 2fiðaÞoam3=2: (65)

3.2.2. Numerical example

As numerical examples, the displacement frequency response functions of a simply supported beam with the proposed
absorber attached to it are evaluated. The first three modes of the beam are used to evaluate the frequency response functions
according to Eq. (57). The first three non-dimensional modal frequencies of the beam are 1, 4 and 9. First, the optimizations are
performed with the objective of controlling the vibration of the first mode and the corresponding frequency response plots are
illustrated in Fig. 11. The frequency response plots with the absorber optimized to control the second mode are shown in
Fig. 12. It is observed from these frequency response plots that the optimal absorber can control the targeted mode to a greater
extent. In the example FRF plots in Figs. 11 and 12, the modes other than the targeted mode are also observed to be controlled
Fig. 11. Frequency response plot of the beam deflection at the location of the absorber: oa=2, m=0.2, a=0.25, b=0.75. The optimum design is centered on

the first mode.



Fig. 12. Frequency response plot of the beam deflection at the location of the absorber: oa=2, m=0.2, a=0.25, b=0.75. The optimum design is centered on

the second mode.
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though to somewhat lesser extent. However, there is no solid theoretical evidence that the non-targeted modes are actually
controlled. If required, multiple absorbers can be used in practice to exercise separate control actions on individual modes.

4. Conclusions

The present study investigates the efficacy of an active vibration absorber in controlling resonant and transient
vibrations of linear vibratory systems. The absorber consists of a spring–mass system with an actuator operating parallel to
the spring. The actuator is controlled by the state feedback taken from the absorber mass. As the absorber runs on the state
feedback of the absorber mass, it is self-contained and does not require any sensory inputs from outside. This standalone
feature makes it user-friendly as well as commercially very attractive. The proposed active absorber with the optimal
parameter tuning has shown to have performed better than a passive absorber.

Initially, the primary structure is considered to be a single-degree-of-freedom system and the conditions of the stability
of the combined system are derived. Employing the formal fixed-point theory, expressions for the optimal parameter
values of the absorber are determined. The following two types of optimization criteria are used:
1.
 HN optimization for the optimal shaping of the frequency response function.

2.
 Optimization for improved transient response.

The frequency and the transient responses of the system with the optimized active and passive absorbers are compared.
The major comparative differences are listed below

(i) Unlike the passive absorber, the frequency for the active absorber should not have to be equal to the natural
frequency of the primary system. In fact, the absorber frequency can assume any value without violating the
stability limit and the permissible actuator deflection.

(ii) The suppression bandwidth around the resonance frequency of the primary system increases and the frequency
response within the suppression bandwidth decreases with the increasing value of the absorber frequency. For the
HN optimal absorber, there is an upper threshold value of the absorber frequency determined by the stability
requirement. For a given mass ratio, the optimal active absorber can produce a much better frequency response
than that is achieved using an optimal passive absorber.

(iii) The absorber optimized for the improved transient response can theoretically attain any value of the damping
depending upon the absorber frequency and the mass ratio. The damping of the system increases linearly with the
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absorber frequency. As a result, the optimal active absorber produces a better transient response than that
achieved by the optimal passive absorber.
The efficacy of the active absorber in controlling the forced vibration of an Euler–Bernoulli beam is also analyzed. For
the beam like primary structure, the optimization of the absorber parameters is carried out on the modal basis following
the similar procedure employed in case of the single-degree-of-freedom primary system. It is shown that the optimal
absorber can exercise a good degree of control on the targeted mode.

Appendix A

In this section, it is proved that the frequency response function of the primary system attached with the proposed
active absorber passes though two fixed points irrespective of the gain parameter kv. Substituting s=jo in the expression of
the transfer function of the system given in Eq. (6), the frequency response function of the primary system is expressed in
the following form:

9GðjoÞ9¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þk2

vB2

C2þk2
vD2

s
, (A.1)

where

A¼ mða0�o2Þ,

B¼o,

C ¼ mðo4�a2o2þa0Þ,

D¼oð1�o2Þ:

The frequency response function in Eq. (A.1) is independent of kv if the following condition is satisfied:

A

C
¼ 7

B

D
, (A.2)

which is equivalent to

a0�o2

o4�a2o2þa0
¼ 7

1

1�o2
: (A.3)

The positive sign in the right-hand side expression in Eq. (A.3) yields the trivial solution of the frequency for which the
frequency response is independent of kv. For the negative sign in the right-hand side expression, Eq. (A.3) is rewritten as

o4�
1

2
ða2þa0þ1Þo2þa0 ¼ 0: (A.4)

Clearly if two non-trivial roots of Eq. (A.4) are o2
1 and o2

2 one writes

o2
1þo

2
2 ¼

1

2
ða2þa0þ1Þ40: (A.5)

Therefore, the roots of Eq. (A.4) are real and positive. Thus, there exists two non-trivial frequencies at which the frequency
response function is independent of the parameter value kv. This proves the fixed-point phenomenon for the proposed
system.

Appendix B

For achieving faster attenuation, the real parts of the poles should be placed at the maximum possible distance from the
imaginary axis in the left half s-plane. Whereas the maximum overall damping of the system and the minimum number
oscillation cycles of the transient response may be achieved by making the imaginary parts of the poles as low as possible.

Denoting the roots of the characteristic equation (Eq. (8)) as li (i=1, 2, 3, 4), one writes

�
X4

i ¼ 1

ReðliÞ ¼ a3 ¼
kv

m : (B.1)

Eq. (B.1) implies that

min
i ¼ 1,...,4

ð9ReðliÞ9Þr
kv

4m : (B.2)

Eq. (B.2) clearly suggests that the maximization of the absolute values of the real parts of the poles is achieved when the
real parts of all the four poles are made equal by tuning the absorber parameters. As the minimum possible value of the
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imaginary parts is zero, the optimum performance of the absorber requires that all the four poles are real (negative)
and equal.
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