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b McGill University, McDonald Engineering Building, 817 Sherbrooke West Montreal, Canada H3A 2K6
c EDF Research & Development, Acoustics and Mechanical Analysis Department, 1 avenue du Général de Gaulle, 92141 Clamart, France
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A rotor–stator model of a turbogenerator is introduced in order to investigate speed

transients with rotor-to-stator rubbing caused by an accidental blade-off imbalance. In

order to assess the angular deceleration of the rotor due to rubbing, the angular position

of its cross-section is considered as an unknown of the problem. Displacement fields are

contact conditions are solved through an explicit prediction–correction time-marching

procedure combined with the Lagrange multiplier approach dealing with a node-to-line

contact strategy. The developed numerical tool is suitable for analyzing rotor–stator

interactions in turbomachines as the system passes through critical speeds during an

accidental shutdown. The sensitivity of the system response to modeling, physical and

numerical parameters is investigated. The results highlight the significant role of the

friction coefficient together with the diaphragm modeling, from rigid to fully flexible, in

the interaction phenomenon. Rigid models have the advantage of simplicity and provide

reasonable estimations of the overall response of the turbine. A flexible model, however,

may be more computationally intensive but is more appropriate in order to accurately

capture quantities of interest such as shaft eccentricity and bearing loads.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In nuclear power plant turbosets similar to the one pictured in Fig. 1, the reference design-basis accident consists of a
blade-off in the last stage of the low pressure turbine. During an accidental shutdown, a severe rotor–stator interaction
may occur at critical speeds due to large shaft line displacements originated by the lost blade high imbalance excitation.
The potentially induced rubbing between the shaft and the stator, as illustrated in Fig. 2, leads to an important angular
deceleration rate and highly modifies the dynamics of the turbogenerator. Risks of failure of the contacting components
may occur due to the heavy friction torque. It is then of primary importance to ensure that the adopted turbine design is
capable of going through critical speeds without catastrophic consequences for the shaft line.

Rubbing, known to be a serious malfunction in turbomachinery, has been the subject of a large amount of research and a
detailed overview is provided in [1,2]. First mathematical models dedicated to rubbing issues were as simple as Jeffcott
rotors [3]. They were then extended to flexible rotors through finite element approaches and/or modal synthesis techniques
[4] allowing for more realistic descriptions. However, these studies were limited to constant angular velocity steady states,
which implies an increase of the driving torque in case of rubbing, for instance. In [4], equations of motion were rewritten
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Nomenclature

ddij
damping coefficients of diaphragm D2

doij
damping coefficients of the oil-film

Ed Young’s modulus of the diaphragm
ðer ; es; ezÞ local curvilinear frame of curved beam
Es Young’s modulus of the shaft
Fur shaft bearing load along ur

Fvr shaft bearing load along vr

Gd shear modulus of the diaphragm
Gs shear modulus of the shaft
Ibx
; Iby

; Ibw
blade moments of inertia

Iirr
; Iirz

; Iirp
curved beam moments of inertia of diaphragm
D3

Irdx
moment of inertia of the rigid disk

Irdz
polar moment of inertia of the rigid disk

Isp polar moment of inertia of the shaft
Isx moment of inertia of the shaft
Jb blade polar moment of inertia
Jir curved beam polar moment of inertia of

diaphragm D3
kdij

stiffness coefficients of diaphragm D2
koij

stiffness coefficients of the oil-film
ks transverse shear form factor of the shaft
lb blade length
ls total length of the shaft
mdij

mass coefficients of diaphragm D2
mi mass imbalance
Mrd mass of the rigid disk
ri radial coordinate of the mass imbalance
rir curved beam average radius of diaphragm D3

rs outer radius of the shaft
s curved beam path variable
Sb blade cross-section area
Sir curved beam cross-section area of diaphragm

D3
Ss circular cross-section area of the shaft
Tb blade kinetic energy
Ti kinetic energy of the mass imbalance
Tir curved beam kinetic energy of diaphragm D3
Trd kinetic energy of the rigid disk
Ts kinetic energy of the shaft
ðub; yub

Þ axial displacement and torsional twist in er

Ub blade strain energy
ðuir ; yirs

Þ curved beam axial displacement and torsional
twist along es

Uir curved beam strain energy of diaphragm D3
ður ; yvr Þ rotor bending displacements in ðeX ; eZÞ

Us strain energy of the shaft
ðvb; ywb

Þ bending displacements in ðer ; ezÞ

ðvir ; yirz
Þ curved beam bending displacements in ðer ; esÞ

ðvr ; yur Þ rotor bending displacements in ðeY ; eZÞ

ðwb; yvb
Þ bending displacements of blade in ðer ; esÞ

ðwir ; yirr
Þ curved beam bending displacements in ðes; ezÞ

Xd generalized displacements of diaphragm D2 or
D3

Xr rotor generalized displacements
wr rotor axial displacement alors eZ

br rotor torsional twist along ez

jr rotor angular position along ez

rd mass density of the diaphragm
rs mass density of the shaft
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considering a non-constant but known angular velocity law. Only Dai [5] has proposed a rigid rotor model where an
additional equation computes the instantaneous rotational velocity depending on the contact forces.

The present work is a preliminary study of a design-basis accident in a nuclear power plant. A large-scale turbine
operating at nominal conditions is suddenly disconnected from the electrical network after a blade-off. The main objective
of this work is to suggest a predictive numerical tool in order to assess the ability of the designed turbine to go through
critical speeds without catastrophic consequences. The present paper focuses on an accidental shutdown originated by a
blade-off yielding radial rubbing between the shaft and the diaphragm as displayed in Fig. 2. Quite similar situations
involving blade-tips to casing interaction have already been investigated in [6,7]. Nevertheless, it is here assumed that the
latter is negligible compared to the shaft–diaphragm interaction. Previous works [8–15,5] yield the following classification
of rubbing phenomena:
�
 The duration of the contact involves either partial, i.e. intermittent, or full, i.e. continuous, annular rubbing. Stable
vibrations with synchronous, sub-synchronous or super-synchronous responses and chaotic behaviors of the shaft-line
with destructive damages of its components can be observed.

�
 The rotor features forward and reverse whirl motions, as well as oil and dry whip depending on running conditions.

�
 The contact load can cause heavy or light rubbing.

A reliable description of rubbing is only possible with a detailed finite element model together with a numerical approach
capable of tackling transient dynamics and contact constraints. In that view, this paper contributes to a better description
of shaft dynamics by incorporating rubbing with unknown angular velocity mainly affected by aerodynamical and contact
forces. The related model includes gyroscopic effects and torsional displacements. The stator model is restricted in this
study to the diaphragm part with an increasing level of complexity, from rigid to fully flexible.

In the governing equations, the dynamics of the rotor and diaphragm are coupled through contact forces. Available
approaches in contact mechanics [16] are usually the penalty method, the Lagrange multiplier method or the augmented
Lagrangian method [17–19]. An accurate contact treatment strategy is strongly connected to the integration method. As our
interest lies in the characterization of the transient response of the shaft during rubbing, approaches such as harmonic
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Fig. 1. A real power plant turboset. Courtesy of Électricité de France.
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Fig. 2. Contact locations in a real turbine.
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balance or shooting methods, more intended to forced and steady-state responses are discarded, and time marching
procedures stand as a natural choice. Two main families are usually found in the literature: implicit versus explicit
formulations [20,21]. It is observed in [22] that the results highly depend on Newmark parameters for problems involving
strong nonlinear terms such as direct contact constraints. Even though implicit methods with automatic control of the time
step size [23] may be used, conditionally stable explicit methods appear to be more relevant to non-differentiable terms
such as contact. Accordingly, the well-known central finite difference scheme is adopted here. A previous study [6] has
shown that the penalty method is not always adapted to contact detection in crash analysis since residual penetrations
between components is allowed: cumulative error and dependency of the results to the penalty parameter may be
expected. Lagrange multipliers and augmented Lagrange multipliers are prone to Uzawa type algorithms that do not fit in
explicit time marching techniques because of the required CPU. Nevertheless, the prediction–correction algorithm forward
increment Lagrange method developed in [24] embeds the Lagrange multiplier approach in an explicit technique keeping
the advantages of both. It has been proved reliable for contact-impact problems [25] by properly satisfying contact
detection and ensuring displacement compatibility and is therefore preferred in this study.
2. Rotor speed transient modeling

The turbine model introduced in this work consists in Timoshenko beams for the rotating flexible shaft complemented
by circular rigid disks for the bladed disks. Imbalances are originated by concentrated masses and the bearing behavior is
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linearized. It is assumed that the rotor is simply supported at its ends. This model is pictured in Fig. 3 and each of its
components is thoroughly detailed in the sequel.

The geometrical and material parameters of the shaft line are chosen so that the first eigenfrequencies of the rotor
match the corresponding ones of the real structures as explained later.

2.1. Shaft line components

An accidental blade-off in a nuclear power plant turboset leads to a controlled shutdown of the shaft line and
subsequent high deceleration rates due to fluids friction and shaft-to-diaphragm resisting torques. Accordingly, attention
must be paid to the modeling and formulation of such phenomena since the angular position of a cross-section becomes an
unknown of the problem. In-plane as well as out-of-plane bending vibrations, torsional vibrations together with axial
vibrations are considered. Gyroscopic terms are included and the following assumptions are also accounted for:
1.
 The shaft has a uniform circular cross-section along its length.

2.
 The shaft is initially balanced.

3.
 External torques with constant direction along the reference centroidal axis are applied at each end of the shaft.
2.1.1. Rigid disk

The kinetic energy Trd of a rigid circular disk rotating at angular velocity _jr takes the form:

2Trd ¼ Mrd½ _u
2
r þ _v2

r þ _w2
r � þ Irdx

½ _y
2

ur
cos2 yvr þ

_y
2

vr
� þ Irdz

½ _y
2

ur
sin2 yvr þ ð _jr þ

_brÞ
2
þ 2ð _jr þ

_brÞ
_yur sinyvr � (1)

where Mrd, Irdx
and Irdz

respectively stand for the mass, the second moment of inertia and the polar moment of inertia of the
considered rigid disk. Referring to Fig. 4, the notations used for the rotor kinematics are ður ; yvr Þ for the bending
displacements in the ðeX;eZÞ�plane, ðvr ; yur Þ for the bending displacements in the ðeY ;eZÞ�plane, wr for the axial
displacement and br for the torsional twist, both along eZ. These quantities are considered in Eq. (1) at the disk center. In
the small perturbation framework, the kinetic energy, including gyroscopic effects, is rewritten as follows:

2Trd ¼ Mrd½ _u
2
r þ _v2

r þ _w2
r � þ Irdx

½ _y
2

ur
þ _y

2

vr
� þ Irdz

½ð _jr þ
_brÞ

2
þ 2ð _jr þ

_brÞ
_yuryvr � (2)

2.1.2. Shaft

The kinetic energy Ts of the shaft corresponds to the integration of the disk energy along its longitudinal direction thus
yielding:

2Ts ¼ rs

Z ls

0
½Ssð _u

2
r þ _v2

r þ _w2
r Þ þ Isx ð

_y
2

ur
þ _y

2

vr
Þ þ Isp ðð _jr þ

_brÞ
2
þ 2ð _jr þ

_brÞ
_yuryvr Þ�dz (3)

where rs, Ss, Isx and Isp respectively refer to the mass density, the cross-section area, the moment of inertia and the polar
moment of inertia of the shaft.

The potential energy Us of a spinning Timoshenko beam is equal to

2Us ¼

Z ls

0
½EsSsw

2
r;z þ EsIsx ðy

2
ur ;z
þ y2

vr ;z
Þ þ GsIspb

2
r;z
þ ksGsSsðður;z � yvr Þ

2
þ ðvr;z þ yur Þ

2
Þ�dz (4)
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Fig. 4. Notations for a disk (EDF convention for Euler angles).

S. Roques et al. / Journal of Sound and Vibration 329 (2010) 527–546 531
where Es, Gs and ks are respectively the Young modulus, the shear modulus and the transverse shear form factor of the
shaft.

2.1.3. Linearized bearing

In real turbines, oil film bearings support the shaft and involve nonlinear terms described by Reynolds’ equations. The
virtual work dW of these external nonlinear forces acting on the shaft, Fur and Fvr along ur and vr respectively, can be
expressed in a general manner as

dW ¼ ½Fur Fvr �
dur

dvr

 !
(5)

For small displacements with respect to the equilibrium position of the shaft in the bearings, stiffness and damping
coefficients of the oil-film, respectively koij

and doij
, can be calculated by linearizing Reynolds’ equations [26] leading to

Fur

Fvr

 !
¼ �

koxx koxy

koyx koyy

" #
ur

vr

 !
�

doxx doxy

doyx doyy

" #
_ur

_vr

 !
(6)

2.1.4. Imbalance

In order to reflect a blade-off, a heavy imbalance is introduced through a concentrated mass mi located at a distance ri

from the geometric center of the shaft. Its kinetic energy is

2Ti ¼ mi½ _u
2
r þ _v2

r þ _w2
r þ r2

i
_j2

r þ 2ri _jrð _vrcosjr � _ursinjrÞ� (7)

2.2. Diaphragm

As mentioned previously, rotor-to-stator contact corresponds to a shaft–diaphragm interaction in this study.
Therefore, the stator modeling reduces to the diaphragm representation. The real diaphragm or flow straightener
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Fig. 6. Investigated diaphragm models: (a) diaphragm D1, (b) diaphragm D2, and (c) diaphragm D3.

Fig. 5. Schematic representation of a real diaphragm.
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comprises inner and outer rings and twisted blades as depicted in Fig. 5 and three different types of diaphragm have been
developed:
1.
 Diaphragm D1 is shown in Fig. 6(a): it is fully rigid and can be seen as a mathematical boundary. Its main purpose is the
validation of the contact algorithm.
2.
 Diaphragm D2 is a rigid ring with flexibility and damping as depicted in Fig. 6(b). This model is an extension of the first
model with a formulation based on a previous EDF study [27]: it is augmented with stiffnesses, dampers and the mass
of the inner ring through a mass matrix md.
3.
 Diaphragm D3 is a flexible structure illustrated in Fig. 6(c). The inner ring is now flexible with the use of curved beams
and the blades are considered as straight beams.

2.2.1. Inner ring: curved beams

The inner ring, initially in the ðeX; eYÞ�plane, is depicted in Fig. 7. Dimensions of the cross-section are small compared to
the mean line length, so that Euler–Bernoulli theory holds. Strains are then written as follows [28]:

ess ¼
1

rir þ r
ðvir þ ðrir þ rÞuir;s � rrirvir;ss þ zðyirs

� rirwir;ssÞÞ

grs ¼
z

rir þ r
ðriryirs ;s þwir;sÞ

gzs ¼
�r

rir þ r
ðriryirs ;s þwir;sÞ (8)
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Fig. 8. Notations for a straight beam in its local reference frame.
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where uir , vir and wir (resp. yirs
, yirr

and yirz
) respectively stand for radial, tangential and axial displacements (resp.

rotations) of the centroidal line as displayed in Fig. 7. The path variable is s and rir is the average radius of the inner ring.
Assuming r5rir and a first-order expansion in r, ess in Eq. (8) becomes

ess ¼
vir

rir
þ uir;s

� �
� r

vir

r2
ir

þ vir;ss

 !
þ z

yirs

rir
�wir;ss

� �
þ Oðr2Þ (9)

Assuming a linear elastic behavior for the diaphragm, i.e. sss ¼ Edess, trs ¼ Gdgrs and tzs ¼ Gdgzs (Hooke’s law) where Ed and
Gd are the Young’s and shear moduli together with a uniform rectangular cross-section of the curved beam, the strain
energy Uir of a finite element becomes

2Uir ¼ Ed

Z s2

s1

Sir
vir

rir
þ uir;s

� �2

þ Iirz

vir

r2
ir

þ vir;ss

 !2

þ Iirr

yirs

rir
�wir;ss

� �2

þ
GdJir

Ed
yirs ;s þ

wir;s

rir

� �2
2
4

3
5ds (10)

where Iirr
, Iirz

, Jir and Sir respectively stand for the two moments of inertia, the polar moment of inertia and the cross-section
area of the inner ring. Similarly, the kinetic energy Tir is defined as

2Tir ¼ rd

Z s2

s1

Sirð _u
2
ir þ _v2

ir þ _w2
irÞ þ Iirr

_w2
ir;s þ Iirz

_uir

rir
� _vir;s

� �2

þ Iirp
_y

2

irs

" #
ds (11)

with Iirp
denoting the moment of inertia.

2.2.2. Blades: straight beams

The Euler–Bernoulli theory is also used for the blades as slender structures. Their energies collapse to Eqs. (3) and (4)
where the angular velocity is equal to zero so that the shear energy vanishes. Consequently, the notations introduced in
Fig. 8 together with the two usual kinematic relationships ywb

¼ vb;x and yvb
¼ �wb;x yield:

2Tb ¼ rd

Z lb

0
½Sbð _u

2
b þ _v2

b þ _w2
bÞ þ Ibz

_y
2

wb
þ Iby

_y
2

vb
þ Ibx

_y
2

ub
�dx

2Ub ¼

Z lb

0
½ESbu2

b;x þ EIbz

_y
2

wb ;x
þ EIby

_y
2

vb ;x
þ GdJb

_y
2

ub ;x
�dx (12)

where Ibz
, Iby

, Ibx
, Jb and Sb respectively stand for the two second moments of inertia, the polar moment of inertia, the cross-

sectional polar moment of inertia and the cross-section area of the rectangular straight beam.

2.2.3. Curved beam–straight beam compatibility

The assembling procedure between the straight beam finite elements of the blade and curved beam finite elements of
the inner ring at the connecting nodes (red and green finite elements in Fig. 6(c)) in order to compute the global matrices of
the system of interest requires a special attention. This procedure stems from the compatibility conditions along the
generalized displacements and forces to be satisfied at each node. As shown in Figs. 7 and 8, in the present study these
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conditions reduce to

ub ¼ vir

vb ¼ uir

wb ¼ wir

and

yub
¼ yirr

yvb
¼ yirs

ywb
¼ yirz

(13)

From Eq. (13), the rotation of a cross-section of a Euler–Bernoulli curved beam yields:

ywb
¼

uir

rir
� vir;s and yub

¼ wir;s (14)

condition that has to be accounted for in the finite element discretization.

3. Finite element discretization

The different energies detailed above are discretized according to the finite element technique formulated in
displacement. The elements used are detailed hereafter.

3.1. Shaft line

Traction and torsion are discretized using the usual linear shape functions. Denoting x ¼ z=l and q ¼ ðwr ;brÞ yields:

qðzÞ ¼ ½1� x x�
q1

q2

 !
(15)

The modified Hermite functions Nij used in [29] for bending are selected. Degrees of freedom urðzÞ, yvr ðzÞ, vðzÞ and yur ðzÞ are
thus written as follows:

urðzÞ

yvr ðzÞ

 !
¼

N11ðzÞ N12ðzÞ N13ðzÞ N14ðzÞ

N21ðzÞ N22ðzÞ N23ðzÞ N24ðzÞ

" # ur1

yvr 1

ur2

yvr 2

0
BBBB@

1
CCCCA (16)

and:

vrðzÞ

yur ðzÞ

 !
¼

N11ðzÞ �N12ðzÞ N13ðzÞ �N14ðzÞ

N21ðzÞ �N22ðzÞ N23ðzÞ �N24ðzÞ

" # vr1

yur 1

vr2

yur 2

0
BBBB@

1
CCCCA (17)

Since the angular position jr is unknown, additional boundary conditions are necessary and detailed in Section 4.3.

3.2. Diaphragm D3

Equations of motion are derived in a very general three-dimensional fashion. However, a numerical investigation
conducted in a preliminary phase with a planar diaphragm model showed that conditions wir ¼ yirs

¼ 0 for the inner ring
and wb ¼ yub

¼ yvb
¼ 0 for the blades hold in our study. The blades are discretized as usual straight Euler–Bernoulli beams

FE with three degrees of freedom (dof) per node. The inner ring is discretized with curved beam FE with four dof per node
(uir , uir;s, vir , vir;s) with cubic polynomials in uir and vir . Defining z ¼ s=lire

, where lire
is the curvilinear length of the finite

element, the shape functions are

N1ðsÞ ¼ 1� 3z2
þ 2z3 N2ðsÞ ¼ lire

zð1� 2zþ z2
Þ

N3ðsÞ ¼ zð3z� 2z2
Þ N4ðsÞ ¼ lire

zð�zþ z2
Þ (18)

The discretized displacement field becomes, for an element whose nodes are 1 and 2:

uirðsÞ ¼ N1ðsÞuir1 þ N2ðsÞuir1;s þ N3ðsÞuir2 þ N4ðsÞuir2;s

virðsÞ ¼ N1ðsÞvir1 þ N2ðsÞvir1;s þ N3ðsÞvir2 þ N4ðsÞvir2;s (19)

4. Contact forces

The forces of particular interest in this study are the unilateral contact and friction forces acting between the shaft and
the diaphragm. In order to simplify the contact detection, it is assumed that only one point of the beam cross-section area
of the rotor comes into contact with one curved element of the diaphragm, as depicted in Fig. 10.
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4.1. General framework

To derive the contact dynamic equations, the master–slave approach [16] is used. Fig. 9 introduces the notations: the
configurations of the master and slave bodies are denoted OðmÞ and OðsÞ with corresponding boundaries GðmÞ and GðsÞ and
contact interface Gc . The gap function gðxÞ between any point x of the master component and its closest counterpart x of
the slave one can be computed such as

gðxÞ ¼ g0ðxÞ þ ðu
ðmÞðxÞ � uðsÞðxÞÞ � n (20)

where g0 denotes the initial gap, n the unit outward vector normal to the master surface, uðmÞðxÞ and uðsÞðxÞ displacements
respective to the master and slaved structures. Every material point x 2 Gc must satisfy the following Kuhn–Tucker
optimality conditions:

lNZ0; gðxÞZ0 and lN � gðxÞ ¼ 0 (21)

where lN stands for the positive contact force acting on the slave surface in the normal direction. These unilateral contact
conditions are augmented with the Coulomb friction law assuming only sliding occurs:

JkTJ ¼ mjlNj ) (a 2 Ra0 such as vT ¼ a kT

JkTJ
(22)

for which m is the coefficient of friction, vT the tangential slip velocity and kT the contact force acting along the tangential
direction. Since the finite element method is applied, the equations of motion of a mechanical model respective to contact
dynamics can be written in a very general manner as follows:

M €u þ D _u þ Kuþ CTk ¼ 0 (23)
O

O

OR

C
D

g

eXeX

eY
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Fig. 10. Contact detection.

Fig. 9. Notations for a contact problem formulation.
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where M, D, K and u respectively stand for the mass, damping, stiffness matrices and displacement vector of the global
system. Lagrange multipliers are stored in vector k and C is the contact constraint matrix in the normal and tangential
directions. Embedded in an explicit time marching approach, a solution method for solving Eq. (23) together with
conditions (21) and (22) is proposed in [24,30].
4.2. Application to rotor–diaphragm system

By choice in this study, the master component is the rotor whereas the diaphragm is the slave structure. Within the
small perturbation framework with planar diaphragm models, it is legitimately assumed that a cross-section of the shaft
always remains in the ðeX; eYÞ�plane. Accordingly, the determination of x of Eq. (20) can then be obtained through the
following considerations:
1.
 diaphragms D1 or D2: the contact occurs at hot spot C in Fig. 10, i.e. highest rotor eccentricity. Consequently the gap
function in the radial direction is equal to the distance CD:

CD ¼ O0D � O0C (24)
2
 diaphragm D3: in Fig. 10, contact on the diaphragm occurs at point D with same angular position as point C. This
approximation allows for CPU time savings together with accurate predictions of rotational velocities and bearing
loads [31].

4.3. Boundary conditions and initial conditions

The initial conditions are given as follows: operating at normal conditions, the turbine is suddenly disconnected after
the blade-off. The latter gives rise to a heavy mass imbalance while no driving torque holds anymore. Only aerodynamical
and Newtonian fluid frictions act on the shaft thus initiating a slow-down with possible contact interaction:
�
 Newtonian fluid friction torque: Cnewt ¼ �Anewt _jr and

�
 aerodynamical friction torque: Caero ¼ �Aaero _j2

r .
where Anewt and Aaero coefficients were identified in [32]. Fluids forces acting on the turbine are uniformly distributed along
the shaft as a first approach. The additional boundary conditions relative to the angular position are:
�
 Constant driving torque CmaxZ0 at one end of the shaft.

�
 _j-dependent alternator resisting torque �Cmax _jr=O at the other end of the shaft.
It is noteworthy saying that Cmax40 refers to the run-up of the shaft line whereas Cmax ¼ 0 refers to the accidental
shutdown.
5. Governing equations

5.1. Rotor

Energy-based Hamilton’s principle is used for the derivation of the system’s equations of motion. Gyroscopic terms
ð _jr þ

_brÞ
_yuryvr in Eq. (2) give rise to a strong nonlinear coupling between the flexural, torsional displacements and the

angular position. Similarly, the term ð _jr þ
_brÞ

2 highly couples the angular position to the torsion angle whereas the contact
constraints add even more complexity to the system dynamics. Neglecting torsional vibration, the governing equations are
as follows:

M1
€Xr þ ðDo þ _jrD2Þ

_Xr þ ðKo þ K1 þ €jrK2ÞXr þ CT
r k ¼ þ

XNi

j¼1

mij rij ½ð
€jrsinjr þ _j2

r cosjrÞFjur þ ð� €jrcosjr þ _j2
r sinjrÞFjvr � (25)

where Xr is the vector of the rotor generalized displacements (bending, traction and torsion when considered), and M1, D2,
K1, K2 respectively the mass, gyroscopic and two stiffness matrices. Matrix Cr stands for the rotor contribution to the
contact matrix C. The linearized forces acting in the oil-film bearings appear through matrices Ko and Do. The right-hand
side of Eq. (25) stand for the imbalance forces originated by Ni eccentric masses. Finally, the scalar equation governing the
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angular position jr takes the form:

rsIsp ls þ
XNi

j¼1

mij r
2
ij
þ
XNrd

j¼1

IrdZj

0
@

1
A €jr þ

€X
T

r
~MXr þ

_X
T

r
~M _Xr þ

XNi

j¼1

mij rij ð
€vi

rcosjr � €ui
rsinjrÞjj ¼ Fjjr

¼ CðtÞ � Cf (26)

where Ni is the number of rotor imbalances and ui
r and vi

r stand for their nodal vertical and horizontal displacements. Nrd is
the number of rigid disks, CðtÞ corresponds to the driving torque and Cf to the sum of the fluids friction and contact friction
torques whose expression is Cfric ¼ mrslN , where rs is the outer radius of the shaft. When torsion is considered, terms that
cannot be written in a matrix form and not mentioned here for the sake of simplicity, are added to the governing equations.

5.2. Diaphragm

The equation of motion respective to the diaphragm dynamics (diaphragm D2 or D3) is

Md
€Xd þ Dd

_Xd þ KdXd � CT
dk ¼ 0 (27)

where Xd represents the vector of the generalized displacements of the diaphragm with consistent matrices Md, Dd and Kd

for mass, damping and stiffness of the system. Matrix Cd is the diaphragm contribution to the contact matrix C.

6. General algorithm

Coupled nonlinear equations of motion (25), (26) and (27) are now solved using the central finite difference approach.
Using notation X ¼ fXr ;Xdg storing the rotor and diaphragm generalized displacements (X reduces to Xr for diaphragm D1),
and a � X or jr, the discretization in time yields:

_a ¼
anþ1 � an�1

2Dt
and €a ¼

anþ1 � 2an þ an�1

Dt2
(28)

where an refers to quantity a at time tn and Dt to the time step. The proposed time marching procedure simultaneously
includes the calculation of the displacements and the Lagrange multipliers within three main steps [30]:
1.
 Prediction: the governing equations are solved assuming that there is no contact between the two structures.

2.
 Contact detection: the gap function gpðxÞ1 is computed with the predicted displacements. A correction of the

displacements is required if a penetration is detected between the contacting structures.

3.
 Correction: if a penetration is detected (the gap value is negative), the corresponding Lagrange multiplier in the normal

direction is calculated in order to satisfy the non-penetrability condition. The tangential contact force is then deduced
from the Coulomb friction law eventually allowing for the calculation of the contact resisting torque within quasi-
Newton loop.

At each time step, the matrices depending on the spinning speed and acceleration are updated. If a contact is detected, the
rotational velocity and acceleration change according to the contact friction torque. Details of the time stepping procedure
are provided in Algorithm 1. The time step must guarantee the numerical stability of the integration scheme and satisfy the
Courant–Friedrichs–Lewy (CFL) criterium for an explicit technique: a linear analysis proves that the Lagrange multiplier do
not modify the linear time step size. However, numerical experience suggests that contact conditions do slightly reduce the
time step [33], consideration which is accounted for in the present study.

Algorithm 1. Proposed solution method
Initialization of X and jr at t0 and t1:

X0 ;X1 and j0
r ;j1

r

for n ¼ 2; . . . ;nend do
p

1

rediction of ðXnþ1 ;jnþ1
r Þ assuming a linear angular acceleration and no contact
se
arch for ðXnþ1 ;jnþ1
r Þ satisfying Eqs. (25), (26) and (27)
w
hile residual4e do

if no penetration then
lðkÞN ¼ 0
else

Lagrange multipliers calculation
lðkÞN ’lp
N so that (21) is satisfied1
correction of ðXnþ1 ;jnþ1
r Þ through lN , kT and Cfric
end if
new solution guess ðXnþ1 ;jnþ1
r Þ
e
nd while
superscript p for prediction
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if
2

in
jnþ1
r ojn

r then
break2
e
nd if
ðX
n�1;jn�1
r Þ’ðXn ;jn

r Þ
ðX
n ;jn
r Þ’ðX

nþ1;jnþ1
r Þ
t’
t þDt

end for

1 The Lagrange multipliers are calculated assuming a constant angular position in the correction step. This approach is valid since the solution guess

takes place in the neighborhood of the converged solution.
2 This condition means that the shaft is now rotating in a counter-clockwise direction: this is physically possible but not of interest in the present

study.
7. Time integration results

The developed algorithm is validated through the computation of a linear speed transient where j is known. Results
were successfully compared with a commercial code. Consequently, calculations of transient run-down responses during
accidental shutdowns are exclusively considered in what follows.

It is recalled from Section 4.3 that the initial conditions in displacement and velocity of the shutdown correspond to the
steady state at nominal operating conditions preceding the shutdown. From this initial state, the shutdown is initiated by
setting Cmax ¼ 0 and by introducing the Newtonian fluid and aerodynamical friction resisting torques together with a heavy
blade-off mass imbalance. To authors’ knowledge, there is neither analytical nor numerical reference solutions.
Accordingly, subsequent simulations are validated through a time step size convergence analysis. The mechanical
parameters of the study are listed in Table 1: they are adopted so that the first eigenfrequency of the real investigated
turbine is retrieved.
7.1. Diaphragm D1

7.1.1. Without torsion

In a preliminary study, the behavior of diaphragm D1 is explored without torsional vibrations. The imbalance mass is
set to 45 kg. Fig. 11(a) depicts the computed rotational velocity. It illustrates the convergence with respect to the time
step. Initially spinning at its nominal speed, the turbine slows down due to fluids friction with no contact detected
between rotating and stationary parts. When approaching the first critical speed (19.6 Hz) at t ¼ 3 s, the initial 8 mm
gap is completely consumed as shown in Fig. 12(a) and re-opens at t ¼ 6 s. During interaction, the angular deceleration of
the shaft is clearly affected by the contact forces.

The clearance between the rotor and the diaphragm, depicted in Fig. 12(a), shows that the contact is well treated:
even for a large time step still ensuring convergence, the residual penetration2 is negligible (lower than 0:2mm,
value to be compared with the initial gap of 8 mm). Further results which are given in Section 7.4 show that the
residual penetration decreases with the time-step: this confirms the stability and consistence properties of the proposed
algorithm.

In order to analyze the frequency content of the rotor vibrations, a fast Fourier transform (FFT) is performed. As
expected, the first bending modes of the rotor are excited by the imbalance: the FFT of the rotor response before contact,
from t ¼ 0 to 3 s, depicted in Fig. 15(a), shows synchronous components together with natural frequencies of the shaft line
in agreement with Campbell diagram 14(a).

The sensitivity of the response to the friction coefficient is depicted in Fig. 16. For a small value, only the forward
whirl motion of the rotor is excited during interaction. When the friction coefficient reaches a threshold (mC0:2), a
backward whirl phenomenon is observed and the shaft line is violently stopped. Due to this specific reason, the friction
coefficient is now set to m ¼ 0:1. Furthermore, only results for Dt ¼ 10�5 s are now presented since convergence of the
quantities of interest with respect to the time step is achieved (see gap function in Fig. 13(a) and displacements in Fig. 11(b)
for instance).
7.1.2. With torsion

When torsion br is accounted for, new torsional modes arise in the modal content of the shaft as illustrated
in the Campbell diagram of Fig. 14(b), such as f ¼ 147:1 Hz for the first mode of torsion: they do not modify the
flexural mode frequencies and do not depend on the rotational velocity. Torsional angle br is shown Fig. 17. Its
frequency spectrum is exhibited in Fig. 15(b) before interaction and in Fig. 15(c) during interaction, is complex to
The residual penetration depends on the numerical precision of the computer as well as the numerical error in inverting matrices and the precision

the nonlinear solver.
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Table 1
Numerical characteristics of the shaft line.

(a)

Inner radius 0.5 m

Thickness 0.1 m

Outer radius 1 m

Mass density 7860 kg=m3

(b)

Es 200 GPa

Gs 76.9 GPa

Mass density rs 7860 kg=m3

Total length ls 10 m

Radius 0.5 m

ks 6/7

(c)

Ed 200 GPa

Gd 76.9 GPa

Mass density rd 7860 kg=m3

Gap 8 mm

Blade length lb 1.6 m

Inner ring cross-section

Width 10�2 m

Height 0.1 m

Stiffener cross-section

Width 4� 10�2 m

Height 0.12 m

(d)

Mass mi 45 kg

Distance to the rotor centerline ri 1 m

Initial phase shift 0 rad

(e)

koxx 2� 105 N=m

koyy 5� 105 N=m

doxx Z� 2� 105 N s=m

doyy Z� 5� 105 N s=m

Z 2� 10�4

(f)

kdxx 4� 109 N=m

kdyy 4� 109 N=m

ddxx 3:8� 105 N s=m

ddyy 3:8� 105 N s=m

mdxx 104 N s2=m

mdyy 104 N s2=m

The following equality for diaphragm D3 holds: radius of the inner ring ¼ outer radius of the shaftþ gap. Coupling terms of stiffness and damping

matrices of the bearing are such as koxy ¼ koyx ¼ doxy ¼ doyx ¼ 0. Diaphragm D2 model has been constructed based on a previous EDF study and simplifying

assumptions namely kdxy
¼ kdyx

¼ ddxy
¼ ddyx

¼ 0; conditions mdxy
¼ mdyx

¼ 0 are also considered. (a) rigid disk, (b) shaft, (c) diaphragm D3, (d) imbalance,

(e) oil-film bearing, and (f) diaphragm D2.
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analyze. However the amplitude level are relatively low and the dominant frequency corresponds to the first torsional
mode, see Fig. 14(b).

The angular speed, the clearance separating the shaft from the diaphragm as well as the vertical displacement are given
in Figs. 11(b), 12(b) and 13(b) respectively. Comparison with the case-study involving no torsion shows that these results
are almost identical. Similar conclusions hold for other quantities of interest such as the load on bearing, see Section 7.4.
Since this paper aims at providing a numerical tool capable to predict the overall response of the turbine, in the sequel,
torsion is not accounted for. This allows for simplifying the model and saving subsequent computation time while
preserving a good approximation of quantities of interest.
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Fig. 11. Rotational velocity for _jr versus time in different configurations: (a) D1 without torsion: Dt ¼ 10�5 s ( ), Dt ¼ 5� 10�6 s ( ), Dt ¼ 10�6 s

( ), Dt ¼ 5� 10�7 s (—), (b) D1 with torsion (—) and without torsion (- - -), and (c) D1 (—), D2 (- - - - -), D3 (- - - ) without torsion.
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7.2. Diaphragm D2

Simulations are now performed with the more realistic diaphragm D2. The rotational velocity is depicted in Fig. 11(c)
and compared with the one obtained with diaphragms D1 and D3.3 Simulations indicate a softer contacting behavior of the
structures due to the new mechanical flexibility. Although this diaphragm D2 is flexible, the model leads to results which
are very close to those obtained with model D1 as displayed in Fig. 12(c) in comparison to Fig. 12(a) for the gap function,
and Fig. 13(c) in comparison to Fig. 13(a) for the rotor vertical displacement.

Fig. 15(d) depicts the spectrum of the vertical displacement of the diaphragm during interaction. The natural frequency
of the diaphragm, equal to 100.7 Hz, is contained in the response. Concerning the other frequencies of the diaphragm
response, these are common with the frequency content of the rotor during interaction (see Fig. 15(d) in comparison to
Fig. 15(a)) and result from the coupling between rotor and diaphragm dynamics during contact.
7.3. Diaphragm D3

Once again, the rotational velocity evolution during shut-down is very similar to those obtained for diaphragm models
D1 and D2, see Fig. 11(c). By contrast, the vibration levels of the shaft appear to be significantly higher than in the previous
models, as shown in Fig. 13(d). From the gap function evolution displayed in Fig. 12(d), it is noticeable that the flexible
diaphragm vibrates more during a longer contact interaction, up to 8 s. As illustrated in Figs. 15(d) and (e), the frequency
3 The model of diaphragm D3 is introduced in the next section
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Fig. 12. Clearance at node 4 between the shaft and surrounding diaphragm in different configurations: (a) D1 without torsion: Dt ¼ 10�5 s (– –) and

Dt ¼ 5� 10�6 s (—), (b) D1 with torsion, (c) D2 without torsion, and (d) D3 without torsion.
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content of the rotor is similar to the one interacting with diaphragm D2. Also, the frequency content of the new diaphragm
D3 contains higher harmonics because of the chosen discretization but the magnitude of the main harmonics is very
similar. Moreover, a beating vibration phenomenon is observed in the rotor responses during and after interaction. This
phenomenon is more obvious in Fig. 13(d) and is peculiar to situations where comparable frequency contents of different
structures are combined, through contact efforts in the present study.

7.4. Influence of the diaphragm model

In a general manner, the rotor response during accidental situations depends on the geometrical and material properties
of the diaphragm. Since the load acting in the bearing is the main quantity of interest when designing a turbine, its time
evolution with respect to the diaphragm model is now investigated. A linear calculation, thus discarding contact
constraints in the formulation, of the rotor speed transient provides the maximal possible load in bearings equal to
2� 106 N. However, a better estimation of this value is obtained when including the rotor-to-diaphragm contact
constraints and obviously depends on the diaphragm models detailed in Table 2.

Diaphragm D1 corresponds to the fastest calculation in term of CPU time but underestimates the bearing load. Also, the
influence of torsion appears to be negligible and only increases the computational time. Since an enhanced version of this
model, diaphragm D2 represents a good compromise between CPU time and approximation of the bearing load but leads to
a bouncing behavior of the rotor because of a non physical contact treatment inherent to rigid body modelings. Finally,
flexible diaphragm D3 provides the most accurate estimation of the loads exerting in the bearings. Due to the flexibility of
this model, the shaft and diaphragm displacements reach larger amplitudes directly affecting the bearing loads. The
numerical cost is inevitably a significant increase of the CPU time.
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Fig. 13. Vertical displacement of the rotor at node 2 for different configurations: (a) D1 without torsion: Dt ¼ 10�5 s ( ) and Dt ¼ 5� 10�6 s (—), (b)

D1 with torsion, (c) D2 without torsion, and (d) D3 without torsion.

Fig. 14. Campbell diagrams: (a) without torsion and (b) with torsion.
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Fig. 15. Frequency spectra in different configurations: FFT performed from t ¼ 0 to 3.5 s: (a) rotor before contact, (b) torsion angle br before interaction

with D1, (c) torsion angle br during interaction with D1, (d) D2 (- - -) and rotor (—) during interaction, and (e) D3 (- - -) and rotor (—) during interaction.
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8. Conclusions and prospects

The emphasis of the present study was twofold.
The purpose was first to establish a new theoretical formulation for a speed transient analysis of a rotor supported by

linearized journal bearings together with gyroscopic effects, torsional and flexural couplings and contact/rubbing
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Fig. 16. Influence of friction coefficient on the computed rotational velocity: m ¼ 0:1 ( ), m ¼ 0:2 ( ), m ¼ 0:3 ( ), m ¼ 0:5 ( ), m ¼ 1

( ).

Fig. 17. Torsion angle br for the diaphragm D1.
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dynamics. The rotational velocity is not known and has to be simultaneously solved with the equations of motion.
Discretizations in time and space are performed with the explicit and well-known central finite difference scheme and the
usual finite element approach, respectively. Contact constraints are treated through the Lagrange multiplier technique in
order to avoid unwanted residual penetrations between contacting structural components. Several diaphragm models were
explored, starting from a fixed rigid one, up to a fully flexible one which incorporates the main features of the true
structure. The related node-to-line contact algorithm has shown to be reliable since convergence with respect to the time
step is achieved. Accordingly, a tool for analyzing rotor–diaphragm interactions is now available for the study of the turbine
behavior, especially as it passes through critical speeds after a blade-off.

Second, the developed numerical tool is capable of computing global quantities, such as bearing loads which are of great
interest in the design process of a turbine, as well as usual structural displacements. Main results are: (1) torsional twist
only slightly influences the maximum load acting in the bearings but allows for a reliable estimation of the torsional
stresses along the shaft. As a matter of fact, bearing loads appear to be more dependent on the diaphragm modeling.
(2) Rigid diaphragms overestimate contact loads with the shaft and consequently underestimate loads in the bearings.
(3) Displacements of flexible diaphragms due to rubbing are larger than in the case of rigid models. This implies an
augmentation of the shaft vibrations and of the bearing loads. The use of flexible diaphragm is therefore mandatory for an
accurate prediction of the bearing loads.
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Table 2

Sensitivity of the results to the diaphragm models—column 1: Dt (s), column 2: CPU time (s), column 3: maximal load on bearing (105 N) and column 4:

residual penetration (mm).

(a)

10�5 2007 3.5424 0.76720

5� 10�6 4389 3.5490 0.22468

10�6 24,292 3.5309 0.01492

5� 10�7 47,980 3.5296 0.01636

(b)

10�5 2738 3.4427 0.69885

5� 10�6 5456 3.4632 0.24114

10�6 26,684 3.4244 0.00807

5� 10�7 53,111 3.5539 0.00205

(c)

10�5 2012 3.7041 0.74075

5� 10�6 4431 3.7437 0.14734

10�6 22,458 3.7343 0.00836

5� 10�7 44,186 3.7295 0.00451

(d)

10�5 7742 5.4562 58.8643

5� 10�6 15,918 5.4513 15.3205

10�6 80,629 5.4522 0.62922

5� 10�7 161,265 5.4547 0.15778

(a) diaphragm D1 without torsion, (b) diaphragm D1 with torsion, (c) diaphragm D2 without torsion, and (d) diaphragm D3 without torsion.
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