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By taking the control and feedback parameters into account in state vectors, defining

new state vectors and deducing new transfer equations and transfer matrices for

actuator, controlled element and feedback element, a new method named as the

discrete time transfer matrix method for controlled multibody system (CMS) is

does not need the global dynamics equations of system. It has the modeling flexibility,

low order of system matrix, high computational efficiency, and is efficient for general

CMS. Compared with the ordinary dynamics methods, the proposed method has more

advantages for dynamics design and real-time control of a complex CMS. Adopting the

PID adaptive controller and modal velocity feedback control on PZT actuators, and

applying the proposed method and ordinary dynamics method, respectively, the tip

trajectory tracking for a flexible manipulator is carried out. Formulations of the method

as well as numerical simulation are given to validate the proposed method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With high-performance and high-precision demands for complex mechanical systems, such as lightweight robots,
precision machinery, aircrafts, vehicles, and so on, the real-time, efficient dynamics prediction and control for a controlled
multibody system (CMS) has become a research focus and difficulty in the filed of multibody system dynamics [1–3]. There
are many theories and modeling methods for the dynamics of CMS. Roberson and Wittenburg (1966) developed R–W
method [4] by introducing the graphics theory. Kane (1983) developed Kane equations [5] for studying on spacecraft
dynamics by putting forward new concepts of partial velocity, partial angle velocity and generalized velocity. The
Newton–Euler method, Lagrange method, variational principle and their derivative methods, such as Schiehlen method,
Hamiton equations and so on are also widely used for CMS dynamics by many researchers, see Schiehlen [6,7], Pfeiffer [8].
When studying complex CMS dynamics using these above dynamics methods, it is necessary to develop global dynamics
equations of system, the order of matrices involved is rather high increasing with the increase of freedom degrees of
system, and the computational time is very huge. Sometimes, it is difficult to satisfy the demand for real-time control.
Finding a new method to study CMS dynamics without global dynamics equations and improving computational efficiency
of system dynamics has become more and more important.

The classical transfer matrix method (TMM) has been developed for a long time and has been used widely in structure
mechanics and rotor dynamics of linear time invariant system. To linear system, Holzer [9] initially applied TMM to solve
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the problems of torsion vibrations of rods, Myklestad [10] applied TMM to determine the bending-torsion modes of beams,
Thomson [11] applied TMM to more general vibration problems, Pestel [12] listed transfer matrices for elasto-mechanical
elements up to 12th-order, Rubin [13] provided a general treatment for transfer matrices and their relation to other forms
of frequency response matrices. Transfer matrices have been applied to a wide variety of engineering programs by many
researchers, including Lin [14], Mercer [15], Mead [16], Henderson [17] and Murthy [18], dealing with beams, beam-type
periodic structures, skin-stringer panels, rib-skin structures, curved multispan structures, cylindrical shells, stiffened rings,
and so on. Dokanish [19] developed finite element-TMM to solve the problems of plate structure vibration analysis, by
combining finite element method and TMM. Many researchers, such as, Ohga [20], Xue [21] and Loewy [22], studied and
improved the finite element transfer matrix for structure dynamics. By using TMM, Li [23,24] investigated the problem of
wave localization in disordered periodic multispan rib-stiffened plates and disordered periodic layered piezoelectric
composite structures, respectively. Rui et al. [25] developed TMM of linear multibody system (MS-TMM) for vibrations
analysis of linear multibody system by developing new transfer matrices and orthogonal property of multibody system.
Kumar et al. [26] developed discrete time TMM for structure dynamics of time variant system. Rui et al. [27,28] developed
discrete time TMM of multibody system (MS-DT-TMM) to study general multi-rigid-body system dynamics by combining
and expanding the TMM and the numerical integration procedure. Rui et al. [29] extended MS-DT-TMM to study dynamics
of multi-rigid–flexible-body system moving in plane. Compared with the ordinary dynamics methods, MS-DT-TMM has the
advantages as follows: without global dynamics equations of system, low order of system matrix, high computational
efficiency, and so on. These advantages of MS-DT-TMM provide a powerful tool for dynamics design of multibody system.

In this paper, by taking the control and feedback parameters into account in state vectors, defining new state vectors and
deducing new transfer equations and transfer matrices for actuator, controlled element and feedback element, a new
method named as the discrete time transfer matrix method for CMS (CMS-DT-TMM) is developed to study dynamics of
CMS with real-time control. This method extends MS-DT-TMM and is effective for general CMS dynamics. Adopting PID
adaptive controller and modal velocity feedback control on PZT actuators, applying the proposed method and ordinary
dynamics method, respectively, the tip trajectory tracking of a flexible manipulator is carried out. The results gotten by the
two methods have good agreements, which validate the proposed method.

This paper is organized as follows: In Section 2, the general theorems and steps of CMS-DT-TMM are developed. As an
illustrative example, the dynamics model of a flexible manipulator and its control strategy are introduced in Sections 3 and
4, respectively. The transfer matrices of typical elements of the manipulator are developed in Section 5. The numerical
simulation of this manipulator gotten by CMS-DT-TMM and by ordinary dynamics method is given to validate the method
in Section 6. The conclusions and future works are presented in Section 7.
2. General theorems and steps of CMS-DT-TMM

According to the natural attribute of components, any CMS may be divided into a certain number of subsystems, which
can be represented by various elements including bodies (rigid bodies, flexible bodies, lumped masses, and so on), hinges
(linear springs, rotary springs, linear dampers, and so on) and actuators (PZT controller, impulse thruster, and so on). As
shown in Fig. 1, the feedback output ~zf of feedback element j is transformed to control input ~zC of controlled element i by
actuator, and ~zj-i;R is the reference input of actuator.

Considering the control strategies of system, the dynamics equations of any body and hinge can be developed. At the
same time, the control equations of any actuator can be obtained. According to these dynamics equations and control
equations, by defining new state vectors and combining with linearization methods, the dynamic properties and control
laws of bodies, hinges and actuators can be expressed in matrices form. These matrices of elements are considered as
building blocks, and when assembling them together according to structure of a CMS, the CMS dynamic can be obtained.
Fig. 1. Chain planer multibody system with real-time feedback.
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In order to describe conveniently, the general theorems and steps of CMS-DT-TMM are introduced as follows by taking
the chain planar CMS with real-time feedback shown in Fig. 1 for an example.

2.1. State vector

The state vector of the connection point among any rigid bodies and hinges moving in plane is defined, respectively, as

z ¼ ½x; y; y;m; qx; qy;1�
T (1)

The state vector of the connection point among any flexible bodies and hinges moving in plane is defined, respectively,
as

z ¼ ½x; y; y;m; qx; qy; q
1; q2; . . . ; qn;1�T (2)

The state vectors of the control input and feedback output are defined as

~zC ¼ ½ ~u
C
1 ; ~u

C
2 ; . . . ; ~u

C
g ;1�

T; ~zf ¼ ½ ~u
f
1; ~u

f
2; . . . ; ~u

f
p;1�

T (3)

where x, y are the position coordinates of the connection point with respect to the inertial reference system. y is the
orientation angle of body-fixed reference system of involved body, m, qx and qy are the corresponding interior torque and
interior forces in the same reference system, respectively. q1; . . . ; qn are the generalized coordinates describing deformation
of flexible bodies relative to the body-fixed reference system with modal method, the superscript ‘n’ is the highest order of
the modal considered. ~uC

1 ; . . . ; ~u
C
g are the all control input parameters acting on the controlled element, ~uf

1; . . . ; ~u
f
p are the all

feedback output parameters obtaining from the feedback element. The subscripts g, p denote the total number of the
control and feedback parameters, respectively.

2.2. Linearization for dynamics equations and control equations of elements

For developing the transfer equations and transfer matrices of elements, some widely used linearization methods are
simply introduced in this section; their detail can be seen in Ref. [28].

According to numerical integration procedures, the motion parameters €n and _n of a CMS moving in plane at the time
instant ti are expressed as the linear function of n in form

€nðtiÞ ¼ v1nðtiÞ þ v2;n;
_nðtiÞ ¼ v3nðtiÞ þ v4;n (4)

where the variable n may represent vector of the positions coordinates x, y or the orientation angle y, respectively; _n and €n
represent the first order and the second order derivative of n with respect to time, that is, corresponding vectors of
acceleration and velocity, or angular acceleration and angular velocity for planar motion, at the same time instant ti. Using
Newmark-b method [28], the quantities v1;v2;n;w3, and v4;n can be expressed as

v1 ¼
1

bDT2
Ik;v2;x ¼ �

1

bDT2
xðti�1Þ þ DT _xðti�1Þ þ

1

2
� b

� �
DT2 €xðti�1Þ

� �
(5)

v3 ¼ gw1DT;v4;x ¼
_xðti�1Þ þ DT½ð1� gÞ €xðti�1Þ þ gv2;x� (6)

where DT ¼ ti � ti�1 is time step, b and g are the coefficients of Newmark-b method. Bold capital symbol Ik is the unit
matrix, its subscripts k denotes the order of the unit matrix.

The trigonometric functions at time ti are expanded with respect to ti�1 using Taylor expansion, that is

sinyðtiÞ ¼ sin½yðti�1Þ þ Dy� ¼ s þ oðDT2Þ; cosyðtiÞ ¼ cos½yðti�1Þ þ Dy� ¼ c þ oðDT2Þ (7)

where

s ¼ sin yðti�1Þ 1� 1
2 ½
_yðti�1ÞDT�2

n o
þ cosyðti�1Þ½

_yðti�1ÞDT þ 1
2
€yðti�1ÞDT2�

c ¼ cosyðti�1Þ 1� 1
2 ½
_yðti�1ÞDT�2

n o
� sinyðti�1Þ½

_yðti�1ÞDT þ 1
2
€yðti�1ÞDT2�

The trigonometric functions at time ti can also be expressed as linear functions with respect to yðtiÞ using Taylor
expansion, that is

sinyðtiÞ ¼ cosyðti�1ÞyðtiÞ þ S þ oðDT2Þ; cosyðtiÞ ¼ �sinyðti�1ÞyðtiÞ þ C þ oðDT2Þ (8)

where

S ¼ sinyðti�1Þ � yðti�1Þcosyðti�1Þ �
1

2
sinyðti�1Þ½

_yðti�1ÞDT�2

C ¼ cosyðti�1Þ þ yðti�1Þsinyðti�1Þ �
1

2
cosyðti�1Þ½

_yðti�1ÞDT�2

8>><
>>:
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The multinomial in the dynamics equations can be approximated by

aðtiÞbðtiÞ ¼ aðti�1ÞbðtiÞ þ aðtiÞbðti�1Þ � aðti�1Þbðti�1Þ þ _aðti�1Þ
_bðti�1ÞDT2 (9)

The motion quantities nðti�1Þ,
_nðti�1Þ,

€nðti�1Þ at the previous time instant are all known at time instant ti. Thus, these
quantities v1, v2;n, v3, v4;n, s, c and so on are all definable for any subsystem for the time interval ðti � ti�1Þ, and hence above
formulations are valid.

2.3. Transfer equation and transfer matrix of element

Linearizing the dynamics equations and control equations using linearization methods as did in MS-DT-TMM [28,29],
the single transfer equation of any element j (that is, any body, hinge and actuator) can be assembled as

zO ¼ UjðtiÞzI (10)

Here, UjðtiÞ is the transfer matrix of the jth element. It is the functions of motion quantities (nðtkÞ,
_nðtkÞ and €nðtkÞ,

k ¼ i� 1; i� 2; . . .), control parameters and feedback parameters which are all known at time instant ti. zO and zI are the
state vectors of the input end and output end of the jth element, and they can be obtained easily by combing the definitions
of Eqs. (1)–(3). For example, if the jth element is an actuator, then one can obtain zI ¼ ~zf ; zO ¼ ~zC; if the jth element is the
feedback element, then one can obtain zI ¼ zj;j�1; zO ¼ ½zT

j;jþ1; ~z
T
f �

T. zj;j�1; zj;jþ1 are the state vectors of the connection point
among feedback element j and hinges j� 1; jþ 1.

In order to show the deduction process of the transfer equation and transfer matrix of element, a rigid body moving in
plane without feedback and control parameters is taken as an example in follows.

As shown in Fig. 2, points I, O and C denote the inboard point, outboard point and mass center of rigid body, respectively;
O2x2y2 is the body-fixed reference system whose origin O2 is on point I, oxy is the inertial reference system. ðb1; b2Þ and
ðcc1

; cc2
Þ are the position coordinates of point O and mass center C with respect to the body-fixed reference system,

respectively. So geometrical equations can be obtained

yO ¼ yI ¼ y (11)

xC ¼ xI þ xIC; yC ¼ yI þ yIC (12)

xO ¼ xI þ xIO; yO ¼ yI þ yIO (13)

where ðxI ; yIÞ are the position coordinates of point I with respect to the inertial reference system. xIC ¼ cc1
cI � cc2

sI ,
yIC ¼ cc1

sI þ cc2
cI , xIO ¼ b1cI � b2sI , yIO ¼ b1sI þ b2cI , sI ¼ sinyI , cI ¼ cosyI .

The dynamics equations of the rigid body moving in plane without feedback and control can be obtained

m €xC ¼ qx;I � qx;O þ fx;C ;m €yC ¼ qy;I � qy;O þ fy;C (14)

JI
€yI þmxIC €yI �myIC €xI ¼ mO �mI þmC þ qx;OyIO � qy;OxIO � fx;CyIC þ fy;CxIC (15)

where m is the mass of rigid body, ðxC ; yCÞ are position coordinates of mass center C with respect to inertial reference
system, qx;I ; qy;I are internal forces acted on inboard point, qx;O; qy;O are internal forces acted on outboard point, fx;C ; fy;C are
external forces acted on mass center. JI is the moment of inertia with respect to point I.

Linearizing Eq. (13) by Eq. (8), then one can obtain

xO ¼ xI � yIOðti�1ÞyI þ b1C � b2S; yO ¼ yI þ xIOðti�1ÞyI þ b1S þ b2C (16)

Substituting Eq. (12) into Eq. (14), and linearizing by using Eqs. (4) and (8), then one can obtain

qx;O ¼ �mw1xI þmw1yICðti�1ÞyI þ qx;I þ u57 (17)
y2

x2

o1 (O2)

C

I

O

θ

y

xo

Fig. 2. Rigid body moving in plane without feedback and control.



ARTICLE IN PRESS

B. Rong et al. / Journal of Sound and Vibration 329 (2010) 627–643 631
qy;O ¼ �mw1yI �mw1xICðti�1ÞyI þ qy;I þ u67 (18)

Substituting Eqs. (17) and (18) into Eq. (15), and linearizing by using Eq. (4), then one can obtain

mO ¼ u41xI þ u42yI þ u43yI þmI þ u45qx;I þ u46qy;I þ u47 (19)

Combining Eqs. (11), (16)–(19), then the transfer equation of rigid body moving in plane without feedback and control
can be obtained:

zO ¼ UzI (20)

Transfer matrix

U ¼

1 0 �yIOðti�1Þ 0 0 0 b1C � b2S

0 1 xIOðti�1Þ 0 0 0 b1S þ b2C

0 0 1 0 0 0 0

u41 u42 u43 1 u45 u46 u47

�mw1 0 mw1yICðti�1Þ 0 1 0 u57

0 �mw1 �mw1xICðti�1Þ 0 0 1 u67

0 0 0 0 0 0 1

2
666666666664

3
777777777775

(21)

where the state vectors are defined as Eq. (1):

u41 ¼ mw1ðyIO � yICÞ;u42 ¼ mw1ðxIO � xICÞ

u43 ¼ �mw1xICðti�1ÞxIO �mw1yICðti�1ÞyIO þ JIw1;u45 ¼ �yIO;u46 ¼ xIC

u47 ¼ �mC þ u67xIO � u57yIO þ JIw2;y þ ðmw2;yI
� fy;CÞxIC þ ðfx;C �mw2;xI

ÞyIC

u57 ¼ fx;C �mw1ðcc1
C � cc2

SÞ �mw2;xC
;u67 ¼ fy;C �mw1ðcc1

S þ cc2
C Þ �mw2;yC

xICðti�1Þ ¼ ðcc1
cI � cc2

sIÞjti�1; yICðti�1Þ ¼ ðcc1
sI þ cc2

sIÞjti�1

xIOðti�1Þ ¼ ðb1cI � b2sIÞjti�1
; yIOðti�1Þ ¼ ðb1sI þ b2sIÞjti�1

2.4. Overall transfer equation and overall transfer matrix of CMS

The overall transfer equation and overall transfer matrix of a CMS can be obtained by assembling the transfer equation
and transfer matrix of each element. For the CMS shown in Fig. 1, applying Eq. (10) continuously, one can obtain

zi;i�1 ¼ Ui�1 � � �U2U1z1;0; ~zC ¼ Ufb
j-i

~zf

zj;j�1 ¼ Uj�1 � � �Uiþ1zi;iþ1; zi;iþ1 ¼ Ui½z
T
i;i�1; ~z

T
C �

T

½zT
j;jþ1; ~z

T
f �

T ¼ Ujzj;j�1; zn;nþ1 ¼ UnUn�1 � � �Ujþ2Ujþ1zj;jþ1 (22)

where Uj ðj ¼ 1;2; . . . ;nÞ is the transfer matrix of the jth element, Ufb
j-i is the transfer matrix of actuator.

From Eq. (22), the overall transfer equation and overall transfer matrix of the CMS can be assembled and calculated as

Uall½z
T
1;0; ~z

T
C ; z

T
n;nþ1�

T ¼ 0 (23)

where Uall is the overall transfer matrix of the CMS.

2.5. Solutions of the controlled system dynamics

Once the overall transfer matrix of a CMS is known, the boundary conditions and reference input of the system can be
applied and the unknown quantities in the boundary state vectors and all control parameters can be computed. Now,
knowing the boundary state vectors and all control parameters completely, the state vectors and motion quantities of each
element at time ti can be computed reusing corresponding transfer equations of element similar to Eq. (10). Then the
quantities of velocity, angular velocity, acceleration and angular acceleration at time ti can be obtained using Eq. (4),
respectively. Then entire procedure can be repeated for time tiþ1 and so on. The corresponding flow chart of algorithms for
this method is shown in Fig. 3.

It can be seen clearly that this method has following advantages: (1) the proposed method avoids global dynamics
equations of a CMS, and simplifies its dynamics solving procedure; (2) irrespective of the size of a CMS, the matrices
involved in the CMS-DT-TMM are always small, which greatly increases the computational speed and avoids the computing
difficulties caused by too high matrix orders for complex CMS; (3) when using CMS-DT-TMM, the dynamics of CMS can be
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i = 1
i = i+1

ti T<
ti ≥ T

Apply boundary conditions and system reference input   
at time ti to solve overall transfer equation   

Compute dynamics of each element and all control parameters 
at time ti by using transfer equations of elements  

Start

Dynamics modelling, define state vectors of each body, hinge and actuator 

End

Obtain the overall transfer equation Uallzall = O 
and overall transfer matrix Uall 

Deduce the transfer equation zO = UzI and transfer
matrix U of each body, hinge, actuator     

Fig. 3. Flow chart of algorithms for the proposed method.
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Fig. 4. Controlled planar flexible manipulator system and its dynamics model.

B. Rong et al. / Journal of Sound and Vibration 329 (2010) 627–643632
obtained only by solving the algebra equations. It avoids solving the differential equations or differential–algebra equations
which are necessary when using ordinary dynamics methods, and simplifies the numerical arithmetic for CMS dynamics;
and (4) this method provides flexibility in modeling complex CMS with varying configuration. That is, by creating a library
of transfer matrices for commonly used elements and assembling these at the required locations, various configurations of
the complex CMS can be modeled easily.
3. Dynamics model of controlled flexible manipulator system

A controlled planar flexible manipulator assembled by two flexible arms featuring surface-bonded PZT actuators and
piezofilm sensors is shown in Fig. 4(a). Two servomotors are mounted at the each-link root. The position of each piezofilm
sensor/PZT on corresponding arm is denoted by ½xa

i;1; x
a
i;2� ði ¼ 1;2;3Þ. The following assumptions are made: (1) the thickness

of each actuator and sensor is thin adequately, and their effect on mass distribution and stiffness distribution of system is
neglected. The arm is considered to be an Euler–Bernoulli beam and its axial deformation is neglected; (2) the polarization
direction of each actuator and sensor is the same as the transverse vibration direction of corresponding arm; (3) each PZT
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actuator is perfectly bonded to arm and its voltage is uniform distributed; (4) each PZT actuator has constant thickness and
the same width as the arm; and (5) the gravitational effect, friction and damping are neglected for simplicity.

The dynamics model of this controlled system can be obtained as shown in Fig. 4(b). Hub1, Motor2, and Hub2 are
regarded as rigid bodies 2, 6 and 8, respectively. The arms regarded as Euler–Bernoulli beams 4 and 10, are connected with
the corresponding Hubs by fixed hinges 3 and 9, respectively. The revolute hinges 1 and 7 connect Motors and their
corresponding Hubs.

4. Control strategy

For precise tip trajectory tracking of the CMS shown in Fig. 4(a), a combined control strategy [30–35] is designed as
follows: (1) considering each arm as rigid body and using inverse kinematics theory, the desired orientation angles y2;d; y8;d

of arms (2, 8) can be obtained according to the desired tip trajectory; (2) combining classical PID control with BP nerve
network (BPNN), the PID adaptive controller is designed. The control torques t2

0 ; t8
0 of servomotors are designed by using

these PID adaptive controllers, and the fast tracking of the orientation angles of each arm are realized; (3) based on modal
velocity feedback, the command voltages ViðtÞ applied to PZT actuators can be obtained, and the active vibration control
and precise tip trajectory tracking are realized. The control block diagram is shown in Fig. 5.

4.1. PID adaptive controller

As the PID adaptive controller [36] can realizes the adaptive modification of its controller parameters, the robustness
and adaptive capability of system can be improved. In this paper, a three-layer BPNN as shown in Fig. 6 is adopted, and its
output layer are relative to PID controller parameters Kp, Ki, Kd, respectively. The control equation for PID controller is

t0ðtiÞ ¼ t0ðti�1Þ þ Dt0ðtiÞ (24)

where

Dt0ðtiÞ ¼ Kp½eðtiÞ � eðti�1Þ� þ KieðtiÞ þ Kd½eðtiÞ � 2eðti�1Þ þ eðti�2Þ� (25)

e ¼ y� yd is the tracking error of the orientation angle, y and yd are the actual orientation angle and desired orientation
angle, respectively.

Define the output of the input layer of BPNN as

Oð1Þj ¼ xðjÞðj ¼ 1;2; . . . ;MÞ (26)

where M is the total number of input variables.
The input and output of the hidden and output layer can be expressed, respectively, as

netð2Þk ðtiÞ ¼
XM
j¼1

wð2Þkj Oð1Þj ;Oð2Þk ðtiÞ ¼ f ðnetð2Þk ðtiÞÞ ðk ¼ 1;2; . . . ;Q Þ (27)

netð3Þl ðtiÞ ¼
XQ

j¼1

wð3Þlk Oð2Þk ðtiÞ;O
ð3Þ
l ðtiÞ ¼ gðnetð3Þl ðtiÞÞ ðl ¼ 1;2;3Þ

Oð3Þ1 ðtiÞ ¼ Kp;O
ð3Þ
2 ðtiÞ ¼ Ki;O

ð3Þ
3 ðtiÞ ¼ Kd (28)
Fig. 5. Control block diagram of the controlled flexible manipulator.
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where netð2Þk and Oð2Þk denote the input and output of the hidden layer, netð3Þl and Oð3Þl denote the input and output of the
output layer, wð2Þkj and wð3Þlk are the weighting coefficient of the hidden and output layer, the superscripts (1), (2) and (3)
represent the input, hidden and output layers, respectively, Q is the total number of hidden layer node.

f ðnetð2Þk ðtiÞÞ ¼ tanhðnetð2Þk ðtiÞÞ ¼ ðe
netð2Þ

k
ðtiÞ � e�netð2Þ

k
ðtiÞÞ=ðenetð2Þ

k
ðtiÞ þ e�netð2Þ

k
ðtiÞÞ

gðnetð3Þl ðtiÞÞ ¼
1
2ð1þ tanhðnetð3Þl ðtiÞÞÞ ¼ enetð3Þ

l
ðtiÞ=ðenetð3Þ

l
ðtiÞ þ e�netð3Þ

l
ðtiÞÞ

Set the performance index function as

EðtiÞ ¼
1
2ðeðtiÞÞ

2 (29)

The weighting coefficients of BPNN are modified by

Dwð3Þlk ðtiÞ ¼ �Z
@EðtiÞ

@wð3Þlk

þ aDwð3Þlk ðti�1Þ (30)

where Z is the learning velocity, a is the inertia coefficient.
Then the learning arithmetic of the output layer [36] can be obtained as

Dwð3Þlk ðtiÞ ¼ Zdð3Þl Oð3Þk ðtiÞ þ aDwð3Þlk ðti�1Þ

dð3Þl ¼ eðtiÞsgn
@yðtiÞ

@DtðtiÞ

� �
@DtðtiÞ

@Oð3Þl ðtiÞ
g0ðnetð3Þl ðtiÞÞ (31)

Similarly, the learning arithmetic of the hidden layer [36] can be obtained as

Dwð2Þkj ðtiÞ ¼ Zdð2Þk Oð2Þj ðkÞ þ aDwð2Þkj ðti�1Þ; d
ð2Þ
k ¼ f 0ðnetð2Þk ðtiÞÞ

X3

l¼1

dð3Þl wð3Þlk ðtiÞ (32)

where

g0ðnetð3Þl ðtiÞÞ ¼ gðnetð3Þl ðtiÞÞ½1� gðnetð3Þl ðtiÞÞ�

f 0ðnetð2Þk ðtiÞÞ ¼
1� f 2ðnetð2Þk ðtiÞÞ

2
f ðnetð2Þk ðtiÞÞ

4.2. Design of PZT controller

Based on modal velocity feedback, the command voltage [30–35] applied to PZT actuator i can be obtained as

Va
i ðtÞ ¼ �Ka

i

@ _u

@x2

xa
i;2

xa
i;1

��� (33)

where Ka
i is the gain coefficient of PZT actuator i, u is the transverse deformation of arm, i ¼ 1;2;3.

Using modal method, the transverse deformation u of a beam can be expressed as

uðx2; tÞ ¼
Xn

k¼1

Ykðx2Þq
kðtÞ (34)

where Ykðx2Þ and qk are the kth generalized eigenvector and generalized coordinate describing the deformation of arm
relative to its body-fixed reference system with modal method, the superscript ‘n’ is the highest order of modal considered,
k ¼ 1;2; . . . ;n.
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Considering the first three-order modals, the command voltage Eq. (33) can be written as

Va
i ðtÞ ¼ �Ka

i ½
1s1

1s2
1s3�j

xa
i;2

xa
i;1
½ _q1; _q2; _q3

�T (35)

where 1sk ¼ @Ykðx2Þ=@x2.
The distributing moment [30–35] produced by PZT actuator i is

ma
i ðx2; tÞ ¼ ca

i Va
i ðtÞ½Hðx2 � xa

i;1Þ � Hðx2 � xa
i;2Þ� (36)

where

ca
i ¼

1

2
d31

i Ea
i ba

i ðt
a
i þ 2tbÞ;HðxÞ ¼

1; xZ0

0; xo0

(

d31
i , Ea

i , ba
i and ta

i are the piezoelectric strain constant, elastic modules, width and thickness of PZT actuator i, respectively,
tb is the thickness of arm.

5. Transfer matrices of controlled flexible manipulator

For the controlled manipulator shown in Fig. 4(a), based on above control strategy, the transfer equation and transfer
matrix of each element are developed as follows.

5.1. Transfer matrix of revolute hinge connecting motor and Hub

For the revolute hinge, the position coordinates, orientation angles, interior torques and interior forces of its input end
and output end are equal, respectively. From the control Eq. (24) of PID controller, the interior torque of the input end of
revolute hinge can be written as

mIðtiÞ ¼ ðKp þ Kd þ KiÞ½yOðtiÞ � yO;dðtiÞ� þmI;ti�1
� ð2Kd þ KpÞeO;ti�1

þ KdeO;ti�2
(37)

where e;y; yd have the similar meaning as Eq. (24), subscript O denote the output end of revolute hinge.
From Eq. (37), one can obtain

yOðtiÞ ¼ u34mIðtiÞ þ u37 (38)

where

u34 ¼ 1=ðKp þ Kd þ KiÞ

u37 ¼ 1=ðKp þ Kd þ KiÞ½2KdeOðti�1Þ � KdeOðti�2Þ þ KpeOðti�1Þ �mIðti�1Þ� þ yO;dðtiÞ

Define the state vectors of the input end and output end of revolute hinge as

zI ¼ ½x; y;y;m; qx; qy;1�
T; zO ¼ ½x; y; y;m; qx;qy;1�

T (39)

The transfer equation of revolute hinge can be obtained

zO ¼ UzI (40)

Transfer matrix

U ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 u34 0 0 u37

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

2
666666666664

3
777777777775

(41)

5.2. Transfer matrix of PZT controller

Define the state vectors of the control input and feedback output of PZT controller as

~zf ¼ ½ ~q
1; ~q2; ~q3;1�T; ~zC ¼ ½V

a
1 ;V

a
2 ;V

a
3 ;1�

T (42)

where ~q1; ~q2; ~q3 are the feedback parameters of piezofilm sensors, that is, the first three-order generalized coordinates
describing the transverse deformation of arm.

Linearizing Eq. (35), the transfer equation of PZT controller can be obtained

zC ¼ Ufb
ðtiÞzf (43)
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Transfer matrix

Ufb
¼

u11 u12 u13 u1
0

u21 u22 u23 u2
0

u31 u32 u33 u3
0

0 0 0 1

2
6664

3
7775 (44)

where

uij ¼ �w3Kai
1sj j

xa
i;2

xa
i;1
;ui
0 ¼ �Kai

1s1 j
xa

1;2

xa
1;1
w4;q1 � � � � � Kai

1sn j
xa

i;2

xa
i;1
w4;qn ; ði ¼ 1;2;3; j ¼ 1;2;3Þ

5.3. Transfer matrix of Euler–Bernoulli moving in plane with PZT control

The dynamics equations of constant section area Euler–Bernoulli beam with PZT control moving in plane as shown in
Fig. 7 can be deduced as

_y
Z l

0
m2u _u dx2 þ

€y
Z l

0
mðu2 þ x2

2Þdx2 þ

Z l

0
mx2 €u dx2 þm €yO2

xO2C �m €xO2
yO2C

¼
X3

i¼1

Z
ai

ma
i � q2;yðl; tÞl�mð0; tÞ þmðl; tÞ þ

Z l

0
x2f2;yðx2; tÞdx2 þ

Z l

0
m0ðx2; tÞdx2 (45)

qq2;yðx2; tÞ

qx2
¼ f2;yðx2; tÞ �mð €u þ x2

€y � u _y
2
þ €yO2

cosy� €xO2
sinyÞ (46)

qq2;xðx2; tÞ

qx2
¼ f2;xðx2; tÞ �mð� €yu� 2 _y _u � _y

2
x2 þ €yO2

sinyþ €xO2
cosyÞ (47)

where m, l and m are the line mass density, length and mass of the beam, respectively, _u and €u are the first order and the
second order derivative of u with respect to time in the body-fixed coordinate system O2xO2

yO2
, x2 is the coordinate along

the beam axis, xO2C; yO2C are the projects of the vector from O2 to mass center of beam onto inertial reference system oxy,
xO2

; yO2
are the position coordinates of point O2 relative to oxy, q2;y, q2;x, f2;y and f2;x are the interior forces and distributed

exterior forces acted on beam in y2 and x2 direction, respectively, mð0; tÞ;mðl; tÞ are interior torques acted on the inboard
point and outboard point of beam, m0 is the distributed exterior torque acted on beam.

Only considering the first three-order generalized coordinates describing the transverse deformation of arm, let n=3,
substituting Eqs. (34)–(47), integrate along the axial direction of beam for Eqs. (46) and (47) and linearizing, then one can
obtain

q2;yðl; tÞ ¼ z1;1xO2
þ z1;2yO2

þ z1;3yþ q2;yð0; tÞ þ
X3

k¼1

z1;6þkqk þ z1;10 (48)

q2;xðl; tÞ ¼ z2;1xO2
þ z2;2yO2

þ z2;3yþ q2;xð0; tÞ þ
X3

k¼1

z2;6þkqk þ z2;10 (49)

where

z1;1 ¼ msw1; z1;2 ¼ �mcw1; z1;3 ¼ 2mw3
_yti�1

X3

k¼1

s0
kqk

ti�1
�

ml

2
w1
uO

lIO

ro

o x

y
yo

rI

xo

m

qy

qx
y

x

a
V1

a
V2

a
V3

2

2

�

Fig. 7. Beam moving in plane with PZT control.
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z2;1 ¼ �mcw1; z2;2 ¼ �msw1; z2;3 ¼ mðl2w3
_yti�1
þ w1

X3

k¼1

s0
kqk

ti�1
þ 2w1

X3

k¼1

s0
k
_qk

ti�1
Þ

z1;6þk ¼ mð _y
2

ti�1
� w1Þs

0
k ; z2;6þk ¼ mð2 _yti�1

w3 þ
€yti�1
Þs0

kðk ¼ 1;2;3Þ

z1;10 ¼

Z l

0
f2;yðx2; tÞdx2 þmsw2;xO2

�mcw2;yO2
�

ml

2
w2;y þ 2mw4;y

_yti�1

X3

k¼1

s0
kqk

ti�1
� 2m _y

2

ti�1

X3

k¼1

s0
kqk

ti�1
�m

X3

k¼1

s0
kw2;qk

z2;10 ¼

Z l

0
f2;xðx2; tÞdx2 þ 2m _yti�1

X3

k¼1

s0
kw4;qk �msw2;yO2

� 2m _yti�1

X3

k¼1

s0
k
_qk

ti�1
�mcw2;xO2

þmw2;y

X3

k¼1

s0
kqk

ti�1

þ 2mw4;y

X3

k¼1

s0
k
_qk

ti�1
�m €yti�1

X3

k¼1

s0
kqk

ti�1
þ

ml

2
ð2w4;y

_yti�1
� _y

2

ti�1
Þ

s0
k ¼

Z l

0
Ykðx2Þdx2; s

0
i;j ¼ s0

j;i ¼

Z l

0
YiYj dx2;

msk;k0 ¼

Z l

0

mYkðx2ÞY
k0 ðx2Þdx2

Substituting Eqs. (34), (36) and (48) to Eq. (45) and linearizing, one can obtain

mðl; tÞ ¼ ðx1 þ lz1;1ÞxO2
þ ðx2 þ lz1;2ÞyO2

þ ðx3 þ lz1;3Þyþmð0; tÞ þ lq2;yð0; tÞ þ
X3

k¼1

ðx6þk þ lz1;6þkÞq
k þ ðx10 þ lz1;10Þ

�

Z l

0
x2f2;yðx2; tÞdx2 �

Z l

0
m0ðx2; tÞdx2 �

X3

i¼1

Va
i ðtÞ

Z
ai

ca
i ½Hðx2 � xa

i;1Þ � Hðx2 � xa
i;2Þdx2 (50)

where

x1 ¼ � mc
X3

k¼1

Yk
c qk

ti�1
þ

l

2
ms

 !
w1;x2 ¼

l

2
mc �ms

X3

k¼1

Yk
c qk

ti�1

 !
w1

x3 ¼ m
X3

k¼1

X3

j¼1

s0
k;j½2w3qkðti�1Þ _q

j
ðti�1Þ þ w1qkðti�1Þq

jðti�1Þ� þm
l2

3
w1

x6þk ¼ 2m
X3

j¼1

s0
k;j½
_yti�1
ð _qj

ti�1
þ w3qj

ti�1
Þ þ €yti�1

qj
ti�1
� þm

X3

k¼1

s1
kw1 �mðsYk

c
€yO2 ;ti�1

þ cYk
c
€xO2 ;ti�1

Þðk ¼ 1;2;3Þ

x10 ¼ 2m
X3

k¼1

X3

j¼1

s0
k;jðw4;y _q

k
ti�1

qj
ti�1
þ _yti�1

qk
ti�1

w4;qj � 2 _yti�1
qk

ti�1
_qj

ti�1
Þ þm

X3

k¼1

s1
kw2;qk þ

l

2
mðcw2;yO2

� sw2;xO2
Þ þm

l2

3
w2;y

þm
X3

k¼1

X3

j¼1

s0
k;jðw2;yqk

ti�1
qj

ti�1
� 2 €yti�1

qk
ti�1

qj
ti�1
Þ �m

X3

k¼1

Yk
c ½sðq

k
ti�1

w2;yO2
� qk

ti�1
€yO2 ;ti�1

Þ þ cðqk
ti�1

w2;xO2
� qk

ti�1
€xO2 ;ti�1

Þ�

As q2;yð0; tÞ ¼ �qxð0; tÞsinyþ qyð0; tÞcosy, then Eq. (50) can be written as

mðl; tÞ ¼ u4;1xO2
þ u4;2yO2

þ u4;3yþmð0; tÞ þ u4;5qxð0; tÞ þ u4;6qyð0; tÞ þ
X3

k¼1

u4;6þkqk þ u4;10 þ
X3

i¼1

uVa
i

0 Va
i (51)

where

u4;j ¼ lz1;j þ xjðj ¼ 1;2;3;7;8;9Þ;u4;5 ¼ �ls;u4;6 ¼ lc

u4;10 ¼ lz1;10 þ x10 �

Z l

0
x2f2;yðx2; tÞdx2 �

Z l

0
m0ðx2; tÞdx2

uVa
i

0 ¼ �

Z
ai

ca
i ½Hðx2 � xa

i;1Þ � Hðx2 � xa
i;2Þdx2ði ¼ 1;2;3Þ

Projecting Eqs. (48) and (49) onto inertial reference system, then

qxðl; tÞ ¼ u5;1xO2
þ u5;3yþ qxð0; tÞ þ

X3

k¼1

u5;6þkqk þ u5;10 (52)
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qyðl; tÞ ¼ u6;2yO2
þ u6;3yþ qyð0; tÞ þ

X3

k¼1

u6;6þkqk þ u6;10 (53)

where

u5;1 ¼ �mw1;u6;2 ¼ �mw1

u5;j ¼ cz2;j � sz1;j;u6;j ¼ sz2;j þ cz1;jðj ¼ 3;7;8;9;10Þ

From the geometrical equations, one can obtain

x

y

" #
O

¼
x

y

" #
I

þ
cosy �siny
siny cosy

� �
l

u

� �
O

(54)

Linearizing Eq. (54), then one can obtain

xO ¼ xI þ u13yþ
X3

k¼1

u1;6þkqk þ u1;10; yO ¼ yI þ u23yþ
X3

k¼1

u2;6þkqk þ u2;10 (55)

where

u13 ¼ �ls� c
X3

k¼1

Yk
Oqk

ti�1
;u23 ¼ lc � s

X3

k¼1

Yk
Oqk

ti�1

u1;6þk ¼ �sYk
O;u2;6þk ¼ cYk

Oðk ¼ 1;2;3Þ

u1;10 ¼ lðc þ ysÞ þ c
X3

k¼1

Yk
Oqk

ti�1
yti�1

;u2;10 ¼ lðs� ycÞ þ s
X3

k¼1

Yk
Oqk

ti�1
yti�1

Define the state vectors of the input end and output end of Euler–Bernoulli beam with PZT control as

zI ¼ ½x; y; y;m; qx; qy; q1;q2; q3;1;Va
1 ;V

a
2 ;V

a
3 ;1�

T

zO ¼ ½zT
O1
; ~zT

f �
T ¼ ½x; y; y;m;qx; qy; q1;q2; q3;1; ~q1; ~q2; ~q3;1�T

zO1
¼ ½x; y; y;m; qx; qy; q1; q2; q3;1�T; ~zf ¼ ½ ~q

1; ~q2; ~q3;1�T

8>>><
>>>:

(56)

Considering the generalized coordinates on two ends of beam are equal, then the transfer equation and transfer matrix
of the Euler–Bernoulli beam with PZT control can be obtained as

zO ¼ ½z
T
O1

~zT
f �

T ¼ UzI ¼
UO1

Uf

" #
zI (57)

where

UO1 ¼

U11 O3�3 U13 U15 O3�3 O3�1

U21 U22 U23 U25 U24 O3�1

O3�3 O3�3 I3 O3�1 O3�3 O3�1

O1�3 O1�3 O1�3 1 O1�3 0

2
66664

3
77775;Uf

¼
O3�3 O3�3 I3 O3�1 O3�3 O3�1

O1�3 O1�3 O1�3 1 O1�3 0

" #

U11 ¼

1 0 u1;3

0 1 u2;3

0 0 1

2
64

3
75;U13 ¼

u1;7 u1;8 u1;9

u2;7 u2;8 u2;9

0 0 0

2
64

3
75;U15 ¼

u1;10

u2;10

0

2
64

3
75;U25 ¼

u4;10

u5;10

u6;10

2
64

3
75

U21 ¼

u4;1 u4;2 u4;3

u5;1 0 u5;3

0 u6;2 u6;3

2
64

3
75;U22 ¼

1 u4;5 u4;6

0 1 0

0 0 1

2
64

3
75;U23 ¼

u4;7 u4;8 u4;9

u5;7 u5;8 u5;9

u6;7 u6;8 u6;9

2
64

3
75;U24 ¼

uVa
1

0 uVa
2

0 uVa
3

0

0 0 0

0 0 0

2
64

3
75 (58)

5.4. Transfer matrices of fixed hinges connected with beam moving in plane

5.4.1. Fixed hinge whose inboard body is rigid body and outboard body is beam with PZT control

For the fixed hinge whose inboard body is rigid body and outboard body is beam, the position coordinates, orientation
angles, interior torques and interior forces of its input end and output end are equal, respectively. The relationship between
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the generalized coordinates used for describing the deformation of outboard beam and the state vector of its input end is
developed as follows.

Combining the control Eq. (36) of PZT actuators, the transverse vibration equation of Euler–Bernoulli beam with PZT
control can be obtained as

EI
q4u

qx4
2

� rI
q4u

qx2
2qt2
þmð €u þ x2

€y � u _y
2
þ €yO2

cosy� €xO2
sin yÞ

¼ f2;y �
q
qx2

m0ðx2; tÞ �
X3

i¼1

ca
i Va

i ½dðx2 � xa
i;1Þ � dðx2 � xa

i;2Þ� (59)

where E and r are the elastic modulus and density of the beam, respectively, I is the inertia product of the
cross-section.

Only considering the first three-order generalized coordinates describing the transverse deformation of arm, let n=3,
substituting Eq. (34) into Eq. (59), multiplying Yk0 ðx2Þ (k0 ¼ 1;2;3) to the two sides of the equation and integrating along x2,
linearizing this equation, using Cramer method, the transfer equation of fixed hinge whose inboard body is rigid body and
outboard body is beam with PZT control moving in plane can be obtained.

zO ¼ UI1 zI1
þ UC ~zC (60)

where

UI1 ¼

I3 O3�3 O3�1

O3�3 I3 O3�1

U31 O3�3 U34

O1�3 O1�3 1

O3�3 O3�3 O3�1

O1�3 O1�3 1

2
6666666664

3
7777777775
;UC
¼

O3�3 O3�1

O3�3 O3�1

U33 O3�1

O1�3 0

I3 O3�1

O1�3 0

2
6666666664

3
7777777775
;U31 ¼

D11=D D12=D D13=D
D21=D D22=D D23=D
D31=D D32=D D33=D

2
64

3
75

U33 ¼

D14=D D15=D D16=D
D24=D D25=D D26=D
D34=D D35=D D36=D

2
64

3
75;U34 ¼

D17=D
D27=D
D37=D

2
64

3
75

D ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

�������
�������;D1j ¼

B1j A12 A13

B2j A22 A23

B3j A32 A33

�������
�������; D2j ¼

A11 B1j A13

A21 B2j A23

A31 B3j A33

�������
�������; D3j ¼

A11 A12 B1j

A21 A22 B2j

A31 A32 B3j

�������
�������ðj ¼ 1; . . . ;7Þ

Ak0 ;k0 ¼
4sk;k0EI � 2sk;k0rIw1 þmsk;k0w1 �msk;k0

_y
2

ti�1
;Ak0 ;k ¼ �msk;k0

_y
2

ti�1
ðkak0Þ

Bk0 ;3 ¼ �mðs1
k0w1 � 2w3sk0 ;k0q

k
ti�1

_yti�1
Þ;Bk0 ;1 ¼ mss0

k0w1; Bk0 ;2 ¼ �mcs0
k0w1; k; k

0 ¼ 1;2;3

Bk0 ;3þi ¼ �

Z l

0
Yk0 ðx2Þc

a
i ½dðx2 � xa

i;1Þ � dðx2 � xa
i;2Þ�dx2ði ¼ 1;2;3Þ

Bk0 ;7 ¼

Z l

0
Yk0 ðx2Þf ðx2; tÞdx2 �

Z l

0
Yk0 ðx2Þ

q
qx2

m0ðx2; tÞdx2 þ rI2sk0 ;k0w2;qk0

�m½sk0 ;k0w2;qk0 � 2qk0

ti�1
sk0 ;k0 ð

_yti�1
w4;y �

_y
2

ti�1
Þ þ s1

k0w2;y þ cs0
k0w2;yO2

� ss0
k0w2;xO2

� (61)

State vectors

zI ¼ ½z
T
I1
; ~zT

C �
T ¼ ½x; y; y;m; qx; qy;1;Va

1 ;V
a
2 ;V

a
3 ;1�

T

zO ¼ ½x; y; y;m;qx; qy; q1; q2; q3;1;Va
1 ;V

a
2 ;V

a
3 ;1�

T

zI1
¼ ½x; y; y;m; qx; qy;1�

T; ~zC ¼ ½V
a
1 ;V

a
2 ;V

a
3 ;1�

T

8>><
>>:

5.4.2. Fixed hinge whose inboard body is beam with PZT control and outboard body is rigid body

For the fixed hinge whose inboard body is beam and outboard body is rigid body, the position coordinates, interior
torques and interior forces of its input end and output end are equal, respectively. The orientation angles of its input end
and output end satisfy the following relationship:

yO ¼ yI þ
Xn

k¼1

@Yk
I ðlÞ

@x2
qk

I ðtiÞ (62)
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where yI and yO are the orientation angles of the input end and output end of fixed hinge, Yk
I and qk

I are the eigenvectors
and generalized coordinates describing deformation of inboard beam relative to the body-fixed reference system with
modal method, respectively.

Define the state vectors of the input end and output end of fixed hinge whose inboard body is beam with PZT control and
outboard body is rigid body as

zI ¼ ½x; y; y;m; qx; qy; q
1; q2; q3;1�T; zO ¼ ½x; y; y;m;qx; qy;1�

T

The transfer equation of fixed hinge whose inboard body is beam with PZT control and outboard body is rigid body
moving in plane can be obtained.

zO ¼ UzI (63)

where

U ¼

I3 O3�3 U13 O3�1

O3�3 I3 O3�3 O3�1

O1�3 O1�3 O1�3 1

2
64

3
75;U13 ¼

0 � � � 0

0 � � � 0

qY1
I ðlÞ=qx2 � � � qY3

I ðlÞ=qx2

2
64

3
75 (64)

5.5. Overall transfer equation and overall transfer matrix of manipulator system

According to Eqs. (20), (40), (43), (57), (60) and (63), one can obtain

z2;3 ¼ U2U1z1;0; z4;3 ¼ UI1

3 z2;3 þ UC
3
~zC;4-3; z4;5 ¼ UO1

4 z4;3

z8;9 ¼ U8U7U6U5z4;5; ~zf ;4-3 ¼ Uf
4z4;3; ~zC;4-3 ¼ Ufb

4-3
~zf ;4-3

z10;0 ¼ UO1

10z10;9; ~zC;10-9 ¼ Ufb
10-9

~zf ;10-9

z10;9 ¼ UI1

9 z8;9 þ UC
9
~zC;10-9; ~zf ;10-9 ¼ Uf

10z10;9 (65)

where U1;U7 are the transfer matrices of revolute hinges 1 and 7, defined by Eq. (41); U2;U6;U8 are the transfer matrices of
rigid body moving in plane, defined by Eq. (21); UO1

4 ;Uf
4;U

O1

10 ;U
f
10 are the transfer matrices of beam with PZT control moving

in plane, defined by Eq. (58); UI1

3 ;U
C
3 ;U

I1

9 ;U
C
9 are the transfer matrices of fixed hinge whose inboard body is rigid body and

outboard body is beam with PZT control moving in plane, defined by Eq. (61); Ufb
4-3; Ufb

10-9 are the transfer matrices of PZT
controller, defined by Eq. (44); U5 is the transfer matrix of fixed hinge whose inboard body is beam with PZT control and
outboard body is rigid body moving in plane, defined by Eq. (64).

From Eq. (65), the overall transfer equation and overall transfer matrix of controlled manipulator can be obtained.

Uall½z
T
1;0; ~z

T
C;4-3; ~z

T
C;10-9; z

T
10;0�

T ¼ 0 (66)

where

Uall ¼

U11 U12 U13 O

U21 U22 O O

U31 U32 U33 �I

2
64

3
75

U11 ¼ Ufb
10-9Uf

10UI1

9 U8U7U6U5UO1

4 UI1

3 U2U1;U33 ¼ UO1

10UC
9

U13 ¼ Ufb
10-9Uf

10UC
9 � I;U31 ¼ UO1

10UI1

9 U8U7U6U5UO1

4 UI1

3 U2U1

U21 ¼ Ufb
4-3Uf

4UI1

3 U2U1;U32 ¼ UO1

10UI1

9 U8U7U6U5UO1

4 UC
3

U12 ¼ Ufb
10-9Uf

10UI1

9 U8U7U6U5UO1

4 UC
3 ;U22 ¼ Ufb

4-3Uf
4UC

3 � I

The boundary conditions of the controlled system are

z1;0 ¼ ½0;0;0;m; qx; qy;1�
T; z10;0 ¼ ½x; y; y;0;0;0;q1; q2; q3;1�T (67)

Applying the boundary conditions and reference input of system, deleting the columns 1, 2, 3, 19, 20 and 21 in Uall,
deleting the rows 4, 8 and 18 in Uall, and combining the arithmetic of BPNN introduced in Section 4.1, the unknown
quantities in Eq. (66) can be computed. Then, the dynamics of this CMS can be obtained.
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Table 1
Structure parameters of flexible manipulator system.

Hub1 (Hub2) Flexible arms 4 and 10 Motor 2 Piezofilm sensor/PZT

Mass Bending stiffness Mass Elastic modulus

0.1 kg 4.13 N m2 0.15 kg 6:3� 1010 N m�2

Gyration radius Density Length Piezoelectric strain constant

0.05 m 2800 kg m�3 0.14 m 110� 10�12 C N�1

Moment of inertia Length Thickness

2:08� 10�5 kg m2 1.0 m 0.4 mm

Length

0.1 m

Fig. 8. Tip trajectory of arm 10.

Fig. 9. Time history of orientation angles of arm 4 and 10.
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6. Simulation

The structure parameters of the CMS shown in Fig. 4(a) are listed in Table 1. The position of piezofilm sensors/PZT on
arm are ½0;0:1 m�, ½0:45 m;0:55 m� and ½0:9 m;1 m�, respectively. The desired tip trajectory is as follows:

x10;d ¼
1:12 cos

5p
18

t3 �
5p
24

t4 þ
p

24
t5

� �
þ 1:05 cos �

p
4

t2 þ
p
3

t3 �
7p
80

t4

� �
; 0rtr2

1:12 cosð2p=9Þ þ 1:05 cosð4p=15Þ; t42

8><
>:
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Fig. 10. Time history of transverse deformation in the tip of arm 10.
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y10;d ¼
1:12 sin

5p
18

t3 �
5p
24

t4 þ
p

24
t5

� �
þ 1:05 sin �

p
4

t2 þ
p
3

t3 �
7p
80

t4

� �
; 0rtr2

1:12 sinð2p=9Þ þ 1:05 sinð4p=15Þ; t42

8><
>:

The dynamics of this CMS are computed by using CMS-dt-tmM and Newton–Euler method, respectively. The tip
trajectory of arm 10, the time history of the orientation angles of body-fixed reference system of arms 4 and 10 gotten by
the two methods, and the tip transverse deformation of arm 10 with and without PZT control are shown in Figs. 8–10,
respectively.

It can be seen from Figs. 8 to 10 that the tip trajectory of arm 10 by simulation has good agreement with its desired
trajectory, the tip transverse deformation of arm 10 is restrained speedily under PZT control, and the proposed method and
control strategy achieve the tip trajectory tracking and active vibration control of flexible manipulator perfectly. On the
other hand, from Fig. 9, we can see the results gotten by the two methods have good agreements, which also validate the
proposed method.

7. Conclusions

By taking the control and feedback parameters into account in state vectors, defining new state vectors and deducing
new transfer equations and transfer matrices for actuator, controlled element and feedback element, a new method named
as CMS-DT-TMM is developed to study dynamics of CMS with real-time control in this paper. Adopting PID adaptive
controller and modal velocity feedback control on PZT actuators, applying the proposed method and ordinary dynamics
method, respectively, the tip trajectory tracking for a flexible manipulator is carried out. Formulations of the method as
well as numerical simulation are given to validate the proposed method.

When using CMS-DT-TMM to study CMS dynamics, the global dynamics equations of system are not needed, and the
orders of involved matrices are always very small and irrespective of the size of CMS. This method has the modeling
flexibility, higher computational speed, and is efficient for general CMS. Compared with the ordinary dynamics methods,
this method has more advantages for dynamic design and real-time control of complex CMS.

This method can be extended to study dynamics of CMS with other control type (feedforward) or other topology
structure (branched, close-looped, network, and so on) moving in plane or space, which are yet to be undertaken and will
be discussed in detail in another paper.
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