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1. Introduction

Plates continuous over intermediate supports have been used extensively in civil, aircraft and marine structures. The
vibration analysis of these plates is important for avoiding the resonance. According to the length of the supports, the
plates with straight line supports are divided into two kinds, one is plates continuous over full line supports and another is
plates continuous over partial line supports. For the plates with full line supports, the dynamic characteristics have been
investigated by using different methods. An approximate analytical method was used by Takahashi and Chishaki to
determine the vibration characteristics of plates continuous over full line supports in one direction [1] and in two
directions [2]. Numerical results were given for simply supported plates. The receptance method was used by Azimi et al.
[3] to analyze the free vibration of thin rectangular plates continuous over full line supports parallel to two simply
supported edges and with other two opposite edges clamped or simply supported. Numerical results were presented for
four-equal-span, four-unequal-span, three-equal-span and three-unequal-span plates. The other methods, such as the
Rayleigh-Ritz method [4,5], the finite strip method [6], the finite layer approach [7] and the Lévy method [8] were also
used. Lin and his cooperators [9,10] analyzed free vibration of a finite row of continuous skin-stringer panels and column-
supported cooling towers. Mead and Yaman [11,12] studied the harmonic response of rectangular sandwich plates with
multiple stiffening and beams on multiple linear supports. For the plates with partial line supports, the dynamic study of
these plates is rather limited. Xiang et al. [13] investigated the vibration behaviors of continuous rectangular plates by
using the discrete singular convolution algorithm. Some results for the rectangular plates continuous over partial internal
line supports were also presented. All of the above papers are limited to the plates with uniform thickness.
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In this paper, a discrete method [14] is expanded for analyzing the free vibration of rectangular plates with variable
thickness and continuous over full range line supports or partial line supports, which are simulated by concentrated loads
with Heaviside unit functions and Dirac delta functions. No prior assumption of shape of deflection used in the finite
element method is employed in this method. Basing the first shear deformation theory, the fundamental differential
equations of a plate involving Heaviside unit function and Dirac delta function are established. By transforming these
equations into integral equations and using numerical integration, the solutions are obtained at the discrete points.
Furthermore, by choosing the integral area in an appointed order, the solutions are only related to the unknown quantities
on the boundary and that makes the number of unknown quantities decrease greatly. The solution for deflection is chosen
as the Green function and used to obtain the characteristic equation of the free vibration. In this paper, the efficiency and
accuracy of the present method for the continuous rectangular plates are investigated, and some numerical results and
mode shapes are presented for the plate with variable thickness and continuous over full range and partial line supports.

2. Fundamental differential equations

Consider a rectangular plate of length a, width b, density p. An xyz coordinate system is used in the present study with
its x—y plane contained in the middle plane of the rectangular plate, the z-axis perpendicular to the middle plane of the
plate and the origin at one of the corners of the plate, as shown in Fig. 1.

In this paper, the concentrated loads with Heaviside unit functions and Dirac delta functions are used to simulate the
line supports. The deflection w, the rotations 6, 0y, the shearing forces Qx, Qy, the twisting moment My, and the bending
moments My, M, are used as variables.

As given in Ref. [15], the fundamental differential equations of the plate having a concentrated load P at a point (xq,y;),
the line support R.(x,y) parallel to x-direction within the domain of x.; <x<x and the line support R4(x,y) parallel to
y-direction within the domain of y4; <y <y, are as follows:

2Q, Q, m

ox + W +Po(x — xq)é(y -y + cz:(:) ECH[(XCZ — X)Xe — Xe1)]O(X — XY — Ya)
+> RiH[Ya2 — Y)Va — Ya)IdX — X))y — yq) = O, (1a)
d=0
O0My, oM, .
x Ty ¥=0 (1b)
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ox + oy —-Qx=0, (1)
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Fig. 1. Discrete points on a rectangular plate.
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where D = Eh3/(12(1 —v2)) is the bending rigidity; E and G are modulus and shear modulus of elasticity, respectively; v is
Poisson’s ratio; h is the thickness of plate; t; = h/1.2; d(x — Xq), 6(Y — yr), d(x — X¢) and 3(y — y4) are Dirac delta functions;
H[(xc2 — Xc)(Xc — Xc1)] and H[(V42 — Ya)(Ya — Y41)] are Heaviside unit functions.

By introducing the non-dimensional expressions,

[X1,X2] =

[Qy, Q. [X3,X3,Xs5] = [Mxya My, My], [Xs,X7,Xs] = [0y, Ox, w/al],

D (1 v2) D (1
where Dy = Eh2 0/(12(1 — v?)) is the standard bending rigidity; ho is the standard thickness of the plate, Egs. (1a)-(1h) can be
expressed as the following simple equation system:

8 oX; oX; .,
Z {Fm or FRas gt mes} + P(n — ng)d(C — o + ZRcH[(ﬂcz NN = NeId — 1) — La)dne
s=1 c=0

4+ " ReH[Caz — O = La))d(n — 1S — La)die
d=0
=0 (t=1~8), (2)

where P = Pa/(Do(1 — v)); Rc = Rca/(Do(1 — v?)); Rg = Rqa/(Do(1 — v2)); 6(n — 1), 0 — {p), (7 — 1) and 6({ — {y) are Dirac
delta functions; H[(1 — 7). — Ne1)] and H[(Cg2 — {a)(Ca — 41)] are Heaviside unit functions; Fys, Fors and Fss are given in
Appendix A.

3. Discrete Green function

As given in Ref. [14], by dividing a rectangular plate vertically into m equal-length parts and horizontally into n equal-
length parts as shown in Fig. 1, the plate can be considered as a group of discrete points which are the intersections of the
(m + 1)-vertical and (n + 1)-horizontal dividing lines. To describe the present method conveniently, the rectangular area,
0<n<mn;, 0<{<{, corresponding to the arbitrary intersection (i,j) as shown in Fig. 1 is denoted as the area [i,j], the
intersection (i,j) denoted by O is called the main point of the area [i,j], the intersections denoted by ~are called the inner
dependent points of the area, and the intersections denoted by e are called the boundary dependent points of the area.

By integrating Eq. (2) over the area [i,j] and applying the trapezoidal integration rule, the simultaneous equation for the
unknown quantities Xg; = Xs(1;, {;) at the main point (i,j) of the area [i,j] is obtained as follows:

8 i
Z {Flts Z ﬁik(xskj skO) + Fars Z ﬁ]l(xszl - sOI) +F¢s Z Z szﬂ]lxskl}
k=0

s=1 k=0 =0
+ <Puiqujr + ZRCHCuicujd + ZRdeuicujd> O01e=0 (t=1~8), (3)
c=0 d=0
where By = o /m; By = o/n; o =1 = (Bor +0w)/2; o =1— (0o +3)/2; i=1~m; j=1~n; uq=u@m;—1ny);
W = u((j; — {p); Uie = u(; — 1) wig = u((j — La); He = H{(; — 1) — el Ha = HIC a2 — {a)(Ca — Lan)l
By retaining the quantities at main point (i,j) on the left hand side of the equation, putting other quantities on the right
hand side and using the matrix transition, the solution X,; of the above Eq. (3) is obtained as follows:

8 (i
=> {Z BirAptXiko — Xuj(1 — di)] + Z BiBpe[Xeor — Xea(1 — 1+ Z Z BBt CotwiXupa (1 — 51@;1)}

=1 (iZo k=0 1=0
—Ap1 (Puiqujr + ZRchUichd+ ZRdeuichd>, (4)
c=0 d=0

where p = 1~8, Ay, Bpr and G,y are given in Appendix A.
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In Eq. (4), the quantity X,; is not only related to the quantities Xy, and X;o at the boundary dependent points but also
the quantities Xu;, X and Xy, at the inner dependent points. The maximal number of the unknown quantities is
6(m — 1)(n — 1) + (4m + 4n + 1). In order to reduce the unknown quantities, the area [i,j] is spread according to the regular
order as [1,1],[1,2],...,[1,n],[2,1L[2,2],...,[2,7],...,[m, 1],[m,2],...,[m,n]. With the spread of the area according to the
above mentioned order, the quantities X, Xy and Xy at the inner dependent points can be eliminated by substituting the
obtained results into the corresponding terms of the right hand side of Eq. (4). By repeating this process, the quantity Xp; at
the main point is only related to the quantities X,.o (r = 1,3,4,6,7,8) and Xy, (s = 2,3, 5,6, 7, 8) at the boundary dependent
points. The maximal number of the unknown quantities is reduced to (4m + 4n + 1). It can be noted the number of the
unknown quantities of the present method is fewer than that of the finite element method for the same divisional number
m(>3) and n(>3). Based on the above consideration, Eq. (4) is rewritten as follows:

6
Xpij = Z

d=1

i i m n
{ Z ﬁpijderfO + Z bpijngSOg } + apijp + Z q]pijcdRC + Z quij(_‘thh (5)
f=0 g=0 c=0 d=0

where @pjjsg, Bpijgd, Qpij» Q1pijed A0 Gopijcq are given in Appendix B.

Eq. (5) gives the discrete solution of the fundamental differential Eq. (2) of the bending problem of a plate with a
concentrated load and line supports, and the discrete Green function is chosen as Xg;a?/[PDo(1 —v?)], that is
W(X0,Y0,X,Y)/P.

4. Characteristic equation

By applying the Green function w(xo,Yo,X,y)/P which is the displacement at a point (xp,yo) of a plate with a
concentrated load P at a point (x,y), the displacement amplitude W(xg, o) at a point (xg, yo) of the rectangular plate with
line supports during the free vibration is given as follows:

~a b _
W(Xo.y0) = /0 /0 phor?W(x,y)[W(Xo.yo.x.)/P] dx dy (6)

where p is the mass density of the plate material.
By using the trapezoidal integration rule and the following non-dimensional expressions,

4 _ pohow*a P, y) hx.y)

k=1/w*, HmO=

T Do(1 -2y 0o ho
Ww(x, . W(Xo, Yo, X,y) Do(1 — v2
Wm0 = (ay), G(1o. Lo.1.0) = (03(20 Y O(Fa ),

where a and b are the length and width of the plate, respectively; p, is the standard mass density, the characteristic
equation is obtained from Eq. (6) as

Koo Koi Kooz ... Kom
Kio Kii K ... Kin
Ko Ku Kz ... Kom|=0, 7)
Ko K Ko ... Kum
where
BroHjoGiojo — kdjj Bn1Hj1 Giojt Br2Hj2Gioj2 e BrnHjnGiojn
BroHjoGitjo BniHj1Gijn — ko BraHp2Girj e BanHinGitjn
Kij=Bmi| ProHioGijo BniHji Gigja BnaHppGigj — ko -+ BunHinGizjn
BroHjoGinjo B Hj1 Ginjn BraHj2Ginj2 ~++ BanHinGinjn — kdyj

in whichi=0,1,...,m; j=0,1,...,n.
5. Numerical results

To investigate the validity of the proposed method, numerical results are presented for several specific problems and
comparisons are made with previously published results. For the plates with variable thickness in one direction, the
thickness h changes according to h = ho(1 + ax/a). In all tables and figures, the symbols F, S, and C denote free, simply
supported and clamped edges. Four symbols such as CSFS designate the boundary conditions of the plate, the first
indicating the conditions at x = 0, the second at y = 0, the third at x = a and the fourth at y = b. All the convergent values of
the frequency parameters are obtained for the plates by using Richardson’s extrapolation formula [16]. Some of the results
are compared with those reported previously.
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5.1. Two-span continuous plates

Fig. 2 shows the plate with two-span partial line supports. In this figure, the symbols q, b, c and d denote the length of
the plate, the width of the plate, the length of the line support parallel to x-direction and the length of the line support
parallel to y-direction, respectively. In order to examine the accuracy of the approach described, numerical results are
carried out for SSSS, SSCS and CSCS square plates with an one-way line support and SSSS, CCCC, CSCS and CSFS rectangular
plates with two-way line supports. These plates with full line supports are considered by choosing c/a =0,d/b =1 and
c/a=1,d/b =1, respectively. The lowest 10 frequency parameters for plates with an one-way support are presented in
Table 1. The lowest 4 frequency parameters are presented in Table 2 for plates with two-way supports and aspect ratio
b/a=0.5,1.0,1.5,2.0. The results of these plates obtained by Xiang et al. [13] are also shown in the two tables. It can be
seen these numerical results agree well.

The next example treated here is the square plates with two-way partial line supports with the partial line support.
Three cases of the partial line support c/a = d/a = 0, 0.4, 0.8 are considered. The numerical values for the lowest four
natural frequency parameter A of SSSS, CCCC and SSCS plates with partial line supports and with variable thickness
(«=0.1, 0.3, 0.5, 0.8) are given in Tables 3-5. From these tables, it can be noted that the frequency parameters increase
with the increase of the thickness. The boundary conditions affect the frequency parameters significantly. The nodal
patterns of the first four modes of SSSS square plates with c/a = d/a = 0,0.4,0.8, « = 0.1,0.5,0.8 are shown in Fig. 3. From
Fig. 3, it can be seen that the effects of the changes of the thickness on the nodal patterns are prominent. With the increase
of the thickness, the vertical straight line becomes curve line for the plate with c/a = 0, the new vertical nodal line will
appear in the thinner part of the plate with c¢/a = 0.8 for third and fourth modes.

In order to investigate the effect of the length of the line support on the frequency parameters, the numerical results are
presented for SSSS square plate with uniform thickness. The lowest four frequency parameters versus the ratio of the length
of line support and the side of the plate are shown in Fig. 4. It can be found the changes of the lowest four frequency
parameters with the increase of the ratio c/a are different. When c/a increases from 0 to 0.2, the first, second and third
frequency parameters increase, but the fourth frequency parameter keeps constant. When c/a increases from 0.2 to 0.3, all
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Fig. 2. Rectangular plate with two-way partial line supports.

Table 1
Natural frequency parameter A for square plates with an one-way full line support (h/a = 0.01,« = 0.0).

Mode sequence number Boundary conditions

SSSS SSCS CSCS

Present Ref. [13] Present Ref. [13] Present Ref. [13]
1st 7.19 7.19 7.59 7.60 8.51 8.53
2nd 8.52 8.53 9.34 9.34 9.94 9.96
3rd 9.09 9.10 9.48 9.51 9.96 9.99
4th 9.95 9.96 10.65 10.66 10.99 11.01
5th 11.57 11.60 11.72 11.74 12.09 12.12
6th 12.10 12.12 12.55 12.58 12.77 12.80
7th 13.16 13.26 13.64 13.76 14.62 14.72
8th 14.29 14.39 14.38 14.48 14.73 14.78
9th 14.29 14.39 14.67 14.80 14.93 15.15

10th 14.63 14.72 14.91 15.01 15.50 15.68
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Table 2

Natural frequency parameter / for rectangular plates with two-way full line supports (h/a = 0.01,a = 0.0).
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B.C b/a Ref. Mode sequence number
1st 2nd 3rd 4th
SSSS 0.5 Present 14.36 14.71 17.01 17.21
1.0 Present 9.09 9.95 9.95 10.64
Ref. [13] 9.10 9.96 9.96 10.65
1.5 Present 7.73 8.08 8.90 9.14
2.0 Present 7.19 7.36 8.52 8.63
Ccccc 0.5 Present 17.20 17.48 20.00 20.19
1.0 Present 10.63 11.53 11.53 12.26
Ref. [13] 10.65 11.55 11.55 12.29
1.5 Present 9.13 9.46 10.40 10.63
2.0 Present 8.62 8.76 10.04 10.14
SSCS 0.5 Present 14.45 14.99 17.06 17.40
1.0 Present 9.34 10.14 10.65 11.24
Ref. [13] 9.34 10.15 10.66 11.25
1.5 Present 8.07 8.39 9.79 9.98
2.0 Present 7.59 7.74 9.32 9.49
CSFS 0.5 Present 13.16 14.87 15.99 16.18
1.0 Present 713 8.47 10.25 10.89
1.5 Present 5.32 6.05 9.06 9.14
2.0 Present 4.53 4.96 7.12 7.75
Table 3
Natural frequency parameter A for SSSS square plates with two-way partial line supports and variable thickness (h/a = 0.01,d/a = c/a).
c/a o Ref. Mode sequence number
1st 2nd 3rd 4th
0 0.1 Present 7.36 7.36 7.64 9.31
0.3 Present 7.64 7.69 8.04 9.73
0.5 Present 7.89 7.99 8.44 10.13
0.8 Present 8.23 8.41 8.99 10.70
0.4 0.1 Present 9.31 9.94 9.98 10.38
0.3 Present 9.64 10.26 10.53 10.97
0.5 Present 9.92 10.52 11.07 11.57
0.8 Present 10.30 10.88 11.85 12.42
0.8 0.1 Present 9.31 10.16 10.19 10.94
0.3 Present 9.65 10.53 10.74 11.52
0.5 Present 9.95 10.82 11.28 12.13
0.8 Present 10.34 11.20 12.06 13.01
Table 4
Natural frequency parameter A for CCCC square plates with two-way partial line supports and variable thickness (h/a = 0.01,d/a = c/a).
c/a o Ref. Mode sequence number
Ist 2nd 3rd 4th
0 0.1 Present 8.96 8.97 9.34 10.89
0.3 Present 9.27 9.36 9.85 11.38
0.5 Present 9.53 9.72 10.36 11.83
0.8 Present 9.88 10.22 11.09 12.47
0.4 0.1 Present 10.87 11.69 11.73 12.31
0.3 Present 11.26 12.06 12.36 13.01
0.5 Present 11.58 12.37 13.00 13.71
0.8 Present 12.00 12.78 13.92 14.71
0.8 0.1 Present 10.87 11.78 11.82 12.57
0.3 Present 11.27 12.18 12.45 13.27
0.5 Present 11.59 12.51 13.08 13.96
0.8 Present 12.02 12.95 14.00 14.96
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Table 5
Natural frequency parameter A for SSCS square plates with two-way partial line supports and variable thickness (h/a = 0.01,d/a = c/a).

c/a o Ref. Mode sequence number
1st 2nd 3rd 4th
0 0.1 Present 7.47 7.52 8.58 9.72
0.3 Present 7.75 7.81 9.08 10.15
0.5 Present 7.96 8.12 9.54 10.56
0.8 Present 8.27 8.54 10.18 11.12
0.4 0.1 Present 9.45 10.02 10.75 11.20
0.3 Present 9.72 10.29 10.53 11.41
0.5 Present 9.98 10.54 12.03 12.57
0.8 Present 10.33 10.89 11.91 13.49
0.8 0.1 Present 9.49 10.30 10.98 11.60
0.3 Present 9.77 10.60 11.65 12.30
0.5 Present 10.03 10.86 12.28 12.97
0.8 Present 10.39 11.24 13.16 13.90

Fig. 3. Nodal patterns for SSSS square plates with two-way partial line supports and variable thickness (h/a = 0.01,d/a = c/a).
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the frequency parameters increase. When c/a increases from 0.3 to 0.5, the first frequency parameter keeps constant, the
second, third and fourth frequency parameters increase. When c/a is larger than 0.5, the frequency parameters almost keep
constant. It can also be found that the lowest four frequency parameters are very close for the plate with the ratio c/a = 0.2.

5.2. One-way three-span continuous plates

Fig. 5 shows the one-way three-equal-span SSSS rectangular plate continuous over partial line supports parallel to the
y-direction. The plate passes over partial line supports at x = a/3 and 2a/3 and has aspect ratio b/a = 1/3. The simply
supported boundary condition is considered. The lowest four frequency parameters are listed in Table 6 for the plates with

13 T T T T T T T T
18t ——

2 e -
11 J

P = W = = =P e
< 10 | T : |
9 i
8 ]

0 01 02 03 04 05 06 07 038
c/a

Fig. 4. The frequency parameters versus the ratio c/a of the length of line support and the side of SSSS square plate with two-way partial line supports

(d/a=c/a).
|
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l< o, <« 7]

Fig. 5. One-way three-equal-span rectangular plate with partial line supports parallel to the y-direction.

Table 6
Natural frequency parameter / for one-way three-equal-span SSSS rectangular plates with partial line supports parallel to the y-direction (h/a = 0.01).

c/a o Ref. Mode sequence number
1st 2nd 3rd 4th

0 0 Present 13.66 14.20 15.30 19.96
0.1 Present 13.95 14.58 15.69 20.41
0.5 Present 14.64 16.16 17.31 21.67
1/9 0.0 Present 13.66 14.27 15.58 21.91
0.1 Present 13.95 14.65 15.98 22.22
0.5 Present 14.67 16.24 17.59 22.96
1/3 0.0 Present 13.66 14.28 15.60 21.91
Ref. [3] 13.68 14.31 15.70 21.64
0.1 Present 13.95 14.66 16.00 22.24

0.5 Present 14.67 16.25 17.61 22.98
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Fig. 6. Nodal patterns for one-way three-equal-span SSSS rectangular plates with partial line support parallel to the y-direction.

a/4

Fig. 7. One-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction.

Table 7
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Natural frequency parameter / for one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction (h/a = 0.01).

c/a o Ref. Mode sequence number
1st 2nd 3rd 4th
0 0.0 Present 14.74 18.18 18.86 19.55
0.5 Present 16.43 19.41 21.00 22.51
0.8 Present 17.32 19.82 22.26 24.56
1/12 0.0 Present 14.76 18.18 18.95 19.75
0.5 Present 16.46 19.46 21.12 22.68
0.8 Present 17.35 19.90 22.38 24.68
1/4 0.0 Present 14.77 18.18 18.96 19.77
Ref. [3] 14.76 18.25 19.06 19.97
0.5 Present 16.46 19.47 2113 22.70
0.8 Present 17.35 19.91 22.38 24.67
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c/a=0,1/9,1/3 and variable thickness o = 0,0.1,0.5. The results obtained by Azimi et al. [3] are also shown in this table.
The nodal patterns of the first four modes of these plates are shown in Fig. 6.

Fig. 7 shows the one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-
direction. The plate passes over partial line supports at x =a/4 and 3a/4 and has aspect ratio b/a = 1/4. The simply
supported boundary condition is considered. The lowest four frequency parameters are listed in Table 7 for the plates with
c/a=0,1/12,1/4 and variable thickness « = 0, 0.5,0.8. The results obtained by Azimi et al. [3] are also shown in this table.
The nodal patterns of the first four modes of these plates are shown in Fig. 8. The mode shapes of the plate with c/a = 1/4
are very close to the exact mode shapes presented by Azimi et al. [3].

c/a=1/4

Fig. 8. Nodal patterns for one-way three-unequal-span SSSS rectangular plate with partial line supports parallel to the y-direction.

Table 8
Natural frequency parameter A for three-ply symmetrically laminated CCCC square plates (0/907/0) with two-span partial line supports and variable
thickness (h/a = 0.01).

Case d/a o Ref. Mode sequence number
1st 2nd 3rd 4th
One-way 0.5 0.0 Present 19.32 19.76 20.65 21.92
0.3 Present 20.51 20.94 21.92 23.38
0.5 Present 21.15 21.55 22.59 23.97
0.8 Present 21.98 22.35 23.45 24.71
1.0 0.0 Present 19.32 19.76 20.65 22.40
0.3 Present 20.51 20.95 21.94 23.71
0.5 Present 21.16 21.58 22.67 24.31
0.8 Present 21.98 22.41 23.55 25.16
Two-way 0.5 0.0 Present 19.76 20.02 21.92 2214
03 Present 20.94 21.26 23.38 23.79
0.5 Present 21.55 21.93 23.97 24.45
0.8 Present 22.35 22.77 24.71 25.70
1.0 0.0 Present 19.76 20.02 22.40 23.16
0.3 Present 20.95 21.28 23.71 24.71
0.5 Present 21.58 21.98 24.31 25.73

0.8 Present 22.41 22.83 25.16 27.17
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5.3. Two-span continuous symmetrically laminated plates

At last, natural frequency parameters are given for three-ply symmetrically laminated CCCC square plates (0//907/0) with
variable thickness. The following plate parameters are adopted: E;/E; = 40.0, G12/E; = 0.6, v13/E; = 0.25. Here, E; is the
axial modulus in 1-direction, E, is the axial modulus in 2-direction, G, is the shear modulus in 1-2 planes, v, is the
Poisson’s ratio associated with loading in the 1-direction and strain in the 2-direction. Some numerical results are given for
one-way two-span and two-way two-span plates with partial and full supports by choosing c/a =0 and d/a = 0.5,c/a=0
and d/a=1,c/a=d/a=0.5, and c/a = d/a = 1.0, as shown in Fig. 3. These numerical results are presented in Table 8.

6. Conclusions

A discrete method is proposed for analyzing the free vibration problem of rectangular plate continuous over full range
line supports or partial line supports. No prior assumption of shape of deflection used in the finite element method is
employed in this method. Concentrated loads with Heaviside unit functions are used to simulate the line supports. The
characteristic equation of the free vibration is obtained by using the Green function. The effects of the line support, the
variable thickness and aspect ratio on the frequencies are considered. Some results by the present method have been
compared with those previously reported. It shows that the present results have a good convergence and satisfactory
accuracy.

Appendix A
p=Db/a;l = pu1 —v*)(ho/hy*;] = 2u(1 +v)(ho /h)*; T = (1 + v)/5)(ho /@) (ho /h);
Fi111 = F124 = F133 = F156 = Fi67 = F188 = 1; F1a6 = V; F212 = F223 = Fa35 = Fag7 = Fas6 = U
Fys7 = uv;Fa7s = 1;F321 = F332 = —; F345 = F354 = —[; F363 = —J; F370 = —T; F377 = 1
F3g1 = —uT; F3g6 = p; other Fys = 0.
Ap1 = Vp1.Ap2 = 0,Ap3 = V0, Apa = V3. Aps = 0,
Ap6 = Ypa + VVps. Ap7 = Vpe Aps = Vp7s
Bp1 = 0,Bpa = {Yp1,Bps = 17p3,Bpa = 0,
Bps = UYp2,Bps = U)pe> Bp7 = U(VYp1 + Vps)s Bps = Vpss
Cpikt = U(Vp3 + KiaVp7), Coakt = V2 + KiiVps.
Cozt = JVp6> Cpart = Tkt pas> Coskt = TkiVps»
Coskt = =177 Cortt = —Vps> Cpsiat = 0, [V = [Tpud ™
V11 = BixV12 = Hﬁjjjzz = —Hﬁij=723 = Bii» V25 = .uﬁjjv
V31 = _:uﬁij’)_)BB = ﬂﬁjjﬂ_’% = BitVaa = —Iijﬁij>7746 = B
Va7 = 1B, Vss = —LiBij» V56 = VBii V57 = UBjj» Vo3 = —JiiBiis
Voo = B> Vo7 = Bins 771 = —1kiiByjs V76 = B> V78 = Bii» 782 = —HjiBy»
Vs7 = Bij» Vs = Bjj. other . = 0, B = B Bj;.
Appendix B

A1ioi1 = G3io2 = Uaioiz = 1, Tsioia = A7iois = Agiois = 1
baojjii = b3gjiz = bsgjz =1, begjia = b70j5 = bsojje = 1, b30002 =0

8 (i
pijfa = {Z BiApt[Aekoga — Terja(1 — Oxi)]

t=1 (k=0

J
+ Y BiBpt[@ropa — Qa1 — )]
=0

k=0 =0 t=1 (k=0

i _ 8 (i B B ]
+ Z BitBiCotki@raa(1 — 5ki5y)}bpijgd = Z {ZﬂikApt[btkOgd — byga(1 — 0k
J _ _
+ Z BiiBpt[broiga — biitga(1 — 9yp)]
=0

'y B
) BuBiCottabikiga(1 — 51«'51]')}
=0 =0

8

i
eSS {ZﬂikAptWtkO — Qi (1 = O1i)]
=0
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J i J
+> " BiBotdeor — Q1 = I+ > > BuBjiCota — Apt uiqujr}
=0

k=0 [=0

8 (i
Tipijea = Y {Z BixApeld1ekocd — T1ekjca(1 — Oki)]

e=1 (k=0

J
+> BiBpel@1eoicd — Teitca(1 — 9]
=0

i
+3 3 BuBiCoeriexica(l — 5m51j)} — AptHeicujg

k=0 [=0

8 (i
Topijea = {Z BixApeld2ekocd — G2ekjcd(1 — Oki)]

e=1 (k=0

J
+> BiBpel@2e0icd — Taeitca(1 — 3]
=0

i
+ BitBitCpetaGexica(1 — 51«'51]‘)} — Ap1Hglliclg.
=0 1=0
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