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A new technique for analyzing the dynamic behavior of a sucker rod string used in the

oil well industry is presented. The main difficulty in the numerical calculation of the

examined structure is a multivalued velocity—force relation determined by Coulomb’s

friction and by loads generated during operation of pump valves. Both the monotonic

inequality formulation of the problem is proposed. The solution of the inequality

amounts to finding the minimum of a convex nonsmooth functional at each time step by

means of the Newmark difference time scheme, successive iterations and finite element

discretization. The problem of functional minimization is reduced to construction of a

sequence of smooth nonlinear programming problems by introducing the auxiliary

variables and applying the augmented Lagrangian method. The proposed approach is

used to study the longitudinal vibrations of sucker rod strings under near-real

conditions. In such systems the most commonly occurring vibration modes are the

stick-slip vibrations and the vibrations with natural force excited twice a cycle. The

nonmonotonic character of the friction law leads to intensification of these vibrations.

In the case of nonmonotonic friction law the stick-slip vibrations can occur even under

the action of constant external forces.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sucker rod strings are intended to transmit the movement from the rocking machine to the deep well plunger and screw
pumps used in various oil recovery processes. The damage of such systems requires extremely expensive underground
repair. Calculations that take into account a maximum number of factors influencing the behavior of these strings may
essentially reduce the maintenance costs. In the present study, we restrict our consideration to the case of plunger pumps.

Since the 1950s interest in the development of mathematical models for these structures has quickened. In one of the
earliest works [1] and in the book by the same author [2], the effect of internal forces is take into consideration by using the
modifying factors. These factors are found by solving the wave equation after the phase of initial tension which is assumed
to be static. The vibrations excited at the beginning of the moving phase are supposed to die out at the end of the moving
phase. These two assumptions are fulfilled if the excitation frequency is small compared to the natural frequency of the
sucker rod string, i.e. for short strings and slow regimes.

In works [3–5] the models based on the numerical solution of the wave equation of second order were developed. Here a
specified displacement is taken as the boundary condition for the polished rod and the Robin condition (when the linear
combination of the displacement and its gradient is specified) is the boundary condition for the pump. In [6,7] the sucker
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rod string is simulated using the systems of first-order partial differential equations. Then these systems are solved by the
characteristic method and the finite difference method.

A very interesting technique was proposed in [8,9] to analyze the dynamic behavior of the sucker rod string. Here a
complicated system was replaced by a simple one using the adaptive filter matrix method developed by these [10,11].

However, in all aforementioned approaches the strongly nonlinear nature of the forces acting on the sucker rod string
have not been studied sufficiently. In the systems with the multivalued force–velocity relation there occurs a transition
from the rest to the moving phase and reversal, but the time of these transitions is generally unknown. The multivalued
force–velocity dependence arise due to the operation of pump valves and Coulomb’s friction. In this case, the zero value of
velocity corresponds to a set of force values. The characteristic feature of the systems under such load conditions is the
change from one type of boundary conditions (in terms of displacements) to the other type (in terms of forces) and reversal
which results in intensive natural frequency vibrations of the structure. Vibrations of this type are well studied for
mechanical systems with one degree of freedom or a small number of degrees of freedom [12–16]. Numerical simulation of
real systems with a large number of degrees of freedom is still an open problem.

For problems with multivalued nonlinearities, we need special solving techniques, for example, a quasi-variational
(for nonmonotonic case—hemivariational) inequality formulation. The solution of this inequality can be reduced to
finding the minimum of the convex nonsmooth functional at each time step by means of the Newmark difference time
scheme, successive iterations and finite element discretization. This approach is widely used in the analysis of mechanical
systems with Coulomb friction as well as in the studies on the dynamical problems of plasticity [17–27]. The forces
generated in the pump systems show certain similarity to the Coulomb friction forces. Therefore it seems natural to use
the variational inequality approach for these forces. Such an approach is proposed by the authors of the present work
in [28].

The friction forces acting both on the pump plunger and on the sucker rod surface is generally dependent on velocity.
This dependence can be nonmonotonic. In this case, the variation inequalities are not sufficient for modelling the sucker
rod string. The more general hemivariational inequality approach is required [29–34].

In this paper, the quasi-variational and quasi-hemivariational inequality formulations of the problem under study are
developed and the algorithm for their numerical realization is constructed.

Some examples of the behavior of the sucker rod string under near-real conditions are given. The first three examples
illustrate the operation of the sucker rod string under periodical loads generated by a machine tool-rocking chair. In this
case in addition to vibrations with loading frequencies, there occur natural vibrations exited twice a cycle. The
nonmonotonicity of the friction law leads to intensification of vibrations. The fourth example shows the self-excited
stick-slip vibrations of the structure pulled out at constant velocity.

2. Problem formulation and solution

The sucker rod string under study is a heavy elastic rod placed in a curved channel with the viscous fluid flowing
through it. The scheme of the problem solution is shown in Fig. 1. The rod bounded by the channel walls can move only
along its axis. The upper end of the rod moves periodically according to the known kinematic law, and its lower end is
under the action of the force, which depends on the direction of the motion of the string end:

PBð _ubÞ ¼

P�; _uBo0;

½Pþ; P��; _uB ¼ 0;

Pþ; _uB40;

8><
>: (1)

P�4Pþ:

Knowing inlet pin and outlet pump pressures pout one can calculate the limit forces P� and Pþ as follows. The force acting on
the plunger of the pump and on the lower end of sucker rod, coupled with it, is given by

P ¼ pout �
p
4
� ðd2

pl � d2
nearÞ � pc �

p
4
� d2

pl7Pf : (2)

Here dplFplunger diameter, dnearFpumping rod diameter near the pump, PfFmagnitude of the force of friction between
the plunger and the cylinder of the pump, pCFthe pressure in the pump cylinder.

If friction depends on velocity Eq. (2) is replaced by

P ¼ pout �
p
4
� ðd2

pl � d2
nearÞ � pc �

p
4
� d2

pl þ Pf ð _uBÞ: (3)

When the plunger is moving upward, the suction valve is opened and the delivery valve is closed. The pressure in the
pump cylinder is

pc ¼ pin � Dpin;

where Dpin is the pressure loss in the suction valve. In this case, the force acting on the plunger is

P ¼ P� ¼
p
4
� ðpout � ðd

2
pl � d2

nearÞ � ðpin � DpinÞ � d
2
plÞ þ Pf :
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Fig. 1. Scheme of the problem.
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When the plunger is moving downward, the suction valve is closed and the delivery valve is opened. The pressure in the
pump cylinder is

pc ¼ pout � Dpout;

where Dpout is the pressure loss in the delivery valve. In this case, the force acting on the plunger is

P ¼ Pþ ¼
p
4
� ðDpout � d

2
pl þ pout � d

2
nearÞ � Pf :

The values of the pressure losses are small enough compared to pin and pout. It is considered that pc ¼ pin when the
plunger is moving upward, and that pc ¼ pout when the plunger is moving downward.

When the force acting on the lower end of the sucker rod is between P� and Pþ the plunger is at rest.
The operation scheme of the pump is shown in Fig. 2.
The rod, being placed in the liquid, is subjected to pressure and viscous forces. Due to the channel curvature, the

pressing forces and Coulomb’s friction forces arise between the rod and the walls of the channel. To take into account the
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Fig. 2. Operation scheme of the pump.
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pressure acting on the rod from the side of the liquid in the channel, we assume that the material strength is independent
of the mean stress. Hence, the strength, stability and force of pressing against the channel walls of the rod section, whose
lateral surface is subjected to pressure p at the longitudinal force N, are equivalent to those of the rod section experiencing
no pressure at the following longitudinal force:

Neq ¼ N þ pA; (4)

where A is the area of the considered rod section.
In the examined system, the velocity–force relations for such loads as the Coulomb friction force and the force acting on

the lower end of the rod are expressed as the multivalued relations. The interval of force values corresponds to the zero
value of velocity. These relations can be written in a subdifferential form.

For the force acting on the lower end of the rod, the subdifferential relation can be defined as follows. It is shown [17]
that in the one-dimensional case the subdifferential of the function can be represented as

qf ðxÞ ¼ fx 2 Rjf�
0 rxrf

0

þg; (5)

where f�0 and f
0

þ denote, respectively, the left- and right-hand derivatives. Hence, relation (1) can be written as

�PB;eq 2 qjBð _uBÞ; (6)

Here PB;eq ¼ PB þ pBAB, jBð _uBÞ is the convex superpotential defined by

jBð _uBÞ ¼ sup
u�2KB

ðu�; _uBÞRk ; (7)

where for this case k ¼ 1 and

KB ¼ ½�P�eq;�Pþeq�; (8)

P�eq ¼ P� þ pBAB; Pþeq ¼ Pþ þ pBAB:

The subdifferential relation for Coulomb’s friction acting on the lateral surface of the sucker rod string is

�qt 2 qjt;qnðuÞð _uÞ; (9)

where jt;qnðuÞð _uÞ is the convex superpotential defined by

jt;qnðuÞð _uÞ ¼ mjqnðuÞjj _uj ¼ sup
u�2Kt ðuÞ

ðu�; _uÞR1 : (10)

Here

KtðuÞ ¼ ½�mjqnðuÞj;mjqnðuÞj� ¼ ½�qt0ðuÞ; qt0ðuÞ�: (11)

According to the definition of the subgradient, Eqs. (6) and (9) can be written as the variational inequality

jB;eqðvÞ � jB;eqð _uBÞZ� PB;eq � ðv� _uBÞ; 8v 2 R1 (12)

and the quasi-variational inequality

jt;qnðuÞðvÞ � jt;qnðuÞð _uÞZ� qt � ðv� _uÞ; 8v 2 R1; (13)
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respectively. In the numerical analysis, we use the principle of virtual displacements:Z
L
r €uwA dxþ

Z
L

Ctv _ueqw dxþ

Z
L

NeqðueqÞeðwÞdx ¼

Z
L

qtð _uÞw dxþ

Z
L

qtQ w dxþ

Z
L

rgcosa�
qpf

qx

� �
wA dx

þ PB;eqð _uBÞwB � pAAns wA; (14)

where

PB;eq ¼ PB þ pBAb:

Here r is the density of the rod material, Ctv is the coefficient of hydrodynamic resistance, a is the angle between the rod
axis and the vertical, and w is the trial function equal to zero at the point where the displacement has been prescribed.

With the principle of virtual displacements (14), taking into account the subdifferential boundary conditions (12) and
(13) and representing the trial function w as

w ¼ v� _u

we can formulate the problem as follows.
Find the displacement field uðtÞ satisfying the quasi-variational inequality

ðrA €u;v� _uÞ þ ðCtv _u;v� _uÞ þ aðu;v� _uÞ þ jBðvBÞ � jBð _uBÞ þFt;qnðuÞðvÞ �Ft;qnðuÞð _uÞZlðv� _uÞ; 8v 2 U; (15)

the initial conditions for u and _u and such as _uðtÞ 2 U.
Here

Ft;qnðuÞðvÞ ¼

Z
L

jt;qnðuÞðvÞdx;

U is a set of admissible velocities, ðu;vÞ ¼
R

Luv dx is the inner product, aðu;vÞ is the bilinear form, and lðvÞ is the linear
functional.

To perform time discretization, we use the Newmark scheme. By expressing the acceleration and displacements at tnþ1

in terms of velocities at this time step and uðnÞ, _uðnÞ, €uðnÞ calculated at the previous time step and taking into account the
properties of the bilinear form að�; �Þ, the scalar product and linearity of the functional lð�Þ, we obtain the following
formulation of the problem. Find _uðnþ1Þ

2 Unþ1 satisfying the quasi-variational inequality

âð _uðnþ1Þ;v� _uðnþ1Þ
Þ þ jBðvBÞ � jBð _u

ðnþ1Þ
B Þ þFt;qnðuðnþ1ÞÞðvÞ �Ft;qnðuðnþ1ÞÞð _u

ðnþ1Þ
ÞZlðv� _uðnþ1Þ

Þ; 8v 2 Unþ1; (16)

where

âðu;vÞ ¼
r
gDt
� ðAu;vÞ þ ðCtvu;vÞ þ

bDt

g � aðu;vÞ; (17)

l̂ðvÞ ¼ lðvÞ þ r � ð ~w;vÞ � að ~u;vÞ: (18)

Here ~u and ~w are the quantities dependent on the values of displacements, velocities and accelerations calculated at the
previous time step.

As it is shown in works [18,20,21], the solution to the quasi-variational inequality can be found by solving successively
the following variational inequalities:

âð _u ½kþ1�;v� _u ½kþ1�
Þ þ jBðvBÞ � jBð _u

½kþ1�
B Þ þFt;qnðu½k� ÞðvÞ �Ft;qnðu½k� Þð

_u½kþ1�Þ
ÞZlðv� _u ½kþ1�

Þ; 8v 2 Unþ1; (19)

where _u ½k� is the k-th approximation of the velocity field uðnþ1Þ, and u½k� is the corresponding approximation of the
displacement field. As the initial approximation, we take the velocity field at the previous time step.

Since the time step is rather small then we need to use only one iteration for getting the acceptable accuracy. In this
case, the quasi-variational inequality can be replaced by the variational one. Thus, we have

âð _uðnþ1Þ;v� _uðnþ1Þ
Þ þ jBðvBÞ � jBð _u

ðnþ1Þ
B Þ þFt;qnðuðnÞÞðvÞ �Ft;qnðuðnÞÞð

_uðnþ1Þ
ÞZlðv� _uðnþ1Þ

Þ; 8v 2 Unþ1: (20)

Finding solution to the variational inequality (20) is equivalent to a search for the minimum of the nonsmooth functional

Jð _uðnþ1Þ
Þ ¼ 1

2âð _uðnþ1Þ; _uðnþ1Þ
Þ þ jBð _u

ðnþ1Þ
B Þ þFtð _u

ðnþ1Þ
Þ � l̂ð _uðnþ1Þ

Þ (21)

subject to _uðnþ1Þ
2 Unþ1.

Using the Newmark scheme, a set of acceptable velocities U can be expressed as

Unþ1 ¼ f _uj _u ¼ û in the point Ag; (22)

where

û ¼
g

bDt
ðu ðtnþ1Þ � ~uÞ:

Here u ðtÞ is the prescribed displacement of the upper point A at time t.
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For practical implementation of the algorithm, the rod is decomposed into n finite elements linear in displacements.
The functionals can be represented in the matrix form as

âðu;vÞ ¼ uTK�v; l̂ðvÞ ¼ bT
�v;

where

K� ¼
bDt

g Kþ
1

DtgMþ C; b� ¼ bþM ~w � K ~u:

Here, K, M, C are, respectively, the stiffness, mass and damping matrices, b is the external force vector, and ~u, ~w are the
vectors composed of ~u and ~w for discrete nodes.

Thus, the problem is reduced to minimization of the finite-dimensional functional

JhðvÞ ¼ 1
2âhðv; vÞ þFðvÞ � l̂hðvÞ (23)

subject to v 2 U.
The minimization of functional (23) can be reduced to a series of smooth problems of nonlinear programming using the

augmented Lagrangian method [35] or the Udzava method [22].
The details of the finite element realization, solution of the problem by the augmented Lagrangian method and testing

of the algorithm in the framework of the one-degree-of-freedom system having accurate analytical solution can be found in
work [28].

3. Nonmonotonic friction modelling

In the previous section, the force in the sliding phase is considered to be constant. However, under actual friction
conditions, the tangential force depends on the sliding velocity. This velocity–force relation may be very complicated and
generally nonmonotonic. The nonmonotonicity of the friction law leads to additional computational difficulties. In this
case, the inequality to be solved is hemivariational, and the functional to be minimized at each time step is nonsmooth and
nonconvex [17,29].

The variational formulation of the problems with the nonmonotonic multivalued force–velocity relation is as follows.
Find the displacement field uðtÞ satisfying the dynamic hemivariational inequality

ðrA €u;v� _uÞ þ ðC _u;v� _uÞ þ aðu;v� _uÞ þF0
t;qn
ð _u;v� _uÞZlðv� _uÞ; 8v 2 U; (24)

the initial conditions for u and _u and such as _uðtÞ 2 U.
Here

F0
t;qn
ðv; gÞ ¼

Z
L

j0
t;qn
ðv; gÞdLþ j0

BðvB; gÞ;

where

j0ðx; gÞ ¼ lim sup
m-0;y-x

jðyþ mgÞ � jðyÞ

m

is the generalized Clarke derivative of the nonsmooth nonmonotone functional j in the direction g.
In the present work, we consider a sufficiently general class of the nonmonotonic friction laws, which can be

represented as a difference of two monotonic multivalued functions

Pf ¼ Pf 1 � Pf 2; (25)

qt ¼ qt1 � qt2; (26)

where

�Pf 1 2 qjf 1ð _uBÞ; � Pf 2 2 qjf 2ð _uBÞ; (27)

�qt1 2 qjt1;qnðuÞð _uÞ; � qt2 2 qjt2;qnðuÞð _uÞ: (28)

Such relations are called quasi-differential ones [32].
From (3) and (29) we can write

PB;eq ¼ PB1;eq � Pf 2: (29)

In this case the nonconvex functionals jt;qn and jB can be represented as a difference of the convex functionals:

jðvÞ ¼ j1ðvÞ � j2ðvÞ:
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According to the Newmark scheme, this dynamic inequality can be reduced to solving at each time step the following
problem:

Find _uðnþ1Þ
ðtÞ 2 Unþ1, satisfying the static hemivariational inequality

a1ðu
ðnþ1Þ;v� _uðnþ1Þ

Þ þF0
t;qn
ðuðnþ1Þ;v� _uðnþ1Þ

ÞZlðv� _uðnþ1Þ
Þ; 8v 2 Unþ1; (30)

which, in turn, can be treated by sequential solution of variational inequalities [29,30,33]

a1ðu
ðnþ1Þ;v� _uðnþ1Þ

Þ þFa
t;qn
ðvÞ �Fa

t;qn
ð _uðnþ1Þ

ÞZlðv� _uðnþ1Þ
Þ; 8v 2 Unþ1: (31)

Here Fa
t;qn
ðvÞ is the convex approximation of the nonconvex functional obtained when replacing

jðvÞ ¼ j1ðvÞ � j2ðvÞ

by

jðvÞ ¼ j1ðvÞ � j2ðvaÞ � qj2ðvaÞ � ðv� vaÞ;

where va is the value of velocity obtained at the previous iteration.
The variational inequality (30) is similar to inequality (20) and can be treated by the same way.

4. Applications

The displacement–force curve for the upper section of the sucker rod string (dynamogramme) obtained as a result of
numerical modelling is compared with the real one. The column under consideration is composed of two parts (bottom
up): 1—diameter 19 mm, length 440 m; 2—diameter 22 mm, length 624 m. The magnitude of the force at the lower end of
the sucker rod string as it moves upwards is 9.5 kN, and is �2:2 kN as it moves downwards. The excitation frequency is 6
strokes per minute. The double amplitude of the upper end motion is 2.4 m. These curves are shown in Fig. 3. Both
computed and real curves consist of four segments. The upper part corresponds to the phase when the pump plunger is
moving up. The lower part corresponds to the downward movement of the plunger. Here we can see a considerable
displacement of the upper section of the rod and rather intensive force oscillations. These two segments are separated by
steeper ones which correspond to the phases when the pump plunger is at rest. On the last two segments one can observe a
significant growth (falling) of the force acting on the upper rod section. The displacement of the upper end of the rod is far
smaller than in the first two phases and is due to the rod deformation only. It is seen that there is rather good agreement
between the numerical and experimental results.

The obtained algorithm was employed to calculate the rod columns under near-real conditions. The column is composed
of three parts (bottom up): 1—diameter 19 mm, length 272 m; 2—diameter 22 mm, length 392 m; 3—diameter 25 mm,
length 328 m. The maximal zenith angle describing the channel geometry is 201 at a depth of 336 m. The coefficient of
friction of the rod against the tube walls f is 0.1. The Young module E ¼ 2� 105 MPa. The density of the rod material
r ¼ 7800 kg=m3. The magnitude of the force at the lower end of the sucker rod string moving upwards is 11.09 kN, and is
3.55 kN for its downward movement. The excitation frequency is 6 strokes per minute. The double amplitude of the upper
end motion is 1.6 m.

Fig. 4 shows the displacement and velocity of the lower end of the pumping rod string and the axial forces acting on the
upper (solid line) and lower (dashed line) sections of the rod. The lower end of the rod column is in the stick-slip motion.
During stops, the force acting on the lower end changes from one limiting value to the other. Apart from vibrations with the
frequency of the excitation load, there occur natural vibrations excited twice a cycle as the direction of the lower end
motion changes.
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Fig. 3. Comparison of the numerical solution with real force–displacement curve.
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The algorithm developed is employed to calculate the rod columns in the case when the friction force depends
nonmonotonically on the velocity. The geometric parameters, the excitation frequency, the double amplitude of the upper
end motion and the force on the lower end of the pumping rod string moving downwards are similar to those considered in
the previous case. The force on the lower end of the string moving upwards depends on its velocity v:

P� ¼ P1 þ ðP0 � P1Þ � e
�v=v0 : (32)

Here, P0 is the value of P� at v ¼ 0; P1 is the value of P� when v-1; v0 is the factor with the velocity dimension. The
following values of parameters are taken: P0 ¼ 11:09 kN; P1 ¼ 7:09 kN; v0 ¼ 1:0 m=s.

The velocity–force relation for the lower end of the string is shown in Fig. 5.
The results of calculation for the upper end of the pumping rod string are shown in Fig. 6 as a displacement–force curve

for the upper section of the rod (dynamogramme). The bold line corresponds to the nonmonotonic velocity–force relation
(32). Two thin lines correspond to the cases when the lower end of the string (upward motion) is under the action of
constant force P� ¼ P0 and P1, respectively.

The results show that the nonmonotonicity of the friction law leads to intensification of vibrations.
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The event when the system is pulled out at constant velocity is also considered. In this case the nonmonotonicity of the
friction law leads to the self-excited stick-slip vibrations of the lower end of the string at the low pulling velocity (Fig. 7).
There is a critical value of the pulling velocity, at which vibrations disappear (Fig. 8).

Here

Du ¼ ub � ua;

ua and ub are the displacements of the upper and lower ends of the string, respectively.
In addition, the dependence of the stick-slip vibration amplitude on the pulling velocity is obtained for different values

of the parameters v0, P0 and P1 (Fig 9).
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It has been found that the values of the aforementioned parameters produce no significant effect on the stick-slip
vibration amplitude, but the very existence of vibrations depends on these parameters.
5. Conclusions

The mathematical model of longitudinal vibrations of the sucker rod string and its numerical implementation have been
developed. This model can take into account strongly nonlinear forces resulting from the action of the pump valves and
Coulomb’s friction. Both the monotonic and nonmonotonic force–velocity relations can be treated by this model.

Comparison of the displacement–force curve for the upper section of the sucker rod string (dynamogramme) obtained
as a result of numerical modelling with the real curve shows rather good agreement between the numerical and
experimental results.

The lower end of the column is in stick-slip motion. The vibration with natural frequency of the construction is excited
twice a cycle during transition of the lower end from the rest to the movement phase. In the case of nonmonotonicity of the
friction law the lower end vibrations are intensified.

When the friction law is nonmonotonic the stick-slip vibration can take place even under the action of constant exciting
force. The example of pulling out of the sucker rod string at constant velocity is considered. In this case, the
nonmonotonicity of the friction law leads to the self-excited stick-slip vibrations of the lower end of the string at a low
value of the pulling velocity. There is a critical value of the pulling velocity at which the oscillations disappear.

The dependence of the stick-slip vibration amplitude on the pulling velocity has been obtained for different values of
the parameters describing the friction law. The values of these parameters do not affect significantly the amplitude of
stick-slip vibrations, but the existence of these vibrations strongly depends on these parameters.
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