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1. Introduction

A rotating circular cylindrical shell is a fundamental component of many machines and mechanisms, and is often
subjected to a stationary transverse force: for example, interference effects in mechanism containing shells, shell turbine
design and localized pressure discontinuity. There are two problems of physical importance. One is the problem that the
transverse force is moving around the shell in a circular path, and the other is the effect that rotation has on the elastic
properties of the shell. For the latter problem has been studied by Bryan [1], Mizoguchi [2], Chen et al. [3], Lam and Li [4]
and Li and Lam [5], the purpose of the work described in this paper is to study theoretically the former problem. One of the
interesting aspects of the problem is the question of what vibratory characteristic of a shell to a moving concentrated
harmonic force shows.

Critical speed of a rotating cylindrical shell to constant axial load was investigated by Ng and Lam [6], then dynamic
stability of rotating cylindrical shells subjected to periodic axial loads was studied by Liew et al. [7]. Huang and Hsu [8]
examined the resonance of a rotating cylindrical shell due to the action of harmonic moving loads. However, these three
articles mainly concentrated the loads synchronous whirl with the rotating shells. Applying the Fourier transform method
in conjunction with the contour integral, Huang [9] made a study of the steady-state response of an elastic, infinitely long,
cylindrical shell subjected to a ring load traveling at a constant velocity.

In most published works on dynamics of circular cylindrical shells, the nonlinear responses of stationary cylindrical
shells to moving concentrated harmonic forces are not found. This paper presents a theoretical analysis of the steady-state
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Nomenclature

c the coefficient of damping of the shell Greek letters

D the flexural rigidity of the shell

E Young’s modulus of the shell ) the Dirac delta function

K(t) external excitation I the Poisson ratio of the shell

h the wall thickness of the shell o the mass density of the shell

k multiples of frequency W radian frequency of external excitation

L the length of the shell WOmn the linear radian frequency corresponding to
m the number of axial half-waves the mode (m, n)

n the number of circumferential waves Wn the angular velocity of the moving concen-
R the middle-surface radius of the shell trated harmonic force

t time

response of this model. By considering a stationary cylindrical shell, the additional complication of the effect that rotation
has on the elastic properties of the shell is eliminated. The study is carried out using Donnell’s nonlinear shallow-shell
theory for thin shells together with the consideration of geometric nonlinearity. In order to reduce a drastic calculating
effort, it is important to use only the most significant modes. In this study, a more accurate and simpler mode expansion to
describe the vibration property of the shell is found by comparing frequency-response curves for six different mode
expansions with that for single mode. The method of harmonic balance is used to present an approximate analytical
solution of this system, and the results obtained are compared with numerical simulation. The good agreement between
them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in
detail.

2. Differential equation of motion

In this study, attention is focused on a cantilever stationary cylindrical shell to a moving concentrated harmonic force, as
shown in Fig. 1. The cylindrical shell is considered to be thin, with length L, wall thickness h, and middle-surface radius R.
Its material properties are mass density p, the Poisson ratio u, Young’s modulus E and the damping coefficient c.
A cylindrical coordinate system (x, 6, z) is chosen, with the origin O fixed on the center of one end of the shell, where x is the
axial and z is the radial coordinate. The displacements of points of the middle surface of the shell are denoted by u, v and w,
in the axial, circumferential and radial directions, respectively; w is taken positive outwards. The harmonic excitation is
assumed to be in the neighborhood of the mode (m, n) of the shell having prevalent radial displacement, where m is the
number of axial half-waves and n is the number of circumferential waves.

Considering a cell on the neutral surface of the shell with damping and large-amplitude shell motion effects, as shown
in Fig. 2, we can obtain the equations of motion in the x, 6 and z directions as follows:

Ny 108Ny u

x tRog T PheE=0 (1)
10Ny dNy Q v
Ro0 tox TR Phoz=0 (2)

Fig. 1. Coordinate system of a circular cylindrical shell.



340 Y.Q. Wang et al. / Journal of Sound and Vibration 329 (2010) 338-352

ow 0 %_,_i(@)dg
ROO ox 060 ox

AL
ow 6 ( 8w) ROO 00 RO
b R@H Ox Ro6
Z
[VX
N.\H e
o 0 20
aQX 9+6—€9d6
No
=xdx />
o .jgiil?;J4;; Tyao
N, a0
X v, et agde
/N
N, N, g
Ox
Fig. 2. The distortion of cell and the force on cell.
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where
__O0My |, 10Myy __0M,y , 1M,
&= Tra0 Y= TR

and gq, is given by q, = F(t).
Taking into account Donnell’s nonlinear shallow-shell theory, Egs. (1)-(3) reduce to

N, 10Ny
x TrRoo =0
10Ny Ny _
R 00 ox

22 a w Ny aZW Ny azw 2N,g aZW _
DV*V w+c +ph—+T_NXW_ﬁW_TW_F(D

(5)

(6)

Introducing Airy stress function @, the forces per unit length in the axial and circumferential directions, as well as the

shear force, are given by [10]
*d *d ?d
NXZhW:hGX’NgthX —hO'g, X0 = hWZh‘Ew
Stress-strain relationships can be written as [10]

E
——,uz (&x + [eo)
E
= _—/12(3(-) + Uex)

1

Txo = GSXO

(7)

(8a)

(8b)

(80)
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Nonlinear geometric equations of the system can be written as

ou 1 /ow\?2
b=+ (5) (8a)
oo _Lgow N 1/ow)? (9b)
=r\a0 ") *2\roo

_ov Tou Towdw
70 =2 TR0 TRox 20
For the circular cylindrical shell, the following relationships between transverse and in-plane displacements are used [10]:

au_o ov w ov 1du

x- a0~ "W xR0
Substituting Egs. (9) and (10) in Eq. (8) and substituting Egs. (7) and (8) in Egs. (4)-(6), and replacing all force resultants
with displacements variables, Eqs. (4)-(6) reduce to

(90)

0 (10)

o*w
h e

where the harmonic operator is defined as V2 = 8% /ox2 + 02 /(R2 80, the flexural rigidity is D = Eh3/[12(1 — p2)], F(t) is an
external excitation moving along the shell, having the form

F(t) = Fg cos(awt)o(x — Xg)o(0 + wnt) (12)

0
DV2V2W+CathV+p = F(t) 4 Anonlin (11)

where ), is the rotating speed of the force, ¢ the Dirac delta function, w radian frequency of external excitation, Fq gives the
force amplitude, xq give the axial positions of the point of application of the force. Here, the point excitation is located at
Xo = 0.335m.

The geometric nonlinearity is given by

2w <aw> 2 2w <8W> 2 2w (aw> 2 w <aw> 2 owow *w

Anonlin = (13)

15z \ao) T (& 3o \ox @ \a0) T ™ ox 0 axa0
where the functions o, o5, o3 and o4 are given in Appendix. Note that Donnell’s nonlinear shallow-shell equations are
accurate only for modes with a large number n of circumferential waves; it is generally assumed that 1/n% <1 is required in
order to have fairly good accuracy (i.e. n>6). Donnell’s nonlinear shallow-shell equations are obtained by neglecting the in-
plane inertia, transverse shear deformation and rotary inertia, giving accurate results only for very thin shells. In-plane
displacements are assumed to be infinitesimal, whereas w is of the same order as the shell thickness.

3. Responses of different mode expansions

The following mode expansion of the flexural deformation w has been used:

M N K
WX 0,0 =" > " Un(®)[Amn(t)c0s (knb) + By n(t)sin (knd)] (14)

m=1n=Ny k=1
where Ay, (t) and By, ., (t) are unknown functions of time ¢, k is multiples of frequency and Up(x) is the functions of axial
vibrating shape of the shell having the following form:
Un(X) = Cy1€Pm1%X 4 Cppe7PmiX 4 G 3 cos(Pmax) 4 Cina SIN(Pr 2%)

in which Gu 1, Gn2, Gn3, Gna, Pm1 and Py, are appropriate coefficients obtained by the free vibration equation of the shell.

By using Galerkin method, the ordinary, coupled nonlinear differential equations can be obtained for the variables
Amn(t) and B 5 (t), by successively weighting the single original equation with suitable functions z;, and integrating over the
shell middle surface. The weighting functions z; are formed from axial and circumferential vibrating shape functions.

The Galerkin projection, in this case, can be defined as

L 21 22 ow aZW L 2n
/ / DV 4+ ¢ 4 ph P ) 2 Rdxdo = / / [F(t) + AngninJ2sR dx dO (15)

3.1. Single mode

The nonlinear response of the system for mode including six circumferential waves and one longitudinal half-wave
(K=1,Ng=N=6,M = 1) is investigated by using the following mode expansion:

w(x, 0, t) = Uy (x)[A1 6(£)cos(60) + By 6(t)sin(60)] (16)
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Fig. 3. Frequency-response curves for single mode for w, = 10rad/s, Fp = 20N: (a) maximum of A, ¢(t)/h; and (b) maximum of B; g(t)/h.

The weighting functions z; are defined as

=1
2. 0) = {U1 (x)cos(60), s (17)

Ui (x)sin(60), s=2

Substituting the expansion of w, Eq. (16), and Eq. (17) in Eq. (15), two coupled nonlinear ordinary differential equations are
obtained for the variables A;g(t) and By (t):

Av6(t) + 201 5016A16() + W3 6A16(t) = F cos(awt)cos(6wnt) + HA1 g(1)° + HA1 6(t)B1 6(1)> (18)

B16(t) + 204 51,6B16(t) + @} 6By 6(t) = —F cos(wt)sin(6wpt) + HBy 6(t)* + HB1 6()A1 6(1) (19)

where {; ¢, F and H are appropriate coefficients given in Appendix. The projection of part of Eqs. (18) and (19) is quite
tedious and was performed by using the Mathematica computer software [11]. The case relates to a circular cylindrical shell,
having the following dimensions and properties: L=0.335m, R=0.15m, h=0.001m, u=03, c=20Nsm3,
E=2.06x10""Pa, p =7.85 x 10°kgm=3, the linear radian frequency is w;g = 27 x 397.58rads~!, all the numerical
solutions have been obtained by using the software Fortran 95 [12], based on the Runge-Kutta method. The periodic
solutions obtained show the maximum amplitude in a period.

Fig. 3 shows the frequency-response relationships for A;(t) and B;g(t), when the excitation frequency is in the
neighborhood of the linear resonance of mode (m=1, n=6). It could be found that there are two traveling waves with
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different linear resonant frequencies which are symmetric about the natural frequency w; s, showing that the vibratory
mode of the shell is traveling with respect to the rotary force.

3.2. Multi-modes

It has been known that linear modal base is the simplest choice for discretizing the system, in particular, in order to
reduce the number of degrees of freedom, it is important to use only the most significant modes. In this paper, six different
mode expansions are chosen to study the nonlinear responses of the shell, respectively. Then the results are compared with
that of single mode, aiming to find the proper mode expansion to describe the resonant characteristic of the shell. They are
given by

Case 1 (two modes): (K =1, Ny =5, N=6, M = 1), has the following mode expansion:

6
W(x,0,t) = " Uy (®)[A11(t)cos(60) + By 5(t)sin(66)] (20)

n=>5

Case 2 (two modes): (K =1, Ng =6, N=7, M = 1), has the following mode expansion:

7
W(x,0,t) =Y Uy (0)[A1n(t)cos(nd) + By n(t)sin(nd)] (21)

n=6

Case 3 (three modes): (K =1, Ng =5, N =7, M = 1), has the following mode expansion:

7
WX, 0,t) = Ur (A n(t)cos(nd) + By n(t)sin(nd)] (22)
n=>5

Case 4 (two modes): (K =2, Ng = N =6, M = 1), has the following mode expansion:

2
WX, 0,6) = " Ur(X)[Aq 6k(£)cOS(6k0) + By g1 (t)sin(6k0)] (23)

k=1
Case 5 (two modes): the mode A;(t) is considered for the single mode, with the following mode expansion:
w(x, 0,t) = U1 (x)[A1,6(t)cos(60) + By 6(t)sin(60)] + A1,o(t)Us (x) (24)
Case 6 (two modes): (K =1, Ng = N = 6, M = 2), has the following mode expansion:

2
WX, 0,6) = > Un(®)[Ams(t)cos(60) + By (t)sin(60)] (25)

m=1

Here we only take the case 6 as example, to give the numerical solving process. For the case 6, the weighting functions zg
are defined as

Ui (x)cos(66), s

Ui (x)sin(66), s

S

s

zs5(x,0) = (26)

U, (x)cos(60),
U, (x)sin(60),

1
2
3
4

The Galerkin projection of the equation of motion (11) has been performed by using the Mathematica computer software,
and the following system of four equations is obtained for the variables A; (t), B16(t), A26(t) and By ¢(t):

A1 (6) + 201 501,6A1,6(1) + 03 6A16(1) + 11 Az.6(1)
= F1 cos(@t)cos(6wnt) + HiA16()° + HaA1 6(6)7 A 6(6) + HaA16(D)A2,6(¢)°
+H4A16()B16(t)* + HsA1 6(t)B1 6(D)B2,6(1) + HeA1 6(1)B26(1)
+H7A2,6(t) + HA2,6(t)B1 6(t)* + HoAz 6(t)B1 6(t)B2,6(t) + H10A2,6(t)B2 6 (1) (27)

B16(t) + 201 5w1,6B16(t) + w3 6B16(t) + [1Bas(0)
= —F; cos(wt)sin(6wnt) + HiB1 6(t)* + H2B1 6()*Ba6(t) + H3B16(t)B2.6(t)°
+H4B1 6(0)A1,6(t)* + HsB1 6(1)A1,6(t)B2,6(t) + HgB1 6(t)A2,6(t)
+H7B26(t)* + HsB; 6(H)A1,6(t)* + HoB 6(t)A1 6(t)A2,6(t) + H10B2,6(t)A2 6(t)> (28)

Az 6(8) + 205 502,6A2,6(1) + 3 6A2,6(0) + A1 6(t)
= F2c05(wt)cos(6mnt) + GiA1 6(t)° + GoA16(t)* Az 6(t) + G3A1 6(D)A2,6(8)
+G4A1,6()B1 6(t)* + GsAq 6(t)B1 6(t)B26(t) + GeA1,6()B26(t)*
+G7A26(t)? + GsAz,6(t)B16(t)* + GoAz 6(£)B1,6(t)B2,6(t) + G1oA26(1)B26(1) (29)
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Ba6(t) + 2055026B26(t) + 3 6Ba6(t) + LBy 6(t)
= —F; cos(wt)sin(6wnt) + G1B16(t)* + G2B1 6(t)*B26(t) + G3B1 6(t)Bo6(t)?
+GaB16(t)A1 6(t)” + GsB1 6(1)A1,6()B2.6(t) + GoB1 6(H)A26(t)

+G7B26(t)* + GgBa s()A16(t)* + GoBa s(t)A16()A2,6(t) + G10B2,6(H)A26(t)?

(30)

where (y6, b, I, F1, F2, H; (i=1,...,10) and G; (j=1,...,10) are appropriate coefficients.
The other five cases can be dealt with in the same way as case 6, and are omitted here. Numerical computations have
been carried out for the six cases discussed above. The dimensions and properties of the shell is the same as that in the

single mode analyses.

Fig. 4(a)-(f) show the frequency-response comparisons of the six different mode expansions with that of single
mode for backward waves when the excitation frequency is in the neighborhood of the linear resonance of principal
mode (m=1, n=6). It can be found, the mode expansions (K=1, Ng=5 N=6, M=1),(K=1,Ng=6, N=7, M=1),
(K=1, No=5, N=7, M=1), (K=2, No=N=6, M=1), and single mode with mode A;(t) participation do not
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Fig. 4. Frequency-response comparisons of different mode expansions with single mode (m=1, n=6) for w, = 10rad/s, Fp = 10N: (a) mode expansion
(K=1,Ng=5, N=6, M=1); (b) mode expansion (K=1, Ng=6, N=7, M=1); (c) mode expansion (K=1, No=5, N=7, M=1); (d) mode
expansion (K =2, Np =N =6, M = 1); (e) single mode with mode A, ((t) participation; and (f) mode expansion (K =1, No =N =6, M = 2).
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significantly change the single-mode (K =1, Ng = N =6, M=1) result, whereas, the response for mode expansion
(K=1, No=N=6, M=2) is apparently different from that for single mode, especially in the neighborhood of
nonlinear region, as shown in Fig. 4(f).

As a consequence of the insensitivity of the response to additional mode expansions of n and k, it is reasonably believed
that further increases in the number of n and k would not significantly change the single-mode response.

The result shows that the effects of both additional circumferential waves n and multiples of frequency k are absolutely
insignificant but that of additional axial half-waves m is significant on principal mode (m=1, n=6) resonant response.
Thus adopting one principal circumferential mode (n=6) is adequate to study the response of the shell, but
additional longitudinal mode (m=2) should be considered for more accurate solutions in the neighborhood of the
principal mode.

4. Analytical solution

Adopting double modes (K =1, Ng = N = 6, M = 2), and introducing the non-dimensional variables and parameters in
Appendix, Egs. (27)-(30) may be written as a dimensionless form

Al,G(T) + 251,6;\1,6(‘5) +A15(0) + [1A26(T)

= 15‘1 cos(£217) + 131 cos(27) + H1A15(1)® + HoA1 6(0)*A26(7) + H3A1 6(1)A26(1)°
+H4A16(1)B16(1)* + HsA1 6(T)B1,6(T)B2.6(T) + HeA1,6(1)B26(1)>
+H7A56(t)> + HA» 6(0)B16(1)° + HoAz6(1)B1,6(7)B2.6(7) + H10A26(7)B2 6(7)? (31)

B16(7) + 201,6B16(0) + B16(1) + 1 B2.6(0)
= F1sin(@17) — F1 5in(@,7) + A1 B16(1)* + H>B1 (02 B.6(7) + H3B1 6(1)B6(1)?
+H4B1 6(0A16(1)* + HsB1 6(1)A16(0)B2,6(7) + HeB1 6(1)A2,6(7)
+H7B5,6(1)° + HsB2 6(1)A16(7)* + HoB2 6(1)A16(0)A2,6(T) + H10B2,6(1)A26(7)? (32)

A26(1)+2€267A26(T)+ < ) Az6(t) + A1 5(7)

=F, Cos(£217) + F, cos(Q,7) + G1A16(1)® + G2A16(1)*A26(T) + G3A16(1)A26(1)
+GaA15(1)B16(1)? + GsA1,6(1)B1,6(T)B2s(T) + GeA16(T)B2 (1)
+G7A25(1)® + GsAz6(1)B16(1)? + GoAs6(T)B16(T)B2,6(T) + G10A2,5(T)B26(7)> (33)

326(‘5)+25257326(T)+ <w1 ) B 6(v) + 1By 6(7)

= Fz sin(,7) — Fz sin(Q,7) + G1B1,6(1)° + G2B15(1)*B2s(7) + G3B16(7)B2s(7)?
+G4B16(0)A16(1)> + GsB16(1)A16(T)B26(T) + GeB16(1)A26(7)
+G7B26(1)® + GBas(1)A16(1)? + GoBas(T)A15(1)A26(T) + GroB26(T)A26(T)? (34)
The solutions of Egs. (31)-(34) can be assumed as

A16(1) = Py cOS(Q1 T+ a11) + Qy COS(Q27T + 1)
B (1) = Py sin(@17 + ) + Q; Sin(Q27 + f,)
Az6(T) = Py coS(Q1T + 03) + Qo COS(Q2T + fi5)
B,6(1) = Py sin(Q47 + ot4) + Qo SIN(Q,7 + fy)

(35)

In these expressions for i\w, B],e, i\z,e and Bz,e the two terms are harmonic oscillations with the forcing frequencies 2, and
Q5. Here Q4/€25 = (w + 6wn)/(w — 6wpy).

Substituting (35) into (31)-(34), using some trigonometric identities and equating the coefficients of the terms in
Cos(1T + 0q), SIN(1T + 0q), €OS(22T + f1), SIN(22T + f1), €OS(21T + o1z), SIN(R1T + 0tz), €OS(2T + f), SIN(Q2,T + f),
cos(£21T + a3), Sin(Q217T + o3), €oS(22T + f3), SIN(Q227T + P3), COS(AT + otg), SIN(QR1T + 0lg), COS(22T + f4), SIN(Q227T + f,) of
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Egs. (31)-(34), we obtain the following 16 equations in the 12 unknowns Py, P>, Qy, Qo, ¢4, 02, O3, %4, f1, B2, 3, Pa:
5 = 3~ 1~ 3 1~ 1~ >

Pi(1 - 91) = Fqcos(oy) + ZH] +§H4 Pl + ng +jH6 P]Pz

2 2
—2P1(1Q1 = Fqsin(o)

Qi1 — Q%) = Fy cos(By) + (3 28 +1H4) Q} + G s +%I:IG>Q1Q22

3 . 1~ 1~ 1~
+ <7H] +7H4>P1Q]2 + <§H3 +§H6>P1Q22

3~ 1~ 1~ 1~
+ (jHl +§H4>Q1P% + <5H3 +§H5)Q1P§
—2Q:01Q; = Fysin(By)
=z 3. 1~ 1~ 1~
Pi(1 — Q%) = Fqcos(oz) + <ZH1 +§ 4>P:13 + (iHB +§HG>P1P%
3.0 1, , (1 1 )
+ §H1+§H4 P1Q5 + §H3+§H6 P1Q;
— 2P =1::15i“(°<2)
3 1~ 1~ 1~
Qﬂl—Qb—F1wﬂ&)+<1h+§HO ?+(§H3+?ﬁ>@Q§
3. 1. S 1, X
2H1+§H4 QP+ 2H3 +§H6 Q1 P;
—2Q141Q, = Fysin(By)

2
®26\" 2| _z 3,1 sy (e L 1e 2
Py |:<_(D1,6> 'Ql:| = F, cos(az) + <4 G7 + 2610>P (2 Gy + 2G8 P, Py

(36)
1. 1= 2 3> 1~ 2
+ 7G2 +*Gs PQ5 + jG3 +§Glﬂ PyQ;
- 2P24291— = F sin(s)
w = 3. 1~ 1~ 1
Q, {(w?i) - Qﬁ] = F,cos(f;) + (71 Gy +§G10>Qz3 + (j G2 +jG8>Q2Q12
1. 1 3~ 1
+ (5 G2 +5Gs ) QP} + (5 Gs + 5610 | Q2P3
2 2 2
- 2Q2C292— Fy sin(B3)
w = 3. 1~ 1 1
P, [(wji) - _Q%:| = F; cos(aq) + <4 G7 + 2010)1’3 (i Gy + EGS>P2P12
1
< G, +—G > P,Q7 + < Ga+2Gm)P2Q2
— 2P0 2 20 = Fy sin(au)
W16
= 3. 1~ 1~ 1~
Q| (228)" - 3| = Facostp + 567 +5610) @ + (562 +50s ) Q7
W16 2 2
1. 1 3~ 1
+ (5 Gy +7G8)02P% + <§ G3 +ZG10> QP3
- 202§292”26 Fsin(By)
from Eq. (36) we get
O =0 | X3 =04
37
= mln = o

It can be found the fifth, sixth, seventh, eighth, thirteenth, fourteenth, fifteenth and sixteenth equations in (36) have the
same forms with the first, second, third, fourth, ninth, tenth, eleventh and twelfth equations, respectively (i.e., the fifth,
sixth, seventh, eighth, thirteenth, fourteenth, fifteenth and sixteenth equations can be omitted). The eight equations
retained yield a process to find Py, P, Q1, Q2, o4, 03, 1, B3, the amplitudes and the phase angles of the harmonic oscillations
with the forcing frequencies 2, and Q-.
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The contributions of backward wave Q; of the principal mode (m=1, n=6) and the forward and backward waves (P,,Q,) of
additional longitudinal mode (m=2) should be linearized when one considers the resonance of forward wave P; of the
principal mode. In this first approximation we have the following expressions:

F
Q = = (38)
V- @7+ 2L 20
—2{14
= arctan 39
= W26 2 ’ W26 2
Po=Fa f\[[(222) -] + (200220 (40)
W16 w16
o3 = arctan{ —20,0Qq =28 D26 { % - Qz} } (41)
W16 W16
Q=F (wzﬁ)z e ’ (zg %)2 (42)
T2 W16 2 2w 1,6
W36 602 6 2
= arctan{ —2{,Q —=2) —-Q 43
{raa e [l(2e) - ag)} (43)
where Eqgs. (38) and (39) are derived from the third and the fourth, Egs. (40) and (41) from the ninth and the tenth, and

Egs. (42) and (43) from the eleventh and the twelfth equations of (36), respectively.
Substituting Egs. (38), (40) and (42) in the first and second equations of (36), we obtain the equations of the phase
angles and the response curves for the forward wave of the principal mode o, P;

oy = arctan[—2(;21/(1 — Q%) — CHy + JHP} — G Hs + 1 He)P2 — GH1 + 1H)Q? — G Hs +1H6)Q3]  (44)

- - - - - - - - z2
[Pi(1 - Q%) — GHi+1H)P} — G H3 +1He)P1P2 — G H1 +1Ha)P1Q} — (3 H3 +1He)P1Q3 T + P15, Q1) =F,  (45)
The Eq. (45) is of the third degree in P2. Thus for a given value of Q; or Q, there are one or three real solutions for P2.
Similar to the approximation above, when one considers the resonance of backward wave Q; of the principal mode, the
contributions of forward wave P; of the principal mode and that of forward and backward waves (P,, Q,) of the additional
longitudinal mode (m=2) should be linearized, this gives

Py = ik (46)
V=@ + 000
o = arctan _2C1Q; (47)
1-02
z W26 > 2 ? W26 ’
P, =F, (w—> — (2C291 ) (48)
16 W16

2 2 2
= W26 2 e W26
=F —=2) —Q5| + (2 Q —) 49
Q2 2/ |:<CU1,6) 2] (282 D16 (49)
where Egs. (46) and (47) are derived from the first and the second, Eq. (48) from the ninth and the tenth, and Eq. (49) from
the eleventh and the twelfth equations of (36), respectively.

Substituting Egs. (46), (48) and (49) in the third and forth equations of (36), we obtain the equations of the phase angles
and the response curves for the backward wave of the principal mode f, Q,

By = arctan[-2{;2,/(1 — Q3) — G Hy + 1 H)Q? — A A3 + 1 He)Q? — G Hy + 1 Hy)P? — A H3 + He)P3]  (50)

- - - - - ~ ~ ~ z2
[Qi(1 — Q%) — CGHi +1H)Q} — G H3 +1H6)1Q2 — GH1 + 1 H)Q P} — G Hs + ) PP + Q14 Q,)° =F; (51)
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For the nonlinear responses of mode (m=2), it would be dealt with similar to the principal mode and are passed over
here.

Substituting the appropriate expressions of Py, P>, Q1, Q2, 01, 02, 03, ®ta, B1, B2, B3, B4 discussed above into Eq. (35), we
obtain the equations of the response curves for A;¢, B1g, A2 and Bag.

5. Analytical results

The dimensions and properties of the shell here are the same as those in the single mode case. Fig. 5(a) shows the
frequency-response relationship for the principal mode (m=1, n=6), with mode (m=2) participation, and Fig. 5(b) shows the
frequency-response relationship for mode (m=2, n=6).

It can be observed in Fig. 5(b), the response curves for mode (m=2, n=6) present four peaks. Two of them appear in the
neighborhood of linear resonance of the principal mode (m=1, n=6), and the other appear in the neighborhood of linear
resonance of mode (m=2, n=6), showing resonance of the principal mode is significantly affected by mode (m=2, n=6). In
this paper, the contribution of additional mode (m=2, n=6) on the response of the principal mode are considered in the
approximation discussed above.

The approximate analytical solutions have been plotted in Fig. 6 together with numerical results in the neighborhood of
linear resonance of the principal mode (m=1, n=6). The agreement between them is very good; in particular, it is excellent
for the lowest curve. Overall, Fig. 6 bespeaks of the good accuracy and efficiency of the method of harmonic balance
developed in the present paper.
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Fig. 5. Frequency—resgonse curves for w, = 50rad/s, Fo = 10N: (a) maximum of A; ¢(7) of the principle mode (m=1, n=6) with mode (m=2) participation;
and (b) maximum of A, () of mode (m=2, n=6).
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Fig. 6. Frequency-response curves for principle mode (m=1, n=6) with mode (m=2) participation for w, = 50rad/s, Fy = 10N: e, numerical solutions; —,

approximate analytical solutions.

6. Stability of the period solutions

The equations of the boundary curves of stable regions coincide with the equations of the locus of the vertical tangents

to the response curves determined by the conditions [13]
GIoM

Py
Defining in accordance with (45) and (51)

81(€1,P1,Q1,P2, Q) =
3 1

4 2

0 an

00,

% =0 (52)

1 1

2 2

{Pl(l - <7F11 +71:I4>P? - <7F13 +71316)P1P§

35 1; 1~ 1 2 =2
_(iHl +§H4>P1Q]2 — <§H3 +§HG>P1Q22:| +(2P1C191)2 _Fl =0
82(922,P1,Q1,P2,Q2) (53)
3~ 1~ 1~ 1~
= Qi1 -2 - (3 +574)QF - (5 + 3 s ) Q03 -
3, 1 o (1y 1 2]’ ) 52
§H1 +§H4 QPy — EHB +§H6 QiP5 +CQUG2)" -F =0
and differentiating these equations with respect to 2, and ,, respectively, we have
g 0 0P 0800 081 0Py 08100 (54)
0Q2; 0P;0Q2; 0Q,0Q2; 0P,02; 0Q30Q2;
g 08 0Py 05 0Q: 0 0Py | 3800 _ (55)
0Q; 0P10Q; 0Q 002, 0P,03Q; 0Qy00Q;

Calculating the terms in (54) from Eqgs. (38), (40), (42) and (53) we find that the terms in dg; /0Q; with i=1,2 and dg; /oP,, are
negligible with respect to 0g; /004, and for (55) vice versa, so that approximately (54) and (55) reduce to

81

00

2

00,
from which

02,
P,

oQ

0g1 0Py
oP 02y
082 0Q1 _
0Q; 02,

(56)

ag1 /6P1

T 0gi /o2
02,

0g2/0Qy

T 0g2/0
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Fig. 7. The frequency-response curves and the boundaries of the stable regions for A; ¢(t) of the principle mode (m=1, n=6) for w, = 50rad/s, Fy = 10N.

The conditions (52) are approximately satisfied when

%81 _ 98 _
ﬁ_Oand 30, =0 (58)

which from Eq. (53) immediately leads to the equations of boundary curves (59), consequently the locus of the vertical
tangents to the response curves yields the boundaries of the stable regions for P; and Q;.

3.0 1. 1. 1 3. 1.
2[131(1 — Q- <ZH1 +—H4>P§ - <—H3 +—H6>P1P§ - (—H1 +—H4>P1Q12

2 2 2 2 2

1~ 1~ 3~ 1~ 1~ 1~
—<§H3 +§HG>P1Q22] [(1 — - 3<ZH1 +§H4>P% - (§H3 +§H6>P§

3~ 1 VNmo (1 1 \ns PR
—(5H1+5H4)QF — (53 +5Hs ) Q}] +8P11Q) =0

59)
3. 1- 1- 1= 3. 1- (

20011 - @)~ (3 +5Ha)QF ~ (3 +5716) 20} — (31 +5 s )P}

1~ 1~ 3~ 1~ 1~ 1-~
(s + s )@ums] [ - @) - 3(3f + 54 )QF - (GHa+ 576 )

3~ 1~ 1~ 1~
_ <§H1 + §H4>P% _ <§H3 +§HG>P§] +8Qi((, Q1 =0
If, for a given value of w, the values of the amplitudes P, and/or Q; belong to a region of instability, then the corresponding
vibration of A; g is unstable. Stable oscillations of A; g only occur when both the values of the amplitudes P; and Q; belong
to a region of stability. In Fig. 7 we have represented the frequency-response curves and the boundaries of stable regions
for the principal mode (m=1, n=6) resonance. The instable regions of the curves are cross-hatched.

7. Conclusions

In this paper the dynamic response of a circular cylindrical shell subjected to a concentrated harmonic force, in the
spectral neighborhood of one of the lowest natural frequencies, and moving in a concentric circular path at a constant
velocity, is investigated. The following conclusions are drawn.

Additional circumferential waves n and multiples of frequency k in the mode expansions in the analysis of forced
vibrations of the shell have but a small effect on principal mode (m=1, n=6) resonant response compared with additional
axial half-waves m. This is particularly evident by comparing the nonlinear frequency-response curves for different mode
expansions (Fig. 4). The present results allow us to state that it is proper to adopt two neighboring axial modes (K = 1,
No =N =6, M = 2) to study the dynamics of circular cylindrical shells in the neighborhood of one of the lowest natural
frequencies corresponding to mode (m=1, n=6).

Adopting double modes (K =1, Ng =N =6, M = 2), the analytical solution has been carried out by the method of
harmonic balance for dynamic response of the model analyzed in this study. The accuracy of the method has been validated
via comparisons with numerical results, which shows that the present approach is efficient for the dynamic analysis of the
circular cylindrical shell problem.
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Due to the moving load, it exist two peaks on the frequency-response curves for the principal mode (m=1, n=6), namely
forward and backward waves. The linear resonant frequencies of them are w = w6+ 6w, and w = wip— 6wy,
respectively, symmetrical about one of the lowest nature frequency w1, and the nonlinear resonant frequencies of them
are close to the linear ones. The stabilities of period solutions of the system is investigated in detail, and results show that
for the three solutions of forward or backward wave in the nonlinear regions, the highest and the lowest values are stable
and the other one is instable.
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Appendix

The functions in Eq. (13) are given by

= Eh o UEh Eh oa = Eh
TR A — @) T 2RA— @) P T 20— M T RA+
The functions in Egs. (18) and (19) are given by
c
CI,G = zphwl,G
P FoU1(X0)
nph fé U2 (x) dx

Eh {1&5UWmﬂphw®UMWm 454 f¢ Ui 0[U; (01 dx

Toh=@) TR 2w R [LU2(0dx 2R? [LU2(x) dx
9 fo U3oUs ) dx | 3 J5 Ur (U4 o[U )] dx
2R? [FU2(x)dx 8 [FU2(x)dx
The non-dimensional variables and parameters in Eqgs. (31)-(34) are given by

~ t Byg(t A (t By s(t
T =w6t,A16(T) = 1;51() Big(r) =7 16() L Azs(1) = 2;() Bss(t )—%()
w + 6wy, w— 6w, = L H L =, F] I~ Fz

Q= Q= =l =2 F - .

! W16 2 wig wig 2 wig ! 2hw? g z 2hwi g
~ Hh» - Hyh? . H3h> .  H4h> - Hsh> -  Hgh?
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Wi Wi Wi Wi 16 Wi
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