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In this study, aeroelastic analysis of a truncated conical shell subjected to the external

supersonic airflow is carried out. The structural model is based on a combination of linear

Sanders thin shell theory and the classic finite element method. Linearized first-order

potential (piston) theory with the curvature correction term is coupled with the structural

external pressure and axial compression is also taken into account. The fluid-filled effect is

considered as a velocity potential variable at each node of the shell elements at the

fluid–structure interface in terms of nodal elastic displacements. Aeroelastic equations

using the hybrid finite element formulation are derived and solved numerically.

The results are validated using numerical and theoretical data available in the literature.

The analysis is accomplished for conical shells of different boundary conditions and cone

angles. In all cases the conical shell loses its stability through coupled-mode flutter. This

proposed hybrid finite element method can be used efficiently for design and analysis of

conical shells employed in high speed aircraft structures.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Shells of revolution, particularly conical shells are one of the primary structural elements in high speed aircraft. Their
applications include the propellant tank or gas-deployed skirt of spacecrafts. Due to the large expanses in their geometry
combined with thin wall thicknesses, conical shells are more susceptible to dynamic instability or flutter induced by high-
Mach number gas flow. It is therefore important to understand the effect of different parameters and loadings on their
dynamic response.

Aeroelastic analysis of shells and plates has been investigated by numerous researchers experimentally and analytically
[1]. Dowell addressed a comprehensive study of the aeroelasticity of shells and plates in his book [2]. Aeroelasticity of
circular cylindrical shells has also been reported in detail by different researchers [3–9], while less information is available
for conical shells. During the 1970s some researchers focused their efforts on conical shell aeroelasticity. The earliest work
in this field was found by Shulman [10]. Ueda, Kobayashi and Kihira [11] investigated theoretically and experimentally the
supersonic flutter of a conical shell. Dixon and Hudson [12] studied the flutter and vibration of an orthotropic conical shell
theoretically. Miserentino and Dixon [13] investigated experimentally the vibration and flutter of a pressurized truncated
conical shell. Bismarck-Nasr and Costa-Savio [14] found a finite element solution for the supersonic flutter of conical shells.
Sunder, Ramakrishnan and Sengupta [15] reported the success of the application of finite element analysis to calculate the
flutter of a laminated conical shell. In another study they found the optimum cone angle in aeroelastic flutter [16]. Mason
and Blotter [17] used a finite element technique to find the flutter boundary for a conical shell (a typical rocket nozzle
All rights reserved.
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element) subjected to an internal supersonic gas flow. Most of these works considered only simply supported conical shells.
Not all boundary conditions were satisfied by these methods [17]. There are also other researchers who focused on the
dynamic stability and fluid–structure interaction of conical shells. For example, Lakis, Van Dyke and Ouriche [18]
investigated the dynamic analysis of anisotropic fluid-filled conical shells. Recently, Kumar and Ganesan [19] studied the
vibration of conical shells conveying fluid.

For such a problem, use of an analytical approach becomes very complicated if one wishes to include complex
structures, boundary conditions, material and loading. Therefore, numerical methods such as the finite element method
(FEM) are powerful tools for cases involving changes to all factors affecting flutter boundaries.

The objective of the present study is to develop a general hybrid finite element package for predicting the aeroelastic
behavior of isotropic conical shells with boundary conditions which can be varied as desired. The solution scheme is based
on the finite element development done by Lakis et al. [18] for conical shells and Lakis and Paidoussis [20] for cylindrical
shells. These developed methods demonstrated precise and fast convergence with few numerical difficulties. The element
is a conical frustum instead of the usual rectangular shell element. Sanders linear thin shell theory where all strains vanish
for rigid body motions (other theories are incapable of this attribute) is coupled with linearized first order piston theory. In
the case of a fluid-filled shell the effect of dynamic pressure acting on the wall is modeled based on a velocity potential
formulation and Bernoulli’s equation. It is assumed that the fluid is incompressible and has no free-surface effect. Initial
stress stiffening in the presence of shell internal or external pressure and axial compression is also applied in the
formulation. Finally the linear mass, damping and stiffness matrices are obtained. The aeroelastic equation of motion is
driven out to a standard eigenvalue problem. The flutter boundary is found by tracking the real and imaginary parts of the
eigenvalues as dynamic pressure is varied.

2. Finite element formulation

2.1. Structural modeling

Sanders [21] developed an improved thin shell theory based on Love’s first approximation. One advantage of Sanders
theory is that all strains vanish for small rigid-body motion. In this study the structure is modeled using hybrid finite
element method which is a combination of Sanders shell theory and classic finite element. In this hybrid method, the
displacement functions are found from exact solution of Sanders shell theory rather than approximated by polynomial
functions done in classic finite element method. According to the Sanders linear thin shell theory the equilibrium equations
for a conical shell (Fig. 1) are written as:
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Fig. 1. Geometry of a truncated conical shell.
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where N and M are the stress resultant and stress couples, respectively. The strain-displacement equations for three
infinitesimal displacements in axial U, radial W, and circumferential V directions are [21]:
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Displacements U, W and V in the global Cartesian coordinate system are related to displacements Ui, Wi, Vi indicated in Fig. 2 by:
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The stress–strain relation for an anisotropic shell is expressed by:

½s� ¼ ½p�½e� (4)

where P is the elasticity matrix for an anisotropic shell. Upon substitution of Eqs. (2) and (4) into Eq. (1), a system of equilibrium
equations can be obtained as a function of displacements:

L1ðU;W ;V ;BijÞ ¼ 0

L2ðU;W ;V ;BijÞ ¼ 0

L3ðU;W ;V ;BijÞ ¼ 0
(5)
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Fig. 2. Conical frustum element.
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These three linear partial differential operators L1, L2 and L3 are given in the Appendix, and Bij are elements of the elasticity
matrix which, for an isotropic thin shell with thickness h are given by:

½p� ¼
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(7)

The element is a circumferential conical frustum shown in Fig. 2. It has two nodal circles with four degrees of freedom;
axial, radial, circumferential and rotation at each node. This element type makes it possible to use thin shell equations
easily to find the exact solution of displacement functions rather than an approximation with polynomial functions as is
done in classic FEM. The displacement functions for nth circumferential wave number in Fourier series form can be
written as:
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The solutions for the magnitude of displacements can have the following form [22]:
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where l, A, B and C are complex numbers and l is an arbitrary reference length. By replacing Eqs. (8) and (9) into Eqs. (5), three
ordinary homogeneous differential equations in the following form are obtained:
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In order to have a non-trivial solution the determinant of the above system of equations must be equal to zero. Application of
this condition yields the following characteristic equation:
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Each single root of Eq. (11) corresponds to the solution of Eqs. (5). The complete solution is obtained by summation of these
roots and constants Ai, Bi and Ci:
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where y is the dimensionless ratio given in Eq. (9). The independent constants Ai, and Bi can be expressed in terms of Ci and
complex numbers a and b as:

Ai ¼ aiCi

Bi ¼ biCi
(13)
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These complex numbers can be obtained by replacing them in Eq. (10) in the following way:
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Finally, the magnitude of displacement functions is written as:
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The displacement vectors, Eq. (8), that correspond to the circumferential wave number n, are written as:
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The element in Fig. 2 with two nodal lines (i and j) and eight degrees of freedom will have the following nodal displacement
vector:
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where matrix A is obtained from the terms of R. Now, pre-multiplying Eq. (18) by A�1, the constant vector of {C} is found.
Eq. (16) can therefore be written in terms of nodal degrees of freedom as:
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The strain vector, Eq. (2), will become:
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where matrix Q can be found in Ref. [18]. This relation can be used to find the stress vector, Eq. (4), in terms of the nodal degrees
of freedom vector:

fsg ¼ ½P�½B�
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Based on the standard finite element formulation [23], the local mass and stiffness matrices are found:

½ms� ¼ rh

Z Z
½N�T½N�h dA

½ks� ¼

Z Z
½B�T½P�½B�dA (22)

where r is the shell density and dA ¼ xsinadydx Finally, the global mass, M, and stiffness, K, matrices for the entire shell are
developed using standard assembling techniques for different boundary conditions.

2.2. Stress stiffening

In the presence of initial membrane forces resulting from circumferentially uniform internal or external pressure and
axial compression, a strain–energy contribution is introduced into the formulation. It is assumed that the shell is under
equilibrium conditions and has not reached its buckling state. The stress resultants of internal pressure, Pm, and axial load,
Px, (positive in compression) are [12]:
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The potential energy due to this initial strain can be found [24]:
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If the displacements are replaced by Eq. (19) the potential energy in terms of nodal degrees of freedom is generated:
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Therefore, the initial stiffness matrix for each element becomes:
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After assembly, the whole stress stiffness matrix, KI is added to the geometry stiffness matrix developed in Eq. (22).

2.3. Aerodynamic modeling

Piston theory, introduced by Ashley and Zartarian [25], is a powerful tool for aeroelasticity modeling. In this study the
fluid–structure effect due to external pressure loading can be taken into account using linearized first-order potential
theory [2]. This pressure is expressed as:
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where PN, UN, M and g are the freestream static pressure, freestream velocity, Mach number and adiabatic exponent of air,
respectively. If the Mach number is sufficiently high ðMZ2Þ, and the curvature term, W=2RðM2 � 1Þ1=2 is neglected, the
result is the so-called piston theory:
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where aN is the freestream speed of sound.
Considering the displacements in Eq. (19), the radial deflection W is:
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and the pressure loading, Eq. (29), in terms of nodal degrees of freedom is written as:
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where rN is the freestream air density and Rm is the median radius for each element. Based on thermodynamic relations
the freestream pressure and velocity can be linked together using the following relation:
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The general force vector due to a pressure field is written as:
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Substituting Eq. (32) into the above relation, the aerodynamic damping, cf, and stiffness kf matrices for each element are
obtained:
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Finally, global aerodynamic damping, Cf, and aerodynamic stiffness, Kf, matrices are found using assembling procedures.

3. Fluid-filled modeling

The Laplace equation satisfied by velocity potential for inviscid, incompressible and irrotational fluid in the conical
system is written as [26]:
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where b is the coordinate along the semivertex angle. Using the Bernoulli equation, hydrodynamic pressure in terms of
velocity potential, j, and fluid density, rf, is found:

Pf ¼ rf
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(40)

The impermeability condition, which ensures contact between the shell surface and the peripheral fluid at rest, is
written as:

Va ¼
1

x

qj
qb b¼a ¼

qW

qt

				 (41)

Method of separation of variables for the velocity potential solution can be done as follows:
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By placing this relation into the impermeability condition, one can find the function Sq(x,y,t) in terms of radial
displacement:
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With the help of Eq. (43) and substitution of Eq. (42) into Eq. (38), the following second order differential equation in terms
of Rq(b) is obtained:
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Solution of the above differential equation yields the following [26]:
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Finally, the hydrodynamic pressure, Eq. (40), in terms of velocity potential and radial displacement is written:
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By substituting the expression of W given in Eq. (31) into this pressure relation, Eq. (46), and introducing the general force
vector as was done in the previous section, the fluid mass matrix is obtained:

½mf � ¼ ½A
�1�T½Sf �½A

�1� (48)

where

½Sf � ¼ �rf k

Z Z
x½N�T½Nw�dA (49)

The global fluid mass matrix Mf for the case that the shell is partially or completely filled with fluid is now entered into the
governing equation.

4. Aeroelastic model

The governing equation of motion in a global system for a fluid-filled conical shell exposed to external supersonic
airflow is described using the following relation:
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where subscripts s and f refer to a shell in vacuo and fluid, respectively and I refers to a shell under initial membrane forces
(hydrostatic pressure and axial load). Assuming the oscillatory motion in the form fdg ¼ d0eiot , eventually Eq. (50) leads to
the eigenvalue problem where its eigenvalues occur in complex conjugates pairs. Aeroelastic stability of the shell is
investigated by studying the eigenvalues in the complex plane. Flutter onset occurs when the imaginary part of the eigen
frequencies o, change from positive to negative.
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5. Numerical results

5.1. Validation

Two different thin conical shells are treated here for validation. The first problem studies free vibration and buckling of a
thin cone examined by Ueda and et al. [11]. Numerical calculation is carried out for the wind tunnel test model of a
truncated conical shell made of super-Invar for which Young’s modulus, Poisson’s ratio and density are 1:28� 104 kg mm�2,
Table 1
Critical freestream dynamic pressure for the conical shell.

Source Lcr ncr

Shulman [10]: 669 6

Galerkin, 4 terms

Dixon and Hudson [12]:

Galerkin, 4 terms 492 5

Galerkin, 8 terms 588 5

Galerkin, 12 terms 590 5

Bismarck-Nasr [14], FEM: 702 6

Present study:

Pressure by Eq. (29) 598 6

Pressure by Eq. (30) 628 6
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Fig. 4. (a) Real part and (b) imaginary part of the complex frequencies, n=6, versus freestream static pressure, aerodynamic pressure evaluated by Eq. (29).
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0.25 and 8:13� 10�10 kg s2 mm�4, respectively. The shell has a ratio of slant length to small radius of L=R1 ¼ 1:61, a
semivertex angle of 141 and clamped edges. The effect of pressure difference on the natural frequency of the 0.05 mm thick
shell is shown in Fig. 3. The positive value is due to the fact that the internal pressure makes the natural frequencies
increase, in other words it has a stabilizing effect. External pressure, on the other hand, causes a decrease in the natural
frequencies. These trends, which are calculated using only 15 elements show good agreement with the results obtained
in Ref. [11]. For large values of external pressure the natural frequency becomes purely imaginary which represents
the buckling state of the shell. The second problem treated for validation is the flutter boundary of a simply-supported
cone subjected to external supersonic airflow. This case has been studied by various authors [10,12,14]. The shell has
the following data: Young’s modulus, E ¼ 6:5� 106 lb in�2, Poisson’s ratio, u ¼ 0:29, material mass density,
r ¼ 8:33� 10�4 lb s2 in�4, shell thickness, h ¼ 0:051 in, cone semivertex angle, a ¼ 53, small end radius to thickness,
R1=h ¼ 148, and L=R1 ¼ 8:13 where L is the shell length. The supersonic airflow has freestream Mach number, M1 ¼ 3,
stagnation temperature, T1 ¼ 288:15 K and stagnation pressure, Ps1 ¼ 14:696 lb in�2. The boundary conditions at both
ends are u=w=v=0. In Table 1, the critical dynamic pressure parameter is defined:

L ¼
r1U2R3

1

KðM2
1 � 1Þ1=2

(51)

where k is expressed by Eq. (7). When results are summarized and compared with other finite element and analytical
solutions, this method shows good convergence using only 15 elements with small disagreements. It should be noted that
the previous analytical methods [10,12] use Donnell-Mushtari simplified shell theory while Ref. [14] uses Novozhilov’s thin
shell theory with the different method of application of finite element solution. These explain the small disagreement in
the results of Table 1.

5.2. Flutter boundary

The conical shell of the preceding validation for flutter boundary is treated here. The complex frequencies only for the
first and second modes versus free stream dynamic pressure are plotted in Fig. 4. Aerodynamic pressure is evaluated using
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Table 2
Critical freestream static pressure for different boundary conditions.

Boundary condition p1 ðpsiÞ Mode no.

Freely simply supported (v=w=0) 27 Coupled 1st and 2nd

Simply supported (u=v=w=0) 24.5 Coupled 1st and 2nd

Clamped-clamped 24.5 Coupled 1st and 2nd

Free–free

Divergence 39 1st

Flutter 45 Coupled 3rd and 4th
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Eq. (29). In Fig. 4a the real part of the complex frequency increases for the first mode while for the second mode it
decreases as the freestream dynamic pressure increases. For higher values of dynamic pressure these real parts,
representing the oscillation frequency, eventually coalesce into a single mode. Further increasing the dynamic pressure of
flow causes the shell to lose its stability at P1 ¼ 24:8 psi. This instability is due to coupled-mode flutter where the
imaginary part of complex frequency (representing the damping of the system) crosses the zero value in Fig. 4b. The
same behavior is observed in Fig. 5 but instability occurs at p1 ¼ 25:2 psi where the aerodynamic pressure is evaluated
using Eq. (30). For the shell treated here, one can see that the curvature term in the aerodynamic pressure expression has a
small effect on the flutter boundary.

The flutter boundaries for different circumferential wave numbers for various shell internal or external pressures are
reported in Fig. 6. Shell geometry and flow parameters are the same as used in the previous case study. When the shell is
pressurized it becomes unstable at higher dynamic pressure levels due to an increase in stiffness because of applied
internal pressure. External pressure decreases the stiffness of the shell which results in a lower critical freestream dynamic
pressure.

In Fig. 7 the onset of flutter for different semivertex angles, a, and different L=R1 ratios is plotted. By increasing the
conicity effect, flutter instability occurs at lower dynamic pressures for longer shells. This decrease in Lcr with a is
attributed to the fact that the natural frequencies always decrease with increasing the L=R1and a.

The effect of boundary conditions on the flutter onset is presented in Table 2. It is seen that for freely simply-supported
ends, v=w=0, flutter onset occurs at 27 psi which indicates more flutter resistance compared to simply support or
clamped ends. It also indicated that there is no difference for flutter onset when the shell is either clamped or simply
supported u=v=w=0 at the both ends. When the shell is free at both ends the instability is slightly different and two
types of instability are observed. In Fig. 8a the real part of the complex frequency for the first mode decreases as the
freestream static pressure increases, while the imaginary part remains positive. The existence of a zero real part and a
negative imaginary part of the complex frequency indicates that the shell diverges statically. By further increasing
the freestream static pressure, second mode remains stable but the real parts of third and forth modes merge into a
single mode and their imaginary parts bifurcate into two branches and one of them becomes negative. At this point,
p1 ¼ 45 psi, the shell loses stability due to coupled-mode flutter because a negative imaginary part makes the vibration
amplitude grow.
5.3. Effect of filling ratio

In this section the effect of filling ratio on the flutter boundary is investigated. Fig. 9 shows the critical value of
freestream static pressure for different filling ratios, H=L, and for various lengths of the shell, L=R1. Shell geometry and flow
parameters are the same as the previous case study with liquid-filled density rf ¼ 9:355� 10�5 lb s2 in�4. In general, the
critical dynamic pressure parameter for an empty shell increases as the length ratio is decreased. It is seen that the value of
critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by
increasing the length ratio the decrement of the critical value of L is decreased and vanishes when coupled-mode flutter
type instability occurs. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at
large filling ratios indicates that the fluid near the bottom of the shell is largely influenced by elastic deformation when a
shell is subjected to external subsonic flow.
6. Conclusion

An efficient hybrid finite element method is presented to analyze the aeroelastic stability of an empty or partially liquid-
filled conical shell subjected to external supersonic flow. Sanders linear shell theory is coupled with first order piston theory
to account for aerodynamic pressure. Fluid–structure interaction due to hydrodynamic pressure of an internal fluid along
with the effects of initial stress stiffening is also taken into account. The study has been done for shells with various
geometries and boundary conditions. In all study cases one type of instability is found; coupled-mode flutter in the first and
second mode. For the free–free boundary condition however, the shell loses its stability first through divergence and then by
flutter due to coupling of the third and forth modes. An internally pressurized shell shows more flutter resistance than a
shell under external pressure. Decreasing the vertex angle of the cone causes the flutter boundary to occur at a lower
dynamic pressure. A lower filling ratio has more flutter resistance for short shells than long shells. The proposed hybrid
finite element package can present reliable results at less computational cost compared to commercial software since the
latter imposes some restrictions when such an analysis is done.
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Appendix A

The equilibrium equations (Eq. (4)) are:
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