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a b s t r a c t

This study endeavours to apply a theoretical model for predicting the dynamics of a

bubble cluster of various sizes, within which each bubble may assume different initial

conditions from other bubbles in the cluster. The resulting system of coupled

Keller–Miksis–Parlitz equations are solved numerically, and the effects of coupling

parameters. It has been found that the effects of coupling are significant, and a bubble

cluster’s bifurcation characteristics and route to chaos can be altered by inter-bubble

interactions. This gives rise to the possibility of suppressing the chaotic oscillations of

microbubbles by varying bubble cluster size. Small equilibrium radii bubbles have little

influence on the dynamics of neighbouring bubbles in a cluster via coupling.

Furthermore, a bubble system consisting of smaller-sized bubbles transitions from

order to chaos at lower driving pressure amplitudes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since ultrasound driven microbubbles hold great potential in reshaping the boundaries of biomedical acoustics,
numerous attempts have been made to investigate the dynamics of microbubbles. The classical Rayleigh–Plesset equation
[1,2] forms a starting point for any theoretical investigation made into the realm of bubble dynamics. The Rayleigh–Plesset
equation produces realistic results for large bubbles exposed to small to moderate forcing amplitudes. However, when the
amplitude of bubble oscillations is large, particularly at the onset of cavitation, the results of numerical simulations have
been found to yield little agreement with experimental data [3]. To account for this discrepancy, Keller and Miksis [3] have
included the effects of acoustic radiation losses in the momentum conservation equation of a single bubble. The resulting
Keller–Miksis equation has been adapted by Parlitz et al. [4] with slight modification to simplify the analysis of bubble
dynamics during cavitation.

To accurately simulate the dynamics of a bubble system, the dynamics of every single bubble in the bubble cluster
would have to be traced. Due to the significant amount of computational time involved in solving the set of governing
nonlinear ordinary differential equations (ODEs) corresponding to every single bubble in the cluster, especially when the
number of bubbles is large, many studies on the dynamics of a bubble cluster in the past were reduced to an examination of
the dynamics of a single isolated bubble, subjecting that bubble to initial conditions and parameters which was an average
value of the entire bubble system, and fully ignoring the effect of its interactions with neighbouring bubbles [5]. However,
recent studies [6–10] have demonstrated that when inter-bubble distances in a cluster are small, the effects of coupling
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between the bubbles can be significant. Efforts have been made by Ooi and Manasseh [11] to incorporate the effects of
coupling in their investigation of bubble structure dynamics without incurring additional computational time. In keeping
up with the aim of solving only a single ODE, the following assumptions have been adopted: (i) all bubbles have the same
initial radii, (ii) all bubbles are subject to the same external pressure field and (iii) every single bubble are equidistant from
each other. The adoption of the latter assumption, however, limits the foregoing analysis to a bubble cluster consisting of
four bubbles at most.

It is the aim of this study to develop a theoretical model for predicting the dynamics of a bubble cluster without being
limited to the aforementioned assumptions. The resulting system of coupled Keller–Miksis–Parlitz equations is solved for
the dynamics of every single bubble in a cluster, and the effects of coupling and bubble size on the dynamical behaviour of
bubble clusters will be investigated.

In this study, the dynamical behaviour of bubble clusters will also be examined in terms of the bubble bifurcation
characteristics and route to chaos, as chaos is strongly linked to the onset of bubble inertial cavitation [12]. Lauterborn is
one of the pioneers in applying the methods of chaos physics to bubble acoustics research [13]. Stroboscopic maps, based
on a mapping of bubble wall velocity to bubble radius after every forcing period, have been used extensively by researchers
such as [4] to assess the state of order or chaos of the bubble-acoustic dynamical system concerned. A collection of
stroboscopic maps at different ultrasound parameters have also been used by these researchers to produce bifurcation
diagrams, powerful tools in providing an insight on the inherently rich, nonlinear characteristics of the system, as well as
detailing the order-to-chaos transition pathway of the system. Thus far, all these studies have been conducted on only a
single bubble in isolation.

Allen et al. [14], Garbin et al. [15], MacDonald and Gomatam [16] and Takahira et al. [17] are examples of studies on the
bifurcation characteristics of bubble clusters involving bubbles of different initial radii. The latter two studies concluded
that when bubbles of different radii oscillate, inter-bubble interactions suppress the independent oscillations of each
bubble such that all bubbles in the cluster take on collective behaviour. However, there is no investigation into how a large
bubble affects the oscillation of smaller neighbouring bubbles and vice versa, and how this degree of influence varies as
bubble size changes. The present study is therefore also motivated by the need to investigate how changing bubble
equilibrium size and number of bubbles in a cluster could potentially affect the bifurcation characteristics and route to
chaos of a group of bubbles.
2. Theoretical model for a bubble cluster

An equation of Keller–Miksis–Parlitz form is given by [4],
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where RðtÞ, R0, m, r, k, c, s, a and fext represent the instantaneous bubble radius, equilibrium bubble radius, dynamic
viscosity of the liquid, density of liquid, polytropic exponent for bubble gas, speed of sound in air, surface tension of bubble
wall, acoustic pressure amplitude and driving frequency respectively. The parameter values of m ¼ 0:001 kg m�1s�1,
k ¼ 1:33, c ¼ 1484 m s�1, s ¼ 0:0725 N m�1, Pv ¼ 2330 Pa, P0 ¼ 100;000 Pa for bubbles in water at 20 3C would be used for
all simulations in this paper [3].

When a bubble cluster is considered, Eq. (1) can be applied to every single bubble in the cluster. To include the effects of
coupling, a coupled-oscillator approximation for linearly coupled pairs of bubbles proposed by [18] can be used, in which
case a coupling term of the form:
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would be added to the right hand side of Eq. (1). Psi represents the incremental pressure/density acting on bubble i due to
pressure scattered by neighbouring bubbles in a cluster, Rj is the instantaneous radius of the jth neighbouring bubble, sij is
the distance between the ith and jth bubble and Nbub is the number of bubbles in the cluster. Adopting the assumptions
that the bubbles remain spherical throughout and the surrounding liquid is incompressible [18,19], the resulting equation
becomes:
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where Ri is the instantaneous radius of the ith bubble and R0i is the equilibrium radius of the ith bubble.
Eq. (3) is a coupled nonlinear, second-order differential equation which can be reduced to two first-order differential

equations. Applying Eq. (3) to each of the bubbles in the cluster, and using order reduction gives a system of 2Nbub first
order differential equations as shown in Eq. (4) which can be solved numerically for the instantaneous bubble radii and
wall velocities of every single bubble in the cluster.
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3. Effects of bubble size

Ultrasound parameters of a ¼ 40 kPa and fext ¼ 100 kHz are used for all simulations in this section, as they are
commonly used in the literature [3,4,20]. Where bubble clusters are concerned, the inter-bubble distance is fixed at 50mm,
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Fig. 1. Single bubble time response for a ¼ 40 kPa, fext ¼ 100 kHz, R0 ¼ 10mm.
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a value chosen such that no inter-bubble coalescence occurs for all cases considered, since bubble coalescence is not
modelled in our mathematical formulation.

For most of our simulations, as Fig. 1 shows, the solutions goes through a transient period of typically around 100ms
followed by oscillations that is statistically stationary. In the subsequent analysis, only data from when the simulations are
statistically stationary will be analysed. The maximum bubble expansion ratio at steady state, Rmax=R0, which can be
determined from the phase diagrams, would be used as a measure of a bubble’s amplitude of oscillations.

Table 1. summarizes all cases which would be considered in this section. Cases 1–3 are base cases for which the
dynamics of an isolated bubble of different equilibrium radii are considered. An investigation of the bubble dynamics of a
two-bubble cluster is attempted in cases 4 and 5. Case 4 examines how the addition of a slightly smaller bubble into the
original system of a single bubble affects the dynamics of both bubbles, while case 5 considers the effect the addition of a
considerably smaller bubble into the original system exerts on the dynamics of each bubble. Cases 6 and 7 investigate the
same effects as cases 4 and 5, except that the bubble cluster size has been increased to Nbub ¼ 4 to establish whether
changing the number of bubbles in a cluster has an impact on the trend observed in cases 4 and 5.
Table 1
Summary of all simulation cases for the investigation of the effects of bubble size.

Case Nbub R01 (mm) R02 (mm) R03 (mm) R04 (mm)

1 1 10 – – –

2 1 9 – – –

3 1 5 – – –

4 2 10 9 – –

5 2 10 5 – –

6 4 10 9 9 9

7 4 10 5 5 5
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Fig. 2. Single bubble phase diagrams for a ¼ 40 kPa, fext ¼ 100 kHz: (a) R0 ¼ 10mm, (b) R0 ¼ 9mm and (c) R0 ¼ 5mm.
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Fig. 2 shows the trajectory for a single bubble of three different equilibrium sizes, subject to the same set of ultrasound
parameters of a ¼ 40 kPa and fext ¼ 100 kHz. In the figure, V ¼ dR=dt is the bubble wall velocity and T ¼ 1=fext is the period
of the external frequency. For R0 ¼ 10mm, the phase diagram of Fig. 2(a) reveals a crossing of bubble trajectories as the
bubble returns to its original state in a single oscillation period. When a bubble that is 10 percent smaller is considered, the
bubble performs an orbit with a general appearance similar to the previous case, accompanied by a slightly smaller
amplitude of oscillation. However, when a bubble size which is 50 percent of the original size is used, it is apparent from
Fig. 2 that a markedly different orbit with no intertwining results, and the amplitude of bubble oscillations is significantly
reduced.
Fig. 3. Bubble arrangement and numbering for a cluster of two bubbles.
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A cluster of two microbubbles of different initial sizes arranged as in Fig. 3, subject to the same set of ultrasound
parameters is then considered. Case 4, where one bubble is 10 percent smaller than other bubble in the cluster, and 5,
where one bubble is 50 percent smaller than the other bubble in the cluster are examined.

The addition of one large-sized bubble into the original system of a single 10mm bubble causes the phase diagrams
of either bubble to differ from that of the single bubble case, as Figs. 4(a) and (b) clearly show. Furthermore, comparing
Figs. 4(a) and (b) with Figs. 2(a) and (b), it can be observed that the amplitudes of oscillation for both bubbles are greater
than that of the single bubble. This suggests that when there are two relatively large-sized bubbles in a system, each bubble
contributes to the oscillation of the other bubble in the system via coupling. The degree of influence of a bubble on the
dynamics of a neighbouring bubble in the system is in turn dependent on its equilibrium size; a hypothesis which will be
investigated in the following simulation case. The frequency domain representation of the radius–time responses of Figs.
4(c) and (d) reveal that both bubbles are generating ultraharmonics at integer multiples of the driving frequency.

The addition of a relatively small-sized ð5mmÞ bubble into the original single large-sized ð10mmÞ bubble system yields
virtually no effect on the dynamics of the 10mm bubble, as the phase diagram of Fig. 5(a) matches that of Fig. 2(a) in terms
of orbit pattern and bubble amplitude of oscillation. The state-space trajectory of the small-sized bubble in Fig. 5(b), has
however been distorted from that of the single bubble of same size in Fig. 2(c). It appears that while the large-sized bubble
has affected the dynamical behaviour of the smaller sized bubble, the smaller bubble has exerted minimal influence on the
oscillations of the large bubble. This observation, together with the results of the previous simulation leads to the
conclusion that the smaller the size of a bubble, the less influence it has on the dynamics of other bubbles in a cluster via its
coupling terms. Comparing Fig. 5(c) with 4(c) and Fig. 5(d) with 4(d), it is clear that the magnitude of the ultraharmonics
decreases with smaller bubble size.

The effects of bubble size on coupling is subsequently investigated for a cluster of four bubbles equidistant from each
other, arranged as shown in Fig. 6. The same ultrasound parameters are used as before, and cases 6 and 7 as outlined in
Table 1 are considered. Due to coupling symmetry, bubbles 2, 3 and 4 share the same dynamical behaviour for both cases.
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When the sizes of bubbles in a cluster are not significantly different from each other, coupling drives the dynamical
behaviour of any bubble to approach that of other bubbles in the cluster, as evidenced by the similarity of the phase
portraits of Figs. 7(a) and (b). However, the phase portraits for this system resemble neither Fig. 2(a) nor 2(b), suggesting
that coupling changes the dynamical behaviour of every bubble in a cluster from that of a single bubble considerably,
particularly when all bubbles in the cluster are of a reasonably large size. The two major peaks appear at the main and third
harmonics of the Fourier spectra for all bubbles, and the greater peak intensities of bubble 1 correlates with its greater
amplitude of oscillation.

The trajectory of bubble 1, as seen from Fig. 8(a), bears a close resemblance to that of a single bubble of same size
(Fig. 2(a)), when the other three bubbles in the cluster have half its equilibrium size. This observation, in addition to the
dissimilarity in phase diagrams of the 5mm bubble of Fig. 8(b) with that of the single, same-sized bubble case of Fig. 2(c)
supports the conjecture that in a bubble cluster where bubbles of varying sizes interact with one other, larger sized bubbles
exert a greater influence on the dynamics of neighbouring bubbles than smaller sized bubbles. Furthermore, the validity of
this conclusion is unaffected by bubble cluster size, since the same trend in bubble dynamics is also observed in cases 4 and
5 where Nbub ¼ 2. The Fourier spectra for bubble 1 differs from that of bubbles 2, 3 and 4 in that for the previous, a peak is
generated at the second harmonic, which again contrasts with the previous simulation case (R01 ¼ 10mm,
R02 ¼ R03 ¼ R04 ¼ 9mm) where the secondary peak for every bubble occurs at f ¼ 3fext. These differences in acoustic
signatures could potentially be utilized to distinguish between the various bubble sizes in a bubble cluster.

Comparing the Fourier spectra of Fig. 4 and those of Fig. 5, it can be observed that the magnitude of the ultraharmonic
peaks of Figs. 4(c) and (d) have decreased when one of the bubbles in the two-bubble cluster is substituted for a smaller
bubble with R0 ¼ 5mm, as evident in Figs. 5(c) and (d). Likewise, when three bubbles in the four-bubble cluster are replaced
with three smaller bubbles of R0 ¼ 5mm, the ultraharmonic peaks at f ¼ 3fext of Figs. 7(c) and (d) have substantially
decreased in Figs. 8(c) and (d). According to Lauterborn [20], ultraharmonics occur only when a certain acoustic pressure
amplitude is exceeded, and this threshold pressure is raised to higher values for smaller bubble radii.

Fig. 9 shows how the maximum expansion ratio of bubble 1, which has a constant equilibrium size of R01 ¼ 10mm,
changes as size of other bubbles in a cluster of size Nbub ¼ 2, 3 and 4, is varied from 3 to 10mm, for ultrasound parameters
of a ¼ 40 kPa, fext ¼ 100 kHz. When the equilibrium sizes of other bubbles in the bubble cluster are relatively small, it is
evident that changing the number of bubbles in a cluster has little effect on the maximum expansion ratio of the larger-
sized bubble 1. A few peaks appear in the Rmax=R0 curves for each bubble cluster size, but main resonance peaks in the
oscillation amplitude of bubble 1 are generated for larger neighbouring bubble sizes, which shifts to smaller neighbouring
bubble sizes as the number of bubbles in the cluster is increased.
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Fig. 7. Dynamical behaviour of bubbles for Nbub ¼ 4, a ¼ 40 kPa, fext ¼ 100 kHz, inter-bubble distance = 50mm, R01 ¼ 10mm, R02 ¼ R03 ¼ R04 ¼ 9mm: (a)

phase diagram of bubble 1, (b) phase diagram of bubbles 2, 3 and 4, (c) Fourier spectra of bubble 1, and (d) Fourier spectra of bubbles 2, 3 and 4.
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4. Bifurcation characteristics

Using the bubble expansion ratio at every forcing period ðT ¼ 1=fextÞ from the stroboscopic maps as the state variable
[4,13], the bifurcation diagrams were plotted at fext ¼ 1 MHz as a function of driving pressure amplitude for a bubble cluster
where all bubbles have (i) R0 ¼ 10mm, (ii) R0 ¼ 9mm and (iii) R0 ¼ 5mm. The number of bubbles in the cluster is varied
from Nbub ¼ 1 to 4, and the inter-bubble distance is a constant 50mm. In each individual case, since all bubbles have the
same equilibrium radii and are equidistant from each other, a single bifurcation diagram applies to all bubbles in the
structure.

For R0 ¼ 10mm, the bifurcation diagram of Fig. 10(a) clearly reveals a period-tripling bifurcation at a � 160 kPa. These
three bifurcation branches extend up to a � 490 kPa before merging and splitting into multiple points aligned vertically on
the bifurcation diagram, indicating the existence of a multitude of frequencies of oscillation for the single bubble. This state
of chaos, however, does not persist indefinitely, as a temporary transition from chaos to order for the system occurs at
a � 540 kPa, before reverting to chaos once again for slight increase in acoustic pressure amplitude. For greater driving
pressure amplitudes, such intermittently chaotic behaviour occurs at a � 565 and 650 kPa. A sevenfold increase in the
period of oscillation occurs at a � 710 kPa, leading the system towards full chaos for driving pressure amplitudes greater
than 780 kPa.

The addition of one bubble of equal radius into the system changes the route to chaos for the system significantly.
An inspection of Fig. 10(b) reveals that unlike the single bubble system, the two-bubble system does not follow a period-
tripling route to chaos, but bubble oscillations become suddenly chaotic from an orderly, single-period oscillation at
a � 480 kPa. The first point of order-to-chaos transition for the two-bubble system is very close to that of the single bubble
system, although their respective routes to this transition point differ considerably. Like the single bubble system, the



ARTICLE IN PRESS

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

V
T/

R
0

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

V
T/

R
0

0 1 2 3 4 5

In
te

ns
ity

0 1 2 3 4 5

In
te

ns
ity

10−8

10−9

10−10

10−8

10−9

10−10

R/R0 R/R0

f/fext f/fext
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Fig. 10. Bifurcation diagrams at fext ¼ 1 MHz, inter-bubble distance = 50mm, R0 ¼ 10mm for (a) Nbub ¼ 1, (b) Nbub ¼ 2, (c) Nbub ¼ 3, (d) Nbub ¼ 4.
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two-bubble system encounters intermittent chaos at greater pressure amplitudes. Only one period-tripling bifurcation is
observable for the two-bubble system at a � 600 kPa.

The route to chaos of the three-bubble system does not differ much from that of the two-bubble system. The route to
chaos for this system can still be classified as an intermittent one, as the bifurcation diagram of Fig. 10(c) does not feature
any period-doubling or period-tripling cascades in the order-to-chaos pathway. However, in contrast to the previous two-
bubble systems, the system first becomes chaotic at a lower pressure amplitude of a � 410 kPa, but reverts to order once
again for a slight increase in driving pressure amplitude. As in the previous two systems, ‘windows of order’, intervals for
which the system switches from chaos to order, are observed in the chaotic, high pressure amplitude regions. The addition
of one more bubble into the system changes the bifurcation characteristics of the bubbles rather dramatically. As can be
seen in Fig. 10(d), the path to chaos of the bubble system evolves from an intermittent route to chaos to a period-
quadrupling route to chaos classification. The first period-quadrupling cascade occurs at a � 325 kPa, greater than the
point of first bifurcation of the single-bubble case of Fig. 10(a). However, chaos is first encountered by this system at a
smaller pressure amplitude of a � 430 kPa. The various differences between the bifurcation diagrams of a single and two-
bubble system expound the theory that bubble cluster size and coupling can affect a bubble’s bifurcation characteristics
and its route to chaos.

When R0 ¼ 9mm, the single bubble system undergoes a period-tripling bifurcation like the single bubble of size
R0 ¼ 10mm. However, unlike the latter, each of the three bifurcation branches of the 9mm bubble undergoes a further
period-doubling bifurcation, causing the bubble to oscillate at n=6 multiples of the driving frequency, where n ¼ 1;2; . . . : It
is evident from Fig. 11(a) that the point of first bifurcation for this smaller bubble is also greater than that of the larger
bubble of Fig. 10(a). The addition of one bubble of equal size into the system still results in a period-tripling bifurcation. The
pressure amplitude for which this bifurcation first occurs has, however, shifted to a smaller value of a � 175 kPa. A
‘window of order’ can still be observed at high pressure amplitudes of 930 kPaoao990 kPa. When one more bubble is
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Fig. 11. Bifurcation diagrams at fext ¼ 1 MHz, inter-bubble distance = 50mm, R0 ¼ 9mm for (a) Nbub ¼ 1, (b) Nbub ¼ 2, (c) Nbub ¼ 3, (d) Nbub ¼ 4.
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added into the system, the point of first bifurcation of the bubbles does not shift downwards as expected, but increases to a
much greater value of a � 320 kPa as Fig. 11(c) illustrates. When Nbub ¼ 4, there is a change in the bubble system’s route to
chaos. The bubble system no longer undergoes a bifurcation in its route to chaos. A transition from chaos to a period-
tripling bifurcation, however, occurs at a � 570 kPa, before reverting to chaos once again at a � 600 kPa.

Unlike bubbles of 9 and 10mm equilibrium radii in the previous simulation cases, a single 5mm bubble takes a classical
period-doubling route to chaos, as Fig. 12(a) reveals. When one bubble is added into the system, the route to chaos of the
system is not altered. However, the point for which the system first undergoes bifurcation and the transition acoustic
pressure at which the system descends into full chaos are shifted to lower values. For Nbub ¼ 3, the bubble system first
experiences a period-doubling at a � 170 kPa, followed by a saddle-node bifurcation for a small increase in pressure
amplitude. The destruction of a stable limit cycle and the birth of a new one is characterized by a discontinuous jump in
bubble expansion ratio as seen in the bifurcation diagram of Fig. 12(c). The addition of one bubble to the three-bubble
cluster results in a simultaneous period-doubling and saddle-node bifurcation at a lower pressure amplitude of
a � 150 kPa. Like the three-bubble system, the four-bubble cluster undergoes a chaos-to-order transition at higher
pressures, but the range of acoustic pressure amplitudes for which chaos is experienced is wider for the four-bubble cluster.

The effects of coupling are complicated, as they add to the degree of non-linearity of the pre-existing, highly non-linear
system modelled by the Keller–Miksis–Parlitz equation. However, it is apparent from the results of this section that
coupling plays an important role in reducing a bubble system’s degree of chaos. This is a very useful result, as it
demonstrates that chaotic oscillations may be suppressed according to how many bubbles are present in a cluster, as an
alternative to the dual forcing frequency approach highlighted by [21]. An observable trend, however, exists for changing
bubble size. Comparing the bifurcation diagrams of Figs. 10–12, there is evidence that a small bubble cluster consisting of
smaller-sized bubbles transitions from order to chaos at lower driving pressure amplitudes.
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Fig. 12. Bifurcation diagrams at fext ¼ 1 MHz, inter-bubble distance = 50mm, R0 ¼ 5mm for (a) Nbub ¼ 1, (b) Nbub ¼ 2, (c) Nbub ¼ 3, (d) Nbub ¼ 4.
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5. Conclusion

A theoretical model was implemented for predicting the dynamics of a bubble cluster of any size, within which each
bubble may assume different initial conditions from other bubbles in the cluster. Numerical simulations were performed,
and it was found that coupling can alter a bubble cluster’s bifurcation characteristics and route to chaos. The possibility of
suppressing the chaotic oscillations of microbubbles by varying bubble cluster size exists. Also, it was discovered that a
small bubble cluster consisting of smaller-sized bubbles transitions from order to chaos at lower driving pressure
amplitudes. In addition, it was found that larger bubbles influence the dynamics of smaller bubbles in a cluster more than
smaller bubbles do.
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