
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 585–606
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Analysis of milling dynamics for simultaneously engaged
cutting teeth
Oleg A. Bobrenkov a,�, Firas A. Khasawneh b, Eric A. Butcher a, Brian P. Mann b

a Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
b Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
a r t i c l e i n f o

Article history:

Received 15 December 2008

Received in revised form

22 September 2009

Accepted 23 September 2009
Handling Editor: M.P. Cartmell
In addition, the stability lobes are shown to undergo rapid transitions for relatively
Available online 25 October 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.09.032

responding author. Tel.: þ1575 646 3501; fax

ail address: chaalis@nmsu.edu (O.A. Bobrenko
a b s t r a c t

This paper investigates the stability of a milling process with simultaneously engaged

teeth and contrasts it to prior work for a single tooth in the cut. The stability analyses are

performed with the Chebyshev collocation method and the state-space TFEA technique.

These analyses show that a substantially different stability behavior is observed.

small changes in the radial immersion ratio; these transitions are explained in terms of

the specific cutting force profiles. The stable periodic motion of the tool was also

investigated using a harmonic balance approach and a dynamic map created with the

TFEA technique. The findings suggest that a large number of harmonics are required for

the harmonic balance approach to obtain the correct solution.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Predictive models have become an important part of modern cutting operations. The integration of these models into
cutting processes is largely driven by the increased competition for shorter production times and accurately machined
surfaces. Although increasing the material removal rate reduces the machining time, the associating relative vibrations
between the tool and the workpiece can become unstable. These unstable vibrations are commonly called chatter [1,2] and
they could damage the tool, the fixture and/or the machine spindle [3–6]. Optimizing the machining process for maximum
productivity and chatter-free cutting has been made possible by research advancements in modeling, solving, and
analyzing the stability of machining operations in the process parameter space.

The research on machine-tool chatter was started by Taylor more than 100 years ago [7]. The early work that followed
led to the introduction of stability diagrams which chart the boundary between stable and unstable cuts as a function of
the spindle speed and depth of cut [2,8,9]. Crossing a stability boundary into an unstable region causes the tool to chatter
with certain chatter frequencies. These frequencies are usually characterized by frequency diagrams which illustrate the
chatter frequencies at the loss of stability [10,11]. Chatter frequencies can also be verified experimentally through analyzing
the measured chatter signals [12–14].

Chatter in cutting processes has been explained as a consequence of regenerative effects. These effects are commonly
modeled through delay-differential equations (DDEs) which lead to an infinite dimensional state-space [10] and to
mechanistic cutting coefficients that are usually estimated experimentally [15]. For a limited class of DDEs, e.g. continuous
turning, closed-form expressions for the stability boundaries can be obtained [10]. However, recent techniques, such as
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semi-discretization [16,17], Chebyshev-based methods [18–20], collocation methods [21], temporal finite element analysis
(TFEA) [22–25], D-partition method [26], and certain frequency domain techniques [27,28] have emerged as numerical and
semi-analytical tools to determine the stability of more general DDEs. Numerical simulation is also used to study
machining stability [14,29–31]; however, semi-analytical predictions of stability can quickly and accurately give stability
regions over the process parameter space of interest making them superior to tedious numerical simulations [32–35].

The complexity of the DDE increases considerably if it contains both discontinuities in time and periodic coefficients.
Milling, for instance, is one of the most common metal removal processes that is commonly approximated as a periodic,
piece-wise continuous system. Therefore, an approximation scheme is typically necessary to determine milling stability.
Although TFEA [5,24,25,36–38] and Chebyshev-based methods [39,40] have been separately used to analyze the stability of
various applications, they have never been directly compared.

Another major difference between this paper and previous works is that we investigate the stability of a milling process
with simultaneously engaged teeth. Fig. 1 illustrates the contrast between this work and prior research. In this figure, yenter

is the entry angle, yexit is the exit angle, and for an evenly spaced cutter the pitch angle, cp, is the uniform angle between
the teeth. The typical case studied in the literature is shown in Fig. 1a which corresponds to yexit

� yenterrcp. No more than
one tooth is in the cut over any tooth passage period t and free vibration can occur over some finite time in t. However, this
study investigates the two other cases that arise with a multiple-tooth cutter and different radial immersions. More
specifically, case (b) occurs when yexit

� yenter4cp and yexit
� yenterarcp, where r is an integer. In this case, multiple teeth

will be in the cut simultaneously at some point in the delay period t. However, the times for tooth entry and exit do not
coincide such that the number of engaged teeth either increases or decreases by one. Case (c), on the other hand,
corresponds to yexit

� yenter
¼ rcp and the number of the engaged teeth remains constant over t since one tooth enters the

cut at the same instant another exits. For example, this case arises for a 4-tooth cutter at full radial immersion or with a
3-tooth cutter at 75 percent radial immersion. For cases (b) and (c) no free vibration occurs over any portion of t.

While many works have investigated case (a) and the geometry of multiple teeth has been discussed previously in [3,4],
the stability features of cases (b) and (c) for multiple engaged teeth, especially as a function of radial immersion level, have
not received much attention and are being analyzed for the first time here. However, it is common in industry to cut with
many teeth at the same time—as in cases (b) and (c). This is especially the case when performing finishing cuts on hard
materials, such as titanium. In addition, since multiple cutting teeth and low radial immersions are common in finish cuts,
dimensional precision is exceptionally important for cases (b) and (c). However, a parameter selection scheme based
entirely on stability considerations alone can still result in inaccurately machined surfaces. This is due to the influence of
the process parameters on the amplitude and phase of the tool oscillations [24]. Therefore, studying the periodic motion of
the tool during stable cutting can provide invaluable information when producing precision components.

Recent studies have shown that a new bifurcation phenomena can occur in highly intermittent cutting. Besides
Neimark–Sacker or secondary Hopf bifurcations, period-doubling bifurcations have been analytically predicted in
Fig. 1. The different cases to account for a multi-tooth cutter. In case (a), yexit
� yenter is less than the pitch angle; hence, only one tooth is in the cut at any

time. On the other hand, in cases (b) and (c), yexit
� yenter is larger than the pitch angle; hence, multiple teeth will be cutting simultaneously.
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Refs. [31,33,41–43] and confirmed experimentally in Refs. [11,25,36,44,45]. However, these previous works on milling
bifurcations only investigated the case when a single tooth is engaged in cutting; a specific outcome from these works was
that they found period-doubling at low radial immersions.

In this paper, we study the stability of a milling process with simultaneously engaged teeth by extending the Chebyshev
collocation and the state-space TFEA techniques. The results of both techniques are validated through a series of overlaid
stability diagrams which constitute the first direct comparison between these methods.

This work also shows substantially different stability behavior in comparison to prior results for a single tooth in the cut.
More specifically, we observe the following new stability features: (1) a complete understanding of the manner in which an
increased number of simultaneously engaged cutting teeth leads to disappearance of the period-doubling lobes and a
qualitative similarity between the stability charts of multiple engaged teeth and those of the turning process. (Note that
this is not shown in earlier studies where a simplified constant cutting force during tooth engagement [46,47] or constant-
coefficient DDEs resulting from averaging of the periodic coefficients [32,35,48,49] are employed.), (2) a complete
understanding of the effect of multiple engaged teeth on the shifting and reshaping of the entire instability lobes, and thus
not only for the well-known shifts of their tips where they intersect the spindle speed axis by a factor of the number of
cutting teeth, and (3) a contraction of the range of immersion levels for down-milling for which stability is maximized. This
is shown through a series of stability diagrams for a down-milling process with different radial immersions and an
increasing number of engaged teeth. The specific cutting force profiles, which give an indication of the changes in the
cutting forces over one tooth passage period, are used to help explain this unusual stability behavior. The tool chatter
frequency diagrams are also obtained to give the full stability picture.

The identification of rapid transitions in the stability lobes with relatively small changes in the radial immersion ratio is
another difference between this work and prior results. This transition in the stability lobes is shown for a range of radial
immersions and different multi-tooth cutters. An explanation for these transitions is presented using the average specific
cutting force. The stable periodic motion of the tool is then studied using two different techniques: (1) a harmonic balance
approach that approximates the cutting forces with a Fourier series, and (2) the TFEA approach through finding the fixed
points of the dynamic map. The time series and the phase space results of both approaches are then compared and
conclusions are drawn.

2. Milling model for multiple engaged teeth

This section examines a single degree-of-freedom milling model with a linear-regenerative cutting force. We consider
the simultaneous engagement of multiple cutting teeth for up- and down-milling. This model has also been analyzed in
[36,44,50,51] while higher degree-of-freedom versions were considered in [5,24,37], for example. The tool is assumed to be
flexible in the x-direction only. A summation of cutting forces acting on the tool produces the equation of motion

€xðtÞ þ 2zon _xðtÞ þo2
nxðtÞ ¼

1

m

Xz

i¼1

FpðtÞ; (1)

where m is the mass, z is the damping ratio, on is the natural frequency, and z is the number of teeth. According to Fig. 2a,
the cutting force caused by the p th tooth FpðtÞ in the x-direction is given by

FpðtÞ ¼ gpðtÞð�FtpðtÞcosypðtÞ � FnpðtÞsinypðtÞÞ; (2)

where ypðtÞ is the angle of the p th cutting tooth, and gpðtÞ acts as a switching function. It is equal to one if the p th tooth is
actively cutting and zero if it is not cutting; these time intervals are defined by the entry and exit angles which are specific
to the cases of up- and down-milling (to be discussed). The tangential and normal force components are the products of the
tangential and normal linearized cutting coefficients Kt and Kn, respectively, the nominal depth of cut b, and the
Fig. 2. Geometry of (a) cutting forces and (b) feed per tooth.
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instantaneous chip width wpðtÞ as

FtpðtÞ ¼ KtbwpðtÞ; FnpðtÞ ¼ KnbwpðtÞ; (3)

where

wpðtÞ ¼ f sinypðtÞ þ ½xðtÞ � xðt � tÞ�sinypðtÞ (4)

depends on the feed per tooth f, the cutter angle ypðtÞ, and the current and delayed tool position, see Fig. 2b. The tooth pass
period in seconds is t ¼ 60=ðzOÞ ½s� where O is the spindle speed given in rpm.

The substitution of Eqs. (3) and (4) into Eq. (2) yields

FpðtÞ ¼ �bKtgpðtÞðcosypðtÞ þ tangsinypðtÞÞsinypðtÞðf þ xðtÞ � xðt � tÞÞ; (5)

where tang ¼ Kn=Kt (see Fig. 2a), and the angular position of the p th tooth is ypðtÞ ¼ ð2pO=60Þt þ 2pðp� 1Þ=z.
Substituting (5) into (1) and summing over z teeth yields

€xðtÞ þ 2zon _xðtÞ þo2
nxðtÞ ¼ �

bhðtÞ

m
½xðtÞ � xðt � tÞ� � bf 0ðtÞ

m
; (6)

where

hðtÞ ¼
Xz

p¼1

KtgpðtÞ½cosypðtÞ þ tangsinypðtÞ�sinypðtÞ (7)

is the t- periodic specific cutting force variation. Moreover, the expression for f0ðtÞ is

f0ðtÞ ¼
Xz

p¼1

KtgpðtÞ½cosypðtÞ þ tangsinypðtÞ�f sinypðtÞ: (8)

The solution to Eq. (6) is assumed of the form

xðtÞ ¼ xðtÞ þ xðtÞ; (9)

where xðtÞ ¼ xðt þ tÞ is a t- periodic solution that solves Eq. (6) and represents the unperturbed, ideal tool motion when no
self-excited vibrations arise, and xðtÞ is the perturbation. Substitution of Eq. (9) into Eq. (6) and elimination of terms
involving xðtÞ and f0ðtÞ yields

€xðtÞ þ 2zon
_xðtÞ þo2

nxðtÞ ¼ �
bhðtÞ

m
½xðtÞ � xðt � tÞ�; (10)

or in state space form

d

dt

x
_x

" #
¼

0 1

�o2
n �

bhðtÞ

m
�2zon

2
4

3
5 x

_x

" #
þ

0 0
bhðtÞ

m
0

2
4

3
5 xðt � tÞ

_xðt � tÞ

" #
; (11)

or

_nðtÞ ¼ RðtÞnðtÞ þ LðtÞnðt � tÞ; (12)

where nðtÞ is a 2� 1 state vector, Rðt þ tÞ ¼ RðtÞ, and Lðt þ tÞ ¼ LðtÞ. Eq. (12) is the linear variational DDE model of
the milling process. Stability of the nðtÞ ¼ 0 solution in Eq. (12) implies the stability of the ideal (chatter-free) periodic
motion xðtÞ.

Two types of partial immersion processes are considered in this paper: up-milling and down-milling, see Fig. 3. In this
figure, a is the radial depth of cut, D is the diameter of the tool while yenter and yexit are the entry and exit angles,
respectively. These two angles can be characterized using the radial immersion a=D and they take different values for
up-milling and down-milling processes. The dependence of the specific cutting force variation hðtÞ on the entry and exit
angles is attributed to the effect of the screen function gpðtÞ in Eq. (7). More specifically, for the pth tooth gp ¼ 1 if
Fig. 3. Illustrations of (a) up-milling and (b) down-milling.
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yenteroypoyexit while gp ¼ 0 otherwise. The entry and exit angles can be found from Fig. 3 as yenter
¼ 0 and yexit

¼

cos�1ð1� 2a=DÞ for up-milling, while for down-milling the angles are yenter
¼ cos�1ð2a=D� 1Þ and yexit

p ¼ p. These
differences in the entry and exit angles in up-milling and down-milling lead to a different specific cutting force profile for
the two processes which further separates the two with different dynamic behavior and stability properties.

The difference between the exit and entry angles gives the contact angle ycontact
¼ cos�1ð1� 2a=DÞ. This angle describes

the angular distance over which the tool is in contact with the workpiece in one spindle revolution. The percent time of the
revolution that a single tooth is cutting is hence given by r ¼ cos�1ð1� 2a=DÞ=ð2pÞ. For a cutter with z teeth, this value is
modified to zr where—as long as zrr1Fit now represents the percent of the revolution that all teeth are cutting.
Otherwise, the case zr41 indicates simultaneously engaged teeth. This can also be extrapolated such that the condition for
ze simultaneously engaged teeth becomes zr4ze � 1; or in terms of the radial immersion,

a

D
4sin2 ðze � 1Þp

z
: (13)

For a z-tooth cutter, the maximum number of engaged teeth at full radial immersion is zmax
e ¼ dzre, where d�e is the

ceiling function (a function returning the smallest integer that is greater than or equal to its argument). However, since the
maximum value of r for the full immersion case is 50 percent (see the case z ¼ 1 in Fig. 4), the expression for the maximum
number of engaged teeth becomes

zmax
e ¼ zr

� �
¼

z

2
; z even;

zþ 1

2
; z odd:

8>><
>>: (14)

Thus, multiple teeth can simultaneously engage in the cut only for z42. Specifically, for z = 3 or 4 there can be ze = 1 or 2
engaged teeth, and a=D ¼ 75 percent (for z ¼ 3) and 50 percent (for z ¼ 4) are the boundary cases. For z ¼ 6, however, there
can be ze ¼ 1, 2, or 3 engaged teeth, and the boundaries between these cases are at a=D ¼ 25 and 75 percent. Fig. 5 shows
this relation for several values of ze and z.

Regardless of the number of teeth engaged in the cut, the milling process with a cutter of equally spaced teeth has
t- periodic coefficients and is therefore a t- periodic process. This periodicity is shown in Fig. 6 for 4- and 6-tooth cutters. In
graph (a) for a 4-tooth cutter, the starting position is repeated when tooth 2 takes the angular position of the reference
tooth 1 after t seconds from the beginning of the cut. A similar observation can be seen in graph (b) for a 6-tooth cutter. In
general, for a cutter with any number of equally spaced teeth, periodicity is realized once every tooth passage period.
Therefore, one way to look at the process is by assuming the revolution starts with the maximum possible number of teeth
Fig. 4. Percent zr of total time in the cut versus immersion ratio for various numbers of cutting teeth. The shaded portion corresponds to multiple

engaged teeth.
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Fig. 5. Minimum radial immersion ratio for (bottom to top) ze ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 multiple engaged cutting teeth versus total number of teeth z.
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Fig. 6. The periodicity in a milling operation for (a) a 4-tooth cutter, and (b) a 6-tooth cutter.
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engaged in the cut and then, depending on the radial immersion a=D and the number of teeth z, the leading tooth may exit
the cut at some point during t (see Fig. 6), before the same sequence repeats itself. Consequently, if a dynamic map is
created for the state variable between two periods, Floquet theory can be used to determine stability. Two techniques to
determine the stability of the linear periodic DDE in Eq. (12) are temporal finite element analysis (TFEA) [52] and
Chebyshev collocation [53], which are introduced in the next two sections.

In both approaches, Eq. (12) is expressed as a map of the state vector nðtÞ in some basis (either temporal finite elements
or Chebyshev collocation points) as mxðiþ 1Þ ¼ UmxðiÞ or

miþ1 ¼ Umi; (15)

where U is a finite dimensional approximation of the infinite dimensional monodromy operator for time-periodic DDEs.
Furthermore, the mapping equations will be obtained in the same form as (15) above. The dimensions of mx and U are
determined according to the desired level of accuracy, i.e. the number of finite elements or Chebyshev collocation points
used. The eigenvalues of the monodromy operator U determine the system stability. In fact, the condition for asymptotic
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Fig. 7. The stability criteria dictates that all the eigenvalues, m, of the monodromy operator U, should lie within the unit circle in the complex plane.

Moreover, the manner in which the eigenvalues depart the unit circle produces different bifurcation behavior. For example, an eigenvalue leaving the unit

circle through �1 results in a period-doubling bifurcation, whereas two complex conjugate eigenvalues departing the unit circle result in secondary Hopf

bifurcation.
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stability requires that all the characteristic multipliers, or eigenvalues of U, must lie within the unit circle of the complex
plane, see Fig. 7.

3. Temporal finite element method

This section describes the stability analysis of Eq. (12) using temporal finite element analysis, or TFEA. The total time in
the cut for one period is divided into temporal elements. Next, the expressions for the current state and the delayed state
are approximated by a linear combination of trial functions fðsÞ during the j th element according to

njðtÞ ¼
X3

i¼1

an
jifiðsÞ; (16a)

njðt � tÞ ¼
X3

i¼1

an�1
ji fiðsÞ; (16b)

where s 2 ½0; tj� is the element local time and tj is the length of the j th element. For example, if the total number of
elements is E, then tj ¼ t=E for elements of a uniform time. The chosen trial functions are obtained through interpolation
and they are orthogonal on the interval 0rsrtj [52]. Hence, the use of the local time notation ensures that they remain
orthogonal for every temporal element. The set of trial functions used for this analysis is

f1ðsÞ ¼ 1� 23
s
tj

� �2

þ 66
s
tj

� �3

� 68
s
tj

� �4

þ 24
s
tj

� �5

; (17a)

f2ðsÞ ¼ 16
s
tj

� �2

� 32
s
tj

� �3

þ 16
s
tj

� �4

; (17b)

f3ðsÞ ¼ 7
s
tj

� �2

� 34
s
tj

� �3

þ 52
s
tj

� �4

� 24
s
tj

� �5

: (17c)

These functions are constructed such that the coefficients of the assumed solution directly represent the state variable at
the beginning, middle and end of each temporal element, i.e. at s ¼ 0, tj=2 and tj, respectively. This is illustrated in the time
line of Fig. 8 where the time in the current period n and the previous period n� 1 is discretized into two elements for
demonstration. Further, the dark dots represent the coefficients of the assumed solution which coincide with the actual
solution xðtÞ at discrete points in time.
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Fig. 8. Time line for the state variable xðtÞ over a time interval of 2t. The dark dots represent the points where the coefficients of the assumed solution

coincide with the state variable. Moreover, the dashed lines mark the beginning and the end of each time element.

O.A. Bobrenkov et al. / Journal of Sound and Vibration 329 (2010) 585–606592
Consistent with Fig. 8, the following TFEA is presented using two elements. The corresponding form of the assumed
solution is substituted into Eq. (12) which gives

X3

i¼1

ð _f iðsÞan
ji � Rðsþ ðj� 1ÞtjÞfiðsÞan

ji � Lðsþ ðj� 1ÞtjÞfiðsÞan�1
ji Þ ¼ error; (18)

where the error incurred in Eq. (18) is due to the approximation procedure. This error is minimized using the method of
weighted residuals. Thus, Eq. (18) is multiplied by linearly independent weighting functions and the integral of the
weighted error is set to zero. In this analysis, shifted Legendre polynomials are used since they satisfy the linear
independence condition. More specifically, only the first two shifted Legendre polynomials c1ðsÞ ¼ 1 and c2ðsÞ ¼
2ðs=tjÞ � 1 are used to keep the matrices square. Therefore, the weighted residual expression becomes

X3

i¼1

Z tj

0
ð _f iðsÞan

ji � Rðsþ ðj� 1ÞtjÞfiðsÞan
ji � Lðsþ ðj� 1ÞtjÞfiðsÞan�1

ji ÞcpðsÞds ¼ 0: (19)

Eq. (19) can be rearranged by collecting the terms that are multiplied by an
ji and the terms that are multiplied by an�1

ji in two
different matrices:

Nj
pi ¼

Z tj

0
ðIfiðsÞ � Rðsþ ðj� 1ÞtjÞfiðsÞÞcpðsÞds; (20a)

Pj
pi ¼

Z tj

0
Lðsþ ðj� 1ÞtjÞfiðsÞcp ds; (20b)

where I is an identity matrix, Nj
pi is the matrix containing the terms that are multiplied by an

ji, while Pj
pi is the matrix

containing the terms that are multiplied by an�1
ji . These two terms are then used to populate two matrices on the opposite

sides of Eq. (19) according to

I 0 0 0 0

N1
11 N1

12 N1
13 0 0

N1
21 N1

22 N1
23 0 0

0 0 N2
11 N2

12 N2
13

0 0 N2
21 N2

22 N2
23

2
66666664

3
77777775

a11

a12

a21

a22

a23

2
6666664

3
7777775

n

¼

0 0 0 0 U
P1

11 P1
12 P1

13 0 0

P1
21 P1

22 P1
23 0 0

0 0 P2
11 P2

12 P2
13

0 0 P2
21 P2

22 P2
23

2
66666664

3
77777775

a11

a12

a21

a22

a23

2
6666664

3
7777775

n�1

; (21)

which can be written in a more compact form as

Han ¼ Gan�1; (22)

where I is an identity matrix and U is the state transition matrix

U ¼
1

l1 � l2

l1el2tf � l2el1tf el1tf � el2tf

l1l2el2tf � l1l2el1tf l1el1tf � l2el2tf

" #
; (23)

where l1;2 ¼ �zon7on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
� 1

q
, and tf is the duration of free vibration. This state transition matrix relates the state of the

tool as it exits the cut to its state as it re-enters the cut [54].
Recalling that the coefficients of the assumed solution directly represent the state variable at the beginning, middle, and

end of each element, the coefficients vectors can be replaced with the actual state variable vectors and a dynamic map can
be written as

Hmn ¼ Gmn�1: (24)
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Therefore, in accordance with (15), the monodromy operator U is defined for TFEA as follows:

U ¼ H�1G: (25)

For more details about this technique and for convergence properties the reader is referred to Ref. [52].

4. Chebyshev collocation method

The Chebyshev collocation method is based on the properties of the Chebyshev polynomials of the first kind [55].
The Chebyshev collocation points are unevenly spaced points in the domain ½�1;1� corresponding to the extremum points
of the Chebyshev polynomial of degree N. As seen in Fig. 9a, we can also define these points as the projections of
equispaced points on the upper half of the unit circle as tj ¼ cosðjp=NÞ; j ¼ 0;1; . . . ;N where the number of collocation
points used is m ¼ N þ 1. A spectral differentiation matrix for the Chebyshev collocation points is obtained by interpolating
a polynomial through the collocation points, differentiating that polynomial, and then evaluating the resulting polynomial
at the collocation points [56]. We can find the differentiation matrix D for any order m as follows: let the rows and columns
of the m�m Chebyshev spectral differentiation matrix D be indexed from 0 to N. The entries of this matrix are

D00 ¼
2N2 þ 1

6
; DNN ¼ �

2N2 þ 1

6
; Djj ¼

�tj

2ð1� t2
j Þ
; j ¼ 1; . . . ;N � 1;

Dij ¼
cið�1Þiþj

ciðti � tjÞ
; iaj; i; j ¼ 0; . . . ;N; ci ¼

2; i ¼ 0;N;

1 otherwise:

�
(26)

The dimension of D is m�m. Also let the mq�mq differential operator D (corresponding to q first-order DDEs) be
defined as D ¼ D� Iq. Now let us approximate Eq. (12) using the Chebyshev collocation method, in which the approximate
solution is defined by the function values at the collocation points in any given interval. (Note that for a collocation
expansion on an interval of length T ¼ t, the standard interval ½�1;1� for the Chebyshev polynomials is easily rescaled.)
Fig. 9. Diagrams of (a) Chebyshev collocation points as defined by projections from the unit circle, (b) collocation vectors on successive intervals, and

(c) collocation vectors for the case of a period of free vibration.



ARTICLE IN PRESS

O.A. Bobrenkov et al. / Journal of Sound and Vibration 329 (2010) 585–606594
As shown in Fig. 9b, let m1 be the set of m values of nðtÞ in the interval t 2 ½0; T� and mf be the set of m values of the initial
function fðtÞ in t 2 ½�T;0�. Recalling that the points are numbered from right to left by convention, the matching condition
in Fig. 9b is seen to be that m1N ¼mf0. Writing Eq. (12) in the algebraic form representing the Chebyshev collocation
expansion vectors mf and m1, we obtain

D̂m1 ¼ M̂Rm1 þ M̂Lmf: (27)

In order to enforce the q matching conditions, the matrix D̂ is obtained from D by (1) scaling to account for the shift
½�1;1�-½0; T� by multiplying the resulting matrix by 2=T, and (2) modifying the last q rows as ½0q 0q . . . Iq�where 0q and Iq

are q� q null and identity matrices, respectively. The pattern of the product operational matrices is

M̂R ¼

Rðt0Þ

Rðt1Þ

&

RðtN�1Þ

0q 0q � � � 0q 0q

2
6666664

3
7777775
; (28)

where RðtiÞ is calculated at the i th point on the interval of length t. Similarly,

M̂L ¼

Lðt0Þ

Lðt1Þ

&

LðtN�1Þ

Iq 0q � � � 0q 0q

2
6666664

3
7777775
: (29)

In Eq. (29), the hat (̂) above the operator refers to the fact that the matrices are modified by altering the last q rows to
account for the matching conditions.

In the case where only one tooth cuts at a time, there is in general some period between the cuts of free
vibration corresponding to the system _nðtÞ ¼ R0nðtÞwhere R0 ¼ RðtÞ in Eqs. (11) and (12) when hðtÞ ¼ 0. The state transition
matrix UðtÞ (see Eq. (23) in Section 3) that satisfies _UðtÞ ¼ R0UðtÞ can easily be found, from which the matching
condition becomes m1N ¼ Uðð1� zrÞtÞmf0 (see Fig. 9c). Therefore, the last q rows of M̂L are changed to
½Uðð1� zrÞtÞ 0q 0q . . .�.

In general, if inequality (13) is not satisfied with ze ¼ 1, then a portion of the delay period of length zrt is approximated
with Chebyshev collocation points (see the first diagram in the last row of Fig. 11), while the remainder of the period
corresponds to free vibration. To account for the shift ½�1;1�-½0; zrt�, matrix D̂ in Eq. (27) is rescaled by multiplying D by
2=ðzrtÞ. If the immersion ratio is such that the inequality (13) becomes equality (which represents the borderline case
between one and two engaged teeth), the length of the approximated portion becomes t, as in the second diagram of the
last row of Fig. 11 and the first diagram of the last row of Fig. 12. In this case the state transition matrix becomes identity, so
the M̂L matrix becomes as in Eq. (29). Higher values of a=D such that inequality (13) is satisfied also result in the
approximation of the entire delay period.

If the specific cutting force has a part of nonsmoothness on the interval of length t, two separate expansions can be
used for greater accuracy. This affects the structure of spectral differentiation and product operational matrices, such as in
Eq. (27). Rewriting the vectors m1 and mf as

m1 ¼

nðt10Þ

^

nðt1NÞ ¼ nðt20Þ

^

nðt2NÞ

2
6666664

3
7777775
; mf ¼

/ðt10Þ

^

/ðt1NÞ ¼ /ðt20Þ

^

/ðt2NÞ

2
6666664

3
7777775
; (30)

where t1j and t2j are the collocation points in the two portions of the expanded interval, we have the D̂ matrix in Eq. (27)
written as

D̂ ¼

2

h1
Dð1;NqÞ

� 	
2

h2
Dð1;NqÞ

� 	
0q 0q � � � 0q Iq

2
666664

3
777775; (31)
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where h1 and h2 are the lengths of the expanded portions and the superscript ð1;NqÞ on D refers to the fact that only rows
of D between 1 and Nq are written into the corresponding block. The M̂R and M̂L matrices are now expressed as

M̂R ¼

Rðt10Þ

&

Rðt1NÞ ¼ Rðt20Þ

&

Rðt1N�1Þ

0q 0q . . . 0q 0q

2
6666666664

3
7777777775
;

M̂L ¼

Lðt10Þ

&

Lðt1NÞ ¼ Lðt20Þ

&

Lðt1N�1Þ

Iq 0q . . . 0q 0q

2
6666666664

3
7777777775
: (32)

Use of multiple interval collocation expansion will be applied to two specific cases of multiple engaged teeth.
Therefore, rearranging Eq. (27) and letting m1 ¼miþ1 and mf ¼mi, the map in Eq. (15) is obtained where the

approximation to the monodromy operator is

U ¼ ½D̂ � M̂R�
�1M̂L: (33)

It is seen that if m is the number of collocation points in each interval and q is the size of the first-order DDE of Eq. (12),
then the size of the U matrix (whose eigenvalues approximate the Floquet multipliers which are largest in absolute value)
for one Chebyshev interval will be mq�mq and for two intervals is ð2m� 1Þq� ð2m� 1Þq. We can achieve higher accuracy
of the Floquet multipliers by increasing the value of m. A MATLAB suite of codes called DDEC which computes stability
boundaries for linear periodic DDEs with multiple discrete delays has been written and is available for download [57].
Other than for linear stability analysis of periodic DDEs including the milling model [39,40], this collocation method has
also been used for center manifold reduction of nonlinear periodic DDEs [58] and parameter identification of periodic
nonlinear ODEs [59]. For more details on the Chebyshev collocation method and its convergence properties, see [56].

5. Discussion of stability results

The stability charts of Figs. 10–14 show the substantial stability changes that occur when multiple cutting teeth are
engaged. In particular, the following important changes are observed: (1) a smooth disappearance of the period-doubling
lobes as the number of simultaneously engaged cutting teeth is increased leading to a qualitative similarity between the
stability charts of multiple engaged teeth and those of the turning process, (2) the well-known shifts of the tips of the
unstable lobes where they intersect the spindle speed axis by a factor of the number of cutting teeth as well as a complete
understanding of the shifting and reshaping of the entire instability lobes which do not conform to this rule, and (3) a
contraction of the range of immersion levels for down-milling in the vicinity of the immersion level where the average
cutting force for down-milling is zero for which stability is maximized. In addition, it will be seen in Fig. 5 that the specific
cutting force for 100 percent immersion becomes constant only for an even number of teeth greater than or equal to 4.

The stability charts in Fig. 10 are obtained using TFEA and the Chebyshev collocation method for up-milling and down-
milling processes with several immersion ratios and numbers of cutting teeth. The region above the stability boundaries
indicates chatter, or unstable cutting, while the region below the boundaries represents stable, or chatter-free, cutting. The
two techniques are shown to give practically identical results which validates the stability analysis. The system parameters
used to construct these charts are shown in Table 1. Since 25 collocation points and 12 finite elements were used, the
dimensions of the U matrix approximating the monodromy operator in Eq. (15) is 50� 50 for Chebyshev collocation and
22� 22 for TFEA. The eigenvalues of the monodromy operator determine the system stability when using either TFEA or
collocation methods, see the stability criteria in Fig. 7. Moreover, the manner in which the eigenvalues depart the unit circle
produces different bifurcation behavior. For example, an eigenvalue leaving the unit circle through �1 results in a period-
doubling bifurcation, whereas two complex conjugate eigenvalues departing the unit circle results in secondary Hopf
bifurcation. A cycle-fold bifurcation, which is associated with the case m ¼ 1, cannot occur for an evenly spaced mill as was
shown in Refs. [36,46,50]; however, cycle-fold bifurcations have been reported for variable pitch tools [60].

The type of bifurcation associated with unstable cutting is identified in Figs. 10–12; the regions of secondary Hopf
bifurcation are indicated by an ‘‘H’’, while flip or period-doubling bifurcation is indicated by a ‘‘P’’. It can be seen that the
stability charts obtained by TFEA and Chebyshev collocation are almost identical. It can be seen in Fig. 10 that the relative
orientation of the Hopf and flip regions remains the same for all cases. However, the flip regions which are visible for the
case of one tooth become smaller for 4, 6, and even smaller still for 10 teeth. In fact, this ‘‘disappearance’’ of flip regions is a
typical characteristic in stability charts for mills with more simultaneously engaged cutting teeth. The reason can be
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Fig. 10. Stability charts obtained with Chebyshev collocation method (dashed) and TFEA (dotted) for up-milling. The two columns were generated with

the radial immersions 25 and 75 percent, respectively, and for cutters with: 1 tooth (row 1), 4 teeth (row 2), 6 teeth (row 3), and 10 teeth (row 4). The

plane is discretized into a 300� 300 grid for Chebyshev collocation method and a 600� 600 grid for TFEA. Although the stability charts show similar

qualitative features, note the shift in scales for the O- axis.
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attributed to the fact that the flip regions are associated with discontinuities and higher harmonics in the specific cutting
force profile, which vanish as the presence of a larger number of teeth begins to resemble the case of turning with a
constant specific cutting force profile.
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Fig. 11. Stability charts (first row), chatter frequencies (second row), and corresponding specific cutting force profiles (third row, where the thick line

represents the segment that is approximated with Chebyshev collocation points) for 4 teeth, down-milling, and for a=D ¼ 0:25 (column (a)), 0.50 (column

(b)), 0.75 (column (c)), and 1 (column (d)).
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The disappearance of the flip regions is also apparent in Figs. 11 and 12 for down-milling with 4 and 6 teeth,
respectively. In these figures, a series of plots with increasing radial immersion shows prominent period-doubling lobes
becoming smaller for 6 teeth compared to the case of 4 teeth over the whole partial radial immersion range. The stability
charts for 4 teeth in Fig. 11 for 25, 50, 75, and 100 percent immersion ratios correspond to the cases (a), (c), (b), and (c),
respectively, as shown in Fig. 1. Similarly, the results for the same immersion ratios in Fig. 12 correspond to the cases (c), (b),
(c), and (c), respectively, in Fig. 1. Therefore, there are simultaneously engaged cutting teeth with the difference between
the exit and entry angles being an integer multiple of the pitch angle in most cases. The case of full radial immersion,
a=D ¼ 1, results in a constant contact force due to the effect of superimposing the specific cutting forces of 4 and 6 teeth
which are out of phase by 2p=zO. Therefore, only secondary Hopf instabilities are present in these cases as in the turning
process. Note that for even higher numbers of cutting teeth, the specific cutting force approaches a constant value and the
period-doubling lobes disappear for lower levels of radial immersion.

Some features similar to those in [40] can be observed for the down-milling cases in Figs. 11 and 12. In both figures, the
specific cutting force (see the bottom rows) is always negative for low immersion ratios, and it begins to include some
intervals of positive values at some value of immersion ratio below 50 percent for 4 teeth and below 75 percent for 6 teeth.
In the down-milling stability charts (see the first rows of each figure), it can be observed that the mutual orientation of the
secondary Hopf and period-doubling bifurcation stability lobes remains the same up to some value of the immersion ratio,
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Fig. 12. Stability charts (first row), chatter frequencies (second row), and corresponding specific cutting force profiles (third row, where the thick line

represents the segment that is approximated with Chebyshev collocation points) for 6 teeth, down-milling, and for a=D ¼ 0:25 (column (a)), 0.50 (column

(b)), 0.75 (column (c)), and 1 (column (d)).
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and then it changes. As was shown in [40], the reason for that is the change of the sign of the average value of specific
cutting force as the immersion ratio is varied. In the same reference, for both linear and nonlinear cutting force model, it
was also shown that, with the increase of a=D, the major Hopf lobe at the right-hand side first shrinks, and then completely
vanishes, defining the beginning of a local optimal stable interval, which corresponds to a range of radial immersion in
which the stable portion of the parameter plane is the greatest. At some level of radial immersion, it appears to the left of
the corresponding flip lobe (which indicates the end of the optimal stable interval defined in [40]). For 100 percent
immersion ratio, the specific cutting force becomes constant, which means that this case can be handled like the problem
of turning, in which the stability boundaries (which are only due to Hopf bifurcation) are the same for up- and down-
milling and can be obtained analytically [46]. For the two examples of case (b) in Fig. 1 (i.e. the 75 percent immersion case
in Fig. 11 and the 25 percent case in Fig. 12), the two-interval collocation expansion discussed in Section 4 was used.

Qualitatively similar results to those obtained in [40] are shown in Figs. 13 and 14 where the stability diagrams have
been plotted for 16 immersion ratios between 0.61 and 0.76 for the case of 4 teeth (between 0.65 and 0.8 for the case of 6
teeth) using the parameters in Table 1. It can be seen that in both cases the major Hopf lobe at the far right-hand side
shrinks such that it moves to the right and completely disappears by a=D ¼ 0:65 for 4 teeth (a=D ¼ 0:68 for 6 teeth). At the
immersion ratio between 65 and 71 percent for 4 teeth (68 and 70 percent for 6 teeth) there is no major Hopf lobe to the
right or left of the major flip lobe which is at 4400 rpm for 4 teeth (compare with Fig. 11) and at 2900 rpm for 6 teeth
(compare with Fig. 12), while for 72 percent (71 percent) immersion the Hopf lobe suddenly appears to the left of the flip
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Fig. 13. Optimal stable immersion levels for down-milling with 4 cutting teeth and using the parameters in Table 1.
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lobe. A further increase in the immersion level subsequently causes the lobe to drop even lower, dropping below b ¼ 2 mm
near 73 percent (72 percent) immersion. The main difference from prior results is that the optimal stable interval contracts
as the number of simultaneously engaged teeth increases, which can be observed by comparing Figs. 13 and 14 with Fig. 7
in [40]. The change in stability characteristics above can be explained by computing the average value of hðtÞ over a full
period of rotation of the tool for z teeth (similar to the way this was done in [40] for a single tooth) from the following
equation:

/hðtÞS ¼
O
2p

Z 2p=O

0
hðtÞdt ¼

zKt

2p

Z yexit

yenter
ðcosyþ tangsinyÞsinydy: (34)

Therefore, for z teeth, the average specific cutting force for up-milling is found as

/hðtÞS
Kt

¼
z

2p 2
a

D
1�

a

D


 �
 �
þ tang 1

2
cos�1 1� 2

a

D


 �
þ 2

a

D
� 1


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

D
1�

a

D


 �r !( )
; (35)

while for down-milling it is

/hðtÞS
Kt

¼
z

2p
�2

a

D
1�

a

D


 �
 �
þ tang p

2
�

1

2
cos�1 2

a

D
� 1


 �
þ 2

a

D
� 1


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

D
1�

a

D


 �r !( )
: (36)

These are plotted for 4, 6, and 8 teeth (up to 2, 3, and 4 teeth simultaneously engaged, respectively, see also Fig. 5) in Fig. 15.
With no contrast to previous results, for a=D40 and tang40, /hðtÞS is always positive for up-milling, while for down-
milling /hðtÞS is negative for a=D less than a critical value and is positive for a=D greater than this value. It should be noted
that while the presence of multiple teeth alters the average cutting force from that of a single tooth, the immersion ratio
where it is zero for down-milling remains the same, which is seen in Fig. 15.
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Table 1
Parameters used in the stability analysis.

Parameter Value

m 2.5729 kg

on 920.49 rad/s

z 0.0032

Kn 2:0� 108 N=m2

Kt 5:5� 108 N=m2

tang 0.36

Fig. 14. Optimal stable immersion levels for down-milling with 6 cutting teeth and using the parameters in Table 1.
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6. Analysis of chatter frequencies and stable periodic trajectories

The previous sections described the stability analysis of a milling process with multiple teeth simultaneously cutting.
Consequently, the stable and unstable regions in the parameter space were graphed. Machining in the unstable range will
cause the tool to chatter with certain frequencies. These chatter frequencies can be measured experimentally as well as
determined analytically [50]. In Section 6.1, the expressions for finding the chatter frequencies are given and applied to
cases with multiple teeth in the cut.

However, even in the absence of chatter, certain choices of the process parameters can result in stable periodic motions
of the tool that will degrade the surface integrity of the workpiece. These stable periodic motions correspond to steady-
state vibrations of the tool which are influenced by the cutting process parameters such as the spindle speed, the axial
depth of cut, and the tool feed. A better parameter selection is hence achieved if both stability and the associated
equilibrium solutions are considered during the process design. In Section 6.2, the stable periodic equilibrium solutions are
determined via a Fourier series expansion and harmonic balance approach. The fixed points of the discrete map obtained
through TFEA are then compared to the equilibrium solutions from the harmonic balance approach.
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Fig. 15. Average cutting forces for up- (top curve) and down- (bottom curve) milling with tang ¼ 0:3 for 4 (solid), 6 (dashed), and 8 (dotted) teeth.
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6.1. Chatter frequencies

The expressions for chatter frequencies occurring in milling processes were derived in Ref. [50] for the secondary Hopf
and period-doubling bifurcation. For the secondary Hopf case, the chatter frequencies are given as

fH ¼ 7oþ j
2p
t

� �
½rad=s� ¼ 7

o
2p
þ j

zO
60

� �
½Hz�; j ¼ . . . ;�1;0;1; . . . ; (37)

where t is given in seconds, and O in rpm with only the positive values of fH having physical meaning. For the period-
doubling case, the frequencies can be written in the simple form

fPD ¼
p
t þ j

2p
t

� �
½rad=s� ¼ 7

zO
30
þ j

zO
60

� �
½Hz�; j ¼ . . . ;�1;0;1; . . . : (38)

Either the frequency set fH or fPD shows up during chatter. However, if Eq. (12) is stable, then these frequencies do not arise.
Figs. 11 and 12 show chatter frequencies (second rows) corresponding to the stability charts and specific cutting force
profiles above and below.

6.2. Periodic motion of the tool

This section investigates the periodic motion of the tool using two methods: (1) the harmonic balance, and (2) the fixed
points of a discrete map. Previously, some aspects of these two methods were compared to ascertain the surface location
error in milling [5,37,38]. However, these past investigations have only compared a single point in the time series which
coincided with either the tool entry (for up-milling) or exit (for down-milling). A new feature of the current work is a
quantitative comparison of the time series generated by both methods. As a consequence of the present study, the
discrepancies between these methods are unveiled and explained.

6.2.1. Harmonic balance

The equation of motion for a single degree-of-freedom milling operation was introduced in Eq. (6). This equation can be
re-written as

€xðtÞ þ 2zon _xðtÞ þo2
nxðtÞ ¼ o2

n �
bhðtÞ

k
½xðtÞ � xðt � tÞ� � bf 0ðtÞ

k

� 	
:

However, for a chatter-free machining process, the tool oscillations are assumed to be t- periodic, i.e. xðtÞ ¼ xðt � tÞ
[5,24,43,61]; therefore, the above equation reduces to

€xðtÞ þ 2zon _xðtÞ þo2
nxðtÞ ¼ o2

n
~f 0ðtÞ; (39)



ARTICLE IN PRESS

O.A. Bobrenkov et al. / Journal of Sound and Vibration 329 (2010) 585–606602
where ~f 0ðtÞ ¼ �bf 0ðtÞ=k. The solutions of Eq. (39) represent the stable periodic motions of the system, and

~f 0ðtÞ ¼ �
1

k

Xz

p¼1

bKtgpðtÞ½cosypðtÞ þ tangsinypðtÞ�f sinypðtÞ (40)

is only piece-wise continuous. A continuous representation of ~f 0ðtÞ is obtained by assuming that ~f 0ðtÞ is T-periodic for a
stable motion and expressing it by a complex Fourier series according to [43]

~f 0ðtÞ ¼
Xz

r¼1

X1
n¼�1

Gn eiðnOt�yr Þ; (41)

where yr ¼ ðr � 1Þ2p=z. For instance, for a four-tooth cutter with evenly spaced teeth we obtain y1 ¼ 0, y2 ¼ p=2, y3 ¼ p,
and y4 ¼ 3p=2.

Furthermore, owing to the linearity of Fourier series, Eq. (41) was obtained by combining the individual Fourier series
representations of each tooth then factoring out the identical Fourier coefficients. Indeed, these Fourier coefficients can be
calculated from

G0 ¼
1

T

Z tex

ten

~f 0ðtÞdt; (42a)

Gn ¼
1

T

Z tex

ten

~f 0ðtÞe
�inOt dt; n ¼7ð1;2 . . . ;1Þ; (42b)

where ten ¼ yenter=O and tex ¼ yexit=O, and O is the angular velocity expressed in (rad/s). Since the excitation in Eq. (39) was
assumed to be periodic, the steady-state response, xðtÞ, will also be periodic and it can be represented by another Fourier
series of the form

xðtÞ ¼
Xz

r¼1

X1
n¼�1

Xn eiðnOt�yr Þ: (43)

Making use of the frequency response function notation, and substituting Eqs. (41) and (43) into Eq. (39) yields

xðtÞ ¼
Xz

r¼1

X1
n¼�1

GðnOÞGneiðnOt�yr Þ; (44)

where the frequency response function is given by

GðnOÞ ¼
o2

n

o2
n � ðnOÞ

2
þ i2zonðnOÞ

: (45)

In fact, Eq. (44) can be written as

xðtÞ ¼ NG0 þ
Xz

r¼1

X1
n¼1

ðGðnOÞGn eiðnOt�yr Þ þ ĜðnOÞĜne�iðnOt�yr ÞÞ; (46)

where ĜðnOÞ and Ĝn denote the complex conjugates of GðnOÞ and Gn, respectively.

6.2.2. Map fixed points

The governing equation of motion for a milling operation was introduced in Eq. (6). This equation can be represented in
state-space form as

_x ¼ RðtÞxðtÞ þ LðtÞxðt � tÞ þ cðtÞ; (47a)

where RðtÞ and LðtÞ are the same as in Eq. (12), and

cðtÞ ¼
0

�
bf 0ðtÞ

m

2
4

3
5: (47b)

TFEA approach is applied to Eq. (47) by approximating the solution x as a linear combination of polynomials—similar to
Eq. (16). The approximate solution is then substituted into Eq. (47) and the method of weighted residuals is used to reduce
the approximation error. Following the steps of Section 3, a discrete dynamic map over one period is created according to
[5,24]

HmxðnÞ ¼ Gmxðn� 1Þ þ q; (48)

where mxðnÞ is similar to mn in Eq. (24), except that it represents the temporal finite element expansion of the state vector
x itself rather than of its perturbation n. H and G were defined in Eq. (24), and, using two temporal elements, the entries of
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the vector q ¼ ½0 d1
1 d1

2 d2
1 d2

2�
T are given by

dj
p ¼

Z tj

0
cðsþ ðj� 1ÞtjÞcpðsÞds; (49)

where c is given in Eq. (47). The fixed points of the map are associated with the stable periodic motion of the system and
they are denoted by m�x. They occur when mxðnÞ ¼mxðn� 1Þ and they can be obtained from

m�xðnÞ ¼ ðG�HÞ�1q; (50)

or equivalently m�xðnÞ ¼ ðI�UÞ�1
ðG�1qÞ, where U is the monodromy operator defined in Eq. (15).

Whereas the harmonic balance approach represents a continuous approximation of the discontinuous cutting forces,
the map’s fixed points are obtained through discretizing the equation of motion. The fixed points obtained by Eq. (50) are
compared to the results of the harmonic balance approach in Fig. 16 for up-milling and Fig. 17 for down-milling. The two
figures are for an 8-tooth cutter with 50 percent radial immersion. In Fig. 16a, the time series of the tool oscillations over
one period is plotted for both the harmonic balance approach and the fixed points of the dynamic map. It can be seen that
the time series obtained with the two different approaches are in agreement. Graphs (b)–(d) compare the phase space
obtained through harmonic balance (solid line) with an increasing number of harmonics to the results from the map’s fixed
points. Graph (b) shows that for a lower number of harmonics the harmonic balance approach has not converged close to a
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Fig. 16. The periodic solutions of an up-milling process with an 8-tooth cutter, 0.5 radial immersion, O ¼ 3000 rpm and b ¼ 0:5 mm. In graph (a), 50

harmonics are used to plot the harmonic balance solution (solid line) against the fixed points (crosses) of the dynamic map over one period of oscillations.

The phase space obtained by the fixed points of the map is also overlaid by the harmonic balance approach results (solid line) using (b) 50 harmonics,

(c) 100 harmonics, and (d) 250 harmonics. In all the plots, 12 temporal elements were used to discretize the equation of motion.
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(c) 100 harmonics, and (d) 250 harmonics. In all the plots, 12 temporal elements were used to discretize the equation of motion.
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certain point. This point coincides with the cutting force discontinuity at the beginning of the cut. However, as the number
of harmonics is increased in graphs (c)–(d), the harmonic balance results approach their discretization approach
counterparts. Fig. 16 shows that whereas the TFEA approach yielded convergent results, the harmonic balance approach
required a larger number of harmonics to converge to the correct response behavior. This is shown in a series of plots where
the number of harmonics has been increased until the results of the harmonic balance method approached those of TFEA.
Similar conclusions can be drawn from Fig. 17 for a down-milling operation.
7. Conclusions

This paper investigated the milling process with multiple teeth simultaneously cutting. Two semi-analytical techniques,
namely the Chebyshev collocation method and TFEA, were extended to obtain the stability diagrams of multi-tooth cutters
using different radial immersions; chatter frequency diagrams were also obtained to give the complete stability picture.
Both methods yielded identical stability charts and were able to replicate the results from prior works.

In contrast to one or two teeth in the cut, multiple teeth engagement with three or more teeth was found to give rise to
smaller regions of period-doubling instability at all partial radial immersion levels. While the superposition of the cutting
forces results in a constant specific cutting force, for the full immersion case, an additional effect is the disappearance of the
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period-doubling lobes. An increase in the number of engaged teeth further decreases the strength of higher harmonics in
the force profile that lead to a period doubling bifurcation—even for lower values of radial immersion.

In addition, the case of simultaneously engaged teeth was found to demonstrate rapid transitions in the stability lobes
for relatively small changes in the radial immersion ratio. For example, the stability diagram in Fig. 13, for a 4-tooth cutter,
shows that the largest Hopf lobe undergoes sharp transitions for relatively small variations in the radial immersion. As a
second example, Fig. 14 shows the same observation for a 6-tooth cutter. These rapid transitions in the stability lobes for
multiple teeth simultaneously cutting have been linked to the sign change in the average specific cutting force.

Finally, the stable periodic motion of the tool was investigated using two different methods. The first method is a
harmonic balance approach that uses a continuous approximation of the discontinuous cutting forces via a Fourier series
expansion; the second method uses the fixed points of the dynamic map created by the TFEA approach. Although both time
series matched, a large number of harmonics were required for the harmonic balance approach to converge to the correct
values. Therefore, for calculating the periodic solutions of discontinuous delay systems, a discretization approach was
shown to be more efficient than a Fourier expansion.
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