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A computational method for designing optimal arrangements of multilayer noise and

vibration treatments in general and porous open cell foam in particular is discussed. The

method uses finite element solutions to Biot’s equations for poroelastic materials and

provides data to evaluate cost functions and gradients. The porous material is

parameters, i.e. averaged elasticity, flow resistivity and characteristic viscous and

thermal lengths. The cost function is either in terms of weight or in terms of the

pressure response in a finite cavity, complemented with constraints on the other.

However, care must be taken when choosing the cost function, as this will greatly affect

the outcome of the optimisation. Observations made during the optimisation process

indicate a limited number of minima within the parameter range of interest as well as

beneficial continuity around these minima, thus enabling a meaningful optimisation.

The results suggest that if alterations of the microscopic properties of the foam are

made, the foam may be adapted to specific environmental conditions and thereby

achieve improved acoustic behaviour as well as reduced weight.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible porous foams with open cells are generally considered to be good sound absorbers and vibration isolators, and
are therefore often used to improve the noise vibration and harshness (NVH) comfort, commonly in automotive
applications. However, adding such materials in vehicles generally has a negative impact on the overall weight and
consequently the fuel or energy consumption. Hence, it is necessary to achieve the best possible performance, per added
weight and cost, from the added material. In current practice, efficient use of porous foam often involves multiple layers of
various open cell foam, i.e. foam with different mechanical and material properties. Designing such complex structures,
fulfilling various requirements, is at best a very time consuming task due to the extensive testing needed to achieve good
results. Furthermore, there is also the question of defining the acoustic performance of a specific foam or combination of
foam layers. At present, lightweight porous acoustic multilayer trim components are traditionally specified in terms of
sound absorption and transmission loss. Foam that is developed according to this way of characterising their efficiency
may, however, be sub-optimal in specific applications where for example structure borne sound is a major part of a
vibration problem. Clearly there is a need for computational tools and procedures that are able to predict and optimise the
behaviour of such multilayered structures. The present paper presents such a methodology for optimising porous layers in
a multilayered configuration.
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Nomenclature

bðoÞ frequency-dependent viscous drag parameter
cg pore shape dependent constant
Cr foam dependent scaling constant for bulk

density
Cs foam dependent scaling constant for static

flow resistivity
CE foam dependent scaling constant for bulk E-

modulus
ds average strut thickness of solid frame
Es Young’s modulus for solid frame material
E� Young’s modulus for homogenised foam
ls average strut length of solid frame
p acoustic pressure
Q dilatational coupling factor between fluid and

solid frame
R bulk modulus of fluid phase at zero solid frame

dilatation
uf

i Cartesian component of average fluid displace-
ment

us
i Cartesian component of average solid displa-

cement
a1 tortuosity
Z dynamic viscosity
l bulk Lamé’s parameter at constant fluid pres-

sure
l̂ bulk dynamic Lamé’s
L viscous characteristic length
L0 characteristic thermal length
m bulk Lamé’s shear parameter
m̂ bulk dynamic Lamé’s shear parameter
ra inertial coupling factor, ra ¼ �r12

rf density of fluid
rs density of solid frame material
r� bulk density of solid frame
sstatic static flow resistivity of foam
f porosity, volume fraction of open pore fluid

content
o frequency
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In flexible porous foam, the vibroacoustic energy is carried both through the fluid in the pores (e.g. air) and through the
solid frame material itself. The waves are strongly coupled and propagate simultaneously along the two phases with
different amplitude and relative phase angle. Differences in amplitude and phase will transform some of the mechanical-
acoustical energy into heat, mainly due to viscoelastic and viscoacoustic phenomena in the solid frame and at the interface
between the solid frame and the fluid in the pores.

When modelling wave propagation through a porous medium, the foam is described as a homogenised continuum with
co-existing solid and fluid phases with a coupled frame-fluid wave propagation—an approach commonly known as Biot’s
theory, see e.g. [1–3]. In Biot’s theory the macroscopic space averaged properties of the foam, such as bulk density, porosity,
flow resistivity and Young’s modulus, are required. The dynamic behaviour is then presented as macroscopic space
averaged quantities e.g. solid and fluid displacement, acoustic pressure, and elastic stress.

While known macroscopic properties can be used to derive the necessary macroscopic dynamic quantities appearing in
Biot’s equations, the former are inherently dependent on microscopic properties of the foam, such as geometry (e.g. pore
size, strut length and strut thickness) as well as the actual material used for the solid frame. Thus improving the dynamic
behaviour by optimising the macroscopic properties independently of one another is doubtful as it would most likely result
in a foam that is impossible to realise physically. An alternative approach would be to use scaling laws that relate the
macroscopic properties to the microscopic ones, where the latter may be changed independently. This is the approach
taken in the current paper.

The objective of the present work is to establish a methodology to estimate the acoustic behaviour of porous foam as
well as to explore the possibilities to optimise this behaviour. This is carried out by minimising a cost function when the
foam is affected by an oscillating force or other acoustical phenomena. Another purpose of the paper is to show that
alterations in the micromechanical properties of foam may have a significant effect on the acoustical behaviour and that, if
these micromechanical properties could be controlled, foams could be tailored for specific needs. This may allow for NVH
problems to be treated from another point of view than previously possible, i.e. design for application performance.

This paper will briefly review Biot’s theory and a proposed set of parametric relations between microscopic structure
and macroscopic homogenised properties that may be used in the formulation of a 3-D finite element model providing the
response of a multilayered structure. In the model, a panel is connected to an air filled cavity, in a sub-volume of which the
sound pressure level is evaluated for a given load. Results from optimisation of one layer in a multilayered configuration are
discussed, in particular in view of the frequency weighting functions applied to evaluate the response and the influence the
different weighting functions have on the optimal configuration found.
1.1. Related work

Optimising the performance of porous foams, modifying the microstructure geometry, has recently been discussed in
the context of structural acoustic performance as well as acoustic absorption, targeting single and multilayer
configurations.
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Simon et al. [4] performed calculations of transmission loss resonance frequencies of a number of multilayered panels in
order to determine the best layer combination. The material database originally consisted of several Nomex honeycomb,
fibre glass, Kevlar, carbon and viscoelastic materials. The calculations suggested that due to the high stiffness of the
included materials the resulting panel basically followed the mass law for the frequency band 500–5000 Hz and that the
high damping provided by the viscoelastic layer was beneficial only at the coincidence frequency. Instead they proposed a
solution using foams that are less stiff than e.g. honeycomb. Based on simulations of the transmission loss, which were
partly validated in laboratory testing, the conclusion was that sandwich panels with open cell foam provide an adequate
option for efficient noise applications.

Focusing on the actual optimisation routine, Tanneau et al. [5] discussed a method using genetic algorithms to optimise
the layer combination, in terms of the number of layers and their respective thicknesses. Their optimisation was performed
with materials chosen from a list of possible candidates. The list contains a limited number of solids, fluids and foam,
where each foam is described with a set of material properties, among them: porosity, flow resistivity, tortuosity and
Young’s modulus. Such an optimisation may result in a well performing trim panel by using readily available foam, which is
of course very attractive in most practical situations. This approach, however, requires previously known material
parameters for each material that may be included in the multilayered configuration, a quite extensive and possibly costly
measurement task. It also excludes the possibility of designing a new material for a specific task.

Lee et al. [6] performed a topology optimisation using the transfer matrix derived from Biot’s equations to maximise the
transmission loss. The authors used an MMA optimiser [7] to find the optimal layer sequence consisting of air layers and
layers of a specific poroelastic material with fixed properties. The optimisation was performed at single frequencies as well
as for narrow and wide frequency bands. The frequencies or frequency bands studied were all between 1 and 5 kHz.
Results from the single frequency optimisation show that as the target frequency increases the number of layers increases.
In addition the thickness of each layer decreases, partly due to constraints on the total thickness but mainly due to the
shorter wavelengths that correspond to high frequencies. The results for single frequency optimisations were also
compared with results of narrow band optimisations. As expected were the foams optimised for narrow band frequencies
outperformed by the single frequency optimised foam at each individual frequency. The number of layers, however,
increased as the upper and lower frequencies of the frequency band were increased, in agreement with the results from the
single frequency optimisation.

Work that to some extent explored the influence of geometrical properties was performed by Franco et al. [8], who
examined a sandwich panel with different core and face sheet properties. One configuration was a core made of a lattice of
truss elements; this allowed independent control of the core stiffness along different directions. The truss like core was
modelled as rod elements with the intent to minimise the mean square average inner surface velocity over a chosen
frequency range. Their model, however, only regarded Young’s modulus in different directions of a truss like unit cell by
altering the cross-sectional area of the rod elements in different directions, whereas neither the coupled wave propagation
due to the frame–fluid interaction, any of the well established energy dissipative mechanisms of foam nor the effects of
damping levels with respect to different frequency bandwidths were included.

In addition the optimal microstructure properties in the context of sound absorption were discussed by Perrot et al.,
see [9–13]. Using numerical solutions of e.g. Stokes equations, appropriate parameters were calculated for
given microstructures and fed into the proper macroscopic relations. They found interesting effects of throat size on
absorption level, cell size in the peak absorption frequencies and fibre cross-section shape in the weight of the porous
material.

The approach of the present paper explores the possible effects of altering the microscopic structure of a specific foam
and the resulting acoustical properties to achieve optimal structural acoustic performance in a given application. It is
apparent that the result very well may be a foam that is not presently available, but perhaps still possible to produce. Thus
it is expected that this methodology may present new possibilities to predict the necessary acoustic properties and to guide
in the future creation of foams that fulfil specific needs. To enable such an optimisation tool, a direct link between the
foams microstructural properties and the acoustic performance is a necessity.
2. Modelling aspects

Modelling and optimising the acoustic behaviour of foams in multilayered structures requires the inclusion of
several physical mechanisms representing the dynamic frequency-dependent mechanical and acoustical properties of
the complex arrangement of different layers of solids, fluids and foam materials. To efficiently and accurately solve
the equations governing such behaviour the finite element method is an adequate numerical solution procedure,
in particular for intricate structures. However, to ensure a useful result great care has to be taken in the selection of trial
solutions as well as handling the many different boundaries and interfaces within the multilayered structure. The
complexity of the problem makes it computationally expensive to solve and as each frequency is solved independently,
limiting the frequency range is a necessity. Furthermore, optimising the properties of one or more of the included layers
requires several iterations, consequently, the optimiser’s ability to find a minimum using as few iterations as possible is
crucial for success.
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2.1. Biot’s equations

To describe the macroscopic mechanical behaviour of porous materials Biot’s theory is frequently used, see e.g. [1–3].
The Biot theory describes the solid frame of the porous material and the pore fluid as an equivalent elastic solid continuum
and an equivalent compressible fluid continuum, respectively. Part of Biot’s theory is similar to the contemporary one
presented by Zwikker and Kosten in [14] with the difference that Biot also included the effects of shear stress in the elastic
frame of the porous medium. While Biot’s theory is formulated for general anisotropic materials, the present work has only
considered isotropic poroelastic materials. By extending Biot’s theory to include internal losses and by treating the solid
phase as separated from the fluid phase, the equations for the solid and fluid displacement, us and uf , respectively, may be
written as

m̂us
i;jj þ l̂ þ

Q2

R
þ m̂

� �
us

j;ij þo
2r�us

i þ ðo
2ra � iobÞðus

i � uf
i Þ þ Quf

j;ij ¼ 0 (1)

Ruf
j;ij þo

2frf uf
i þ ðo

2ra � iobÞðuf
i � us

i Þ þ Qus
j;ij ¼ 0 (2)

Eqs. (1) and (2) assume material isotropy, small displacements and a time harmonic motion eiot . The constants m̂, l̂, b, Q

and R are complex valued material parameters which are dependent on the angular frequency o.
The parameters m̂ and l̂ represent the elastic-viscoelastic effects and are frequency-dependent analogies to Lamé’s

constants m and l. In other words, m̂ and l̂ introduce frequency-dependent complex damping in the solid frame. They are
thoroughly described in the augmented Hooke’s law (AHL) introduced by Dovstam [15]. The acoustic-viscoacoustic effects
are described by b, Q and R which are the viscous drag constant, the dilatational coupling and the pore fluid bulk modulus,
respectively. Further description of the above material parameters may be found in [14,16–19].
2.2. Mechanical properties and scaling laws

In order to carry out a meaningful optimisation of the material properties of the foam, scaling laws, i.e. relations
between the macroscopic properties of the foam to the underlying microscopic properties, would be required. Such scaling
laws should preferably describe the macroscopic properties of the porous material as being continuously and
systematically dependent on the microstructural mechanical properties. Contributions to developing scaling laws and
increasing the understanding of the mechanical properties of foam have been made by several researchers.

In works by e.g. Warren and Kraynik [20,21], some mechanical properties, bulk modulus, two shear moduli and Young’s
modulus, are derived by analysing the stress–strain relations in repeated geometrical cell-shapes using mechanical laws.
This relates the macroscopic mechanical properties to microscopic ones, e.g. Young’s modulus of certain foam cell shapes to
Young’s modulus of the strut material and the relative density with a numerical constant that is dependent on e.g. cell
shape, strut shape and joint shape. Although their work does not cover all the scaling laws needed for the current
optimisation it offers a valuable insight into the microscopic behaviour of foam materials.

For simplicity the elasticity model used in the current paper is based on the work of Gibson and Ashby [22], where an
isotropic open cell foam is modelled as a cubic array, see Fig. 1. The scaling laws, however, can be transferred to an arbitrary
cell shape, assuming linear elastic properties in the strut material and that the struts primarily deform in bending. The
following scaling laws also assume high porosity and that the strut material is significantly heavier than the interstitial
fluid. The second assumption allows for the porosity, f, to be expressed in terms of the bulk density of the foam, r�, and the
density of the strut material, rs,

f ¼ 1�
r�

rs

(3)

where r�=rs is the relative density. Furthermore it may be shown that the relative density is proportional to the thickness
and the length of the struts forming the cells,

r�

rs

¼ Cr ds

ls

� �2

(4)
Fig. 1. Cell microstructure as assumed by Gibson and Ashby.
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Finally, by simple mechanical reasoning, see [22], Young’s modulus, E, can be related to the strut dimensions and
consequently to the relative density

E�

Es
¼ CE r�

rs

� �2

¼ CECr ds

ls

� �4

(5)

The scaling laws have been further developed by Göransson [23]. Here relations between the microstructure and the
viscous characteristic length, L, by Allard and Champoux [24], are used to formulate a relation for the characteristic viscous
length and the static flow resistivity of the foam, sstatic. From Allard and Champoux, it may be deduced that assuming a
pore channel with parallel walls:

L ¼
1

cg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a1Z
fsstatic

s
(6)

where cg is a pore shape dependent constant that for cylindrical geometry is equal to one. Z is the viscosity of air and a1 is
the tortuosity. According to Allard the viscous characteristic length, L, may also be derived from the velocity field around a
cylinder in an acoustic field [16]. Assuming high porosity and cylindrical struts L may be related to the microscopic
properties as

L ¼
ds

4ð1� fÞ
¼

ds

4ðr�=rsÞ
(7)

The characteristic thermal length, L0, was approximated as L0 ¼ 2L [16]. Adopting the common assumption that the
parallel duct flow model may be used for an open cell strut like foam, Eqs. (6) and (7) give

sstatic ¼
8a1Z

1� ðr�=rsÞ
�
16ðr�=rsÞ

2

c2
g d2

s

(8)

where 0or�=rso1. Assuming high porosity, ð1� ðr�=rsÞÞ-1, constant tortuosity and by using a first-order series
expansion, Eq. (8) may be simplified to

sstatic ¼
Cs

d2
s

�
r�

rs

� �2

(9)

Eq. (9) represents the approximate dependence of the flow resistivity on the thickness of the struts as well as the relative
density of the porous material. It is an approximation on the same level as Eq. (6) which is commonly used in analysis of
open cell foam, having microstructural cell geometries far away from the original cylindrical channel that is the underlying
assumption for this relation.

The constants Cr, CE and Cs are partly dependent on the microscopic mechanical properties of the foam, such as cell
shape and to some extent also strut cross section shape and joint region shape. While the scaling laws by Warren and
Kraynik [20,21] offers numerical values to some of these constants, they also require knowledge of cell shape, strut cross
section shape and to some extent also joint region shape since these constants are dependent on those microscopic
mechanical properties of the foam. Such microscopic geometrical properties may vary between different foams and are not
always readily specified. The scaling laws presented in the present paper instead require a set of known macroscopic
material parameters from an existing foam, as well as knowledge of the strut material properties, in order to acquire the
constants Cr, CE and Cs. Provided that the material properties used to derive these constants are correct the constants will
automatically, but maybe not totally, be adapted to cell shape, strut shape and joint shape. Thus, the grossly simplified
cubic cell geometry will still capture the most important deformation mechanisms.

The scaling laws in Eqs. (4), (5) and (8) may also be written as

r� ¼ rref

ds

dref

� �2 lref

ls

� �2

(10)

E� ¼ Eref
r�

rref

� �2

(11)

and

sstatic ¼ sstatic
ref

r�

rref

� �2

�
dref

ds

� �2

�
a1
a1ref

�

1�
rref

rs

� �

1�
r�

rs

� � (12)

where Eq. (12) may be simplified into

sstatic ¼ sstatic
ref

r�

rref

� �2

�
dref

ds

� �2

(13)
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Fig. 2. Schematic picture of FE-model with coordinate system and applied forces.
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using the same assumptions as for Eq. (9). The parameters rref , dref , lref , Eref , sstatic
ref and a1ref corresponds to the density,

Young’s modulus, strut thickness, strut length, static flow resistivity and tortuosity of the reference foam.
As the properties of the foam used to derive the scaling laws are comparable to the range of foam regarded in the

optimisation, the scaling laws presented above, however simplified, may provide a useful tool to estimate the effect of
small changes of the microscopic properties of the foam. The material properties for the porous materials used as reference
materials in this paper, a polyurethane based and a polyimide based foam (PU-foam and p�foam, respectively), may be
found in Appendix A. The optimisation was then performed for both these types of foam and the results are discussed
below.
2.3. FE-modelling

The multilayered structures of interest in vehicle application often involve complex arrangements of different porous
materials combined with purely solid or fluid layers, all with their specific boundary conditions and geometries. To
calculate the acoustical mechanical response of such an intricate multilayered structure, some kind of numerical solution
procedure is required. Such a numerical model must take into account not only the properties of the individual porous
layers, e.g. the fluid in the pores, the solid frame structure and the coupling between them. It also has to consider the
boundaries to other solid, fluid or porous layers, with appropriate treatment of the kinematic conditions, the mass flow
continuity conditions and the relevant stress balances.

Additionally, special care has to be taken in the selection of trial functions to get convergent solutions to Biot’s
equations, especially for multilayered structures, for which hp-FEM1 is a convenient finite element base. Here the finite
element solutions were obtained using the methods thoroughly discussed and properly addressed in works by Hörlin et al.
[25] and by Hörlin [26] and will not be repeated here. For completeness, however, some details of the mesh and the
polynomial orders used are given below.

The analysed model is designed to describe the behaviour of an existing system where a multilayered structure acts as a
roof panel for a vehicle compartment. The design of the original panel, for which several measures had already been taken
to improve the NVH comfort inside the compartment, is used as a starting point and the properties of the individual sub-
layers of the panel are given in Appendix B. The original design, as well as the FE-model, consists of a number of different
layers intended for load carrying and/or vibration comfort purposes, with the main difference that one of the layers of the
original design is a 0.01 m thick layer of air. For identification purposes, the order of the sub-layers were named as: Outer
panel sheet—Air gap 1—Foam 1—Solid 1—Solid 2—Air gap 2—Interior panel sheet. The air layer named Air gap 1 is in
focus for the present investigation, with the aim to illustrate microstructure optimisation in the present paper. Replacing
this air layer with a layer of porous foam of equal thickness will doubtlessly incur a weight penalty. The main question is
1 Convergence is achieved by refining the mesh and/or increasing the approximation order.
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Fig. 3. Mesh of cavity FE-model with surface to panel indicated.

Table 1
Polynomial orders used in z-direction for each individual panel sub-layer, from top to bottom.

Sub-layer Polynomial order

Outer panel sheet 4

Optimised foam 5

Foam 1 5

Solid 1 4

Solid 2 4

Air gap 2

Interior panel sheet 4
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then what improvement in NVH comfort can be expected in exchange for the additional mass and, as a result of the
optimisation, what is the best choice of foam to maximise the benefit of the added material?

The modelled panel, with length Ly ¼ 1:19 m, consists of seven different layers where the outer and inner surfaces both
have solid face sheets. The total thickness of the panel is Lpanel

z ¼ 23:3 mm and the thickness of the layer of optimised
porous foam is 10 mm. The boundaries of each individual porous or solid layer of the panel at y ¼ 0 and y ¼ Ly are clamped
i.e. zero deflection and zero rotation whereas the boundaries between layers follow kinematic conditions and mass flow
continuity requirements as mentioned previously. The outer surface of the panel is driven by three separate force fields,
one out of which is 1803 out of phase. Thus for Lz ¼ 0, positive unit tractions were applied over: y ¼ 020:11 m and
y ¼ 0:5120:62 m; and negative unit traction over y ¼ 0:3320:51 m. The chosen force field is related to the transmission and
radiation of structure borne sound, a common source of NVH problems in vehicle acoustics.

In order to enable evaluation of sound pressure levels and sound intensity the panel is connected to an air filled cavity
with dimensions Ly ¼ 1:19 and Lcavity

z ¼ 1:4 m. The total length Lz is consequently Lz ¼ Lpanel
z þ Lcavity

z m.
For the air filled cavity there is an impedance boundary at y ¼ Ly and z ¼ Lz with a non-frequency-dependent, normal

impedance equivalent to Z ¼ 1180þ 1044i, which implies an absorption factor of about 50 percent. The last boundary of
the air cavity, at y ¼ 0, is considered to be acoustically hard (Fig. 2).

A schematic picture of the FE-model for the cavity mesh may be found in Fig. 3. Along the y-direction, a compatible
mesh with 10 elements was used for the panel as well as for the cavity. For each of the sub-layers in the panel, one element
through the thickness was used. In order to have a reasonably computationally efficient solution, the polynomial orders
were adjusted through the different sub-layers as shown in Table 1. The polynomial orders were chosen such that the
computed results had a point wise error better than 10 percent, for both displacements and pressures, at the highest
frequency studied. In addition the in-plane polynomial orders were adapted to the high and low frequency ranges as
discussed below.

2.4. System response

The system response was evaluated for the frequency range 100–900 Hz and the polynomial order of the base functions
used to describe the porous layers was varied depending on frequency. At higher frequencies higher-order polynomials, up
to 10th order, were needed to dissolve the wave pattern whereas at lower frequencies, below 600 Hz, 6th-order
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polynomials were found to be sufficient. Due to the high polynomial order needed at the higher frequencies the calculation
becomes very expensive. Despite this, and due to the occurrence of lowly damped acoustic cavity resonances, the frequency
resolution was kept at 1 Hz all through the frequency range considered.

The sound pressure square, p2
f , for each evaluated frequency, f, is calculated as the average of the square sound pressure

in a number, N, of discrete points in a sub-volume of the air cavity, Eq. (14). The sub-volume, see Fig. 2, was chosen to
represent possible ear positions of hypothetical passengers. It is bound by the following lines; y ¼ 0:22 and 1:08 m,
z ¼ 0:2233 and 0:5233 m. In the results discussed here, N, was chosen to be 16, all points distributed in the y–z plane,

p2
f ¼

1

N

XN

n¼1

p2
fn

(14)

2.5. Formulating the optimisation problem

To compare different solutions a cost function was formulated. In the present optimisation problem either mass or
sound pressure level were used, implying of course that while trying to minimise one, constraints were put on the other. In
order to compare sound pressure levels over the entire frequency range the sound pressure square for each frequency were
multiplied with a frequency-dependent weighting factor and a factor for frequency resolution, Dff , compensation and then
summed over the entire frequency range. The weighting factor was chosen to correspond to either A-weighting, CA

f , or C-
weighting, CC

F ,

/SPLSC
Osub
¼ 10 � log

Pfmax

f¼f1
ðp2

f � Dff � C
C
f Þ

p2
0

 !
(15)

The actual optimisation was performed with an MMA optimiser provided by Svanberg [7]. The input to the MMA optimiser
consisted of the numerical values of cost function and its first and second derivate for each variable, the min- and max-
values for each variable and also the numerical values of the constraint functions and their first and second derivate. The
derivatives and second derivatives were calculated with finite differences and are equivalent to vectors containing the
gradient and the diagonal elements of the Hessian matrix, respectively. The variables in the optimiser were chosen to be
the bulk density and the strut thickness of the foam. Their respective min- and max-values were set to 8rr�r70 kg m�3

and 10�7rdsr10�4 m. These parameter ranges should be feasible and realistic for the problem at hand and furthermore lie
in the range of commercially available foams. As a starting value for the strut thickness, ds ¼ 10�5 m was used. For the
density 15 kg m�3 was used.

2.5.1. Parameter space

Studies of the variation in the frequency response function obtained for varying r� and ds showed that the bulk density
had a clear impact on the frequency response while the strut thickness had a much more modest effect. This was expected
from previous experiences; the functional dependence between the bulk density and the flow resistivity for varying strut
dimensions, described in Eq. (9) and illustrated by Göransson [23], implied that for very high porosities, above 95 percent,
the bulk density indeed is the dominating parameter. For slightly lower porosity, less than 80 percent, the strut thickness
becomes increasingly important for the flow resistivity, which characterises the viscous dissipation at low frequencies. The
extent to which this applies may of course vary between different foams.

2.5.2. Effects of the weighting function

As described previously, weighted summation over the entire frequency range was performed in order to enable a
comparison of the total sound pressure level in the sub-volume. The weighting factor corresponding to C-weighting is
almost totally flat in the frequency range 100–900 Hz implying that the summed sound pressure level based on the
frequency response shown in Fig. 4 would, for most r�, be dominated by the sound pressure for low frequencies. On the
other hand, the weighting factor corresponding to A-weighting would cause the summed SPL to be dominated by the sound
pressure in high frequencies, illustrated in Fig. 5. The choice of weighting function will obviously affect the summed SPL
and hence the outcome of the optimisation. Assigning a numerical value to an experienced noise, consisting of both tonal
and broadband noise is an important but difficult task. The value should represent the total level of annoyance as well as
other possible negative effects, a question that is often addressed in psycho-acoustics and cannot be fully investigated here.
Historically the A-weighting curve is the most commonly used though it is originally meant as weighting function
simulating the experienced noise level at low sound pressure levels. Whereas the B- and C-weighting is more suitable for
medium high and high sound pressure levels, respectively. When measuring aircraft noise a special D-weighting is
sometimes used. The D-weighting is fairly similar to the B-weighting in the frequency range 100–900 Hz. The A-, B-, C- and
D-, weightings are, however, developed only based on the audible sound as it is perceived by the human ear, experienced
discomfort due to structural vibrations is not at all accounted for. This raises the question of how to evaluate and compare
calculations or measurements of sound pressures and vibrations in regard to acoustic NVH comfort. In short there is no
obvious weighting and as in this paper, where the sound pressure is evaluated in an air filled cavity, the total sound
pressure level is evaluated using two different weighting functions separately: the A-weighting and the C-weighting. This



ARTICLE IN PRESS

100
200

300
400

500

10
15

20
25

0

0.2

0.4

0.6

0.8

1
x 10−3

Frequency [Hz]
Bulk density [kg/m3]

Fig. 5. Frequency response function for different r� at constant ds ¼ 10�4 m, multiplied with weighting factor corresponding to A-weighting.

100
200

300
400

500

10
15

20
25

0

0.002

0.004

0.006

0.008

0.01

Frequency [Hz]
Bulk density [kg/m3]

Fig. 4. Frequency response function for different r� at constant ds ¼ 10�4 m.

E. Lind-Nordgren, P. Göransson / Journal of Sound and Vibration 329 (2010) 753–767 761
somewhat arbitrary choice allows for a comparative evaluation of the effects of the weighting itself, not necessarily linked
to the real comfort level which still remains an open issue.

2.5.3. Non-convexity

Initially it was assumed that the optimisation problem was non-convex: exhibiting a number of different minima
depending on foam material and frequency range evaluated—thus different starting points were tried. However, for the
single layer optimisation discussed here it was found that the number of local minima was quite limited within the
parameter space and frequency range used. Thus, the choice of starting points for the optimisation turned out to be
insignificant.

3. Results

Using the described method the following optimisations were performed for both the PU-foam and the p�foam:
minimising the corresponding C-weighted sound pressure level with constraints on the added mass, and minimising the
mass with constraints on the corresponding C-weighted sound pressure level inside the sub-volume. For the PU-foam also
a minimisation of the corresponding A-weighted sound pressure level was performed in order to compare the result of
using different weighting functions.

3.1. Minimising the sound pressure

In the minimisation of the sound pressure, the added mass value of the foam replacing the air gap was constrained to be
0.6 kg. For PU-foam one local minimum was found within the parameter range considered. The optimal parameters r� and
ds did, however, differ depending on whether the corresponding A- or C-weighting were used.

Since adding the extra layer of foam also adds mass to the original configuration it is not sufficient to evaluate the
improvement of acoustic behaviour by only comparing the frequency responses with and without foam. The mass alone
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would, according to the mass law, lead to at least some transmission loss. The optimised solution with porous foam was
therefore also compared with calculations of a plate with only added mass of the same amount as the foam. Finally to
consider the effect of potentially sub-optimal foam a comparison was made between the best foam found and the worst
foam found. Note that the worst foam found is most likely not the worst possible foam within the parameter range, only
the worst that occurred during the optimisation process.

The optimal PU-foam using the corresponding A-weighting, PUA, was found at r ¼ 32:5 kg m�3 and ds ¼ 14:8� 10�6 m,
which corresponds to a porosity f ¼ 0:971, a Young’s modulus E ¼ 138� 103 Pa, a static flow resistivity sstatic ¼ 662 Rayls
m�1 ðkg m�3 s�1Þ and a characteristic viscous length L ¼ 250� 10�6 m. In contrast to the optimal PU-foam using the
corresponding C-weighting, PUC , was found at r ¼ 20:1 kg m�3 and ds ¼ 15:5� 10�6 m, which corresponds to a porosity
f ¼ 0:982 and a Young’s modulus E ¼ 53:0� 103 Pa, a static flow resistivity sstatic ¼ 233 Rayls m�1 and a characteristic
viscous length L ¼ 423� 10�6 m. The worst foam found occurred at r ¼ 12:1 kg m�3 and ds ¼ 16:1� 10�6 m for both
weighting functions.

As may be seen in Table 2 the configuration with an optimised foam was significantly better than the original
configuration with a layer of air, and the effect was clearly not due to added mass only but is controlled by the dynamic
behaviour of the foam. The improvement caused by the added mass was very marginal which is in agreement with
estimations made according to the mass law. This effect was expected and clearly visible for both cost functions used
during the optimisation. What is more significant is the difference between the optimised foam and the worst foam found.
This demonstrates that by adapting the foam to the specific situations, load conditions and surroundings, considerable
improvements in acoustic environment may be achieved. The frequency response function for the different panel
configurations may be found in Figs. 6–9.

The result and characteristics of the two optimised foams where the two different weighting factors were used showed
interesting differences. The A-weighting led to a heavier and much stiffer foam, whereas the C-weighting, where the focus
is more on the lower frequencies, lead to a lighter and softer foam. To further look into the possible reasons for this
interesting result the displacement of the outer and inner surfaces of the panel was plotted for a number of frequencies for
each of the cases. In Fig. 10 the displacements of the outer and inner surfaces at frequency 619 Hz are shown.

It is clear that a soft foam would decouple the two adjacent layer more efficiently than a stiffer one. However, many of
the beneficial acoustical properties of foam will be lost when the porosity is increased. High flow resistivity is generally
considered beneficial and while the flow resistivity will increase with relative density so will the stiffness and the
mechanical coupling between the adjacent layers. This is also the rationale behind the current work, i.e. finding the best
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Fig. 6. Frequency response function for: optimal foam solution (thick solid), a sub-optimal foam solution (thin solid), original configuration (dashed) and

original configuration with added mass (dotted), weighted with corresponding A-weighting.

Table 2
Results PU-foam for minimising A-weighted and C-weighted SPL.

Panel description PU-foam Configuration with air

Best Worst Original configuration With added mass

SPL [dB(A)] 82.2 87.4 89.9 89.4

SPL [dB(C)] 87.8 90.5 94.4 94.1
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Fig. 7. Surface velocity for outer surface (a) and inner surface (b) for: A-weighted optimal foam solution (thick solid) and sub-optimal foam solution (thin

solid).
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Fig. 8. Frequency response function for: optimal foam solution (thick solid), a sub-optimal foam solution (thin solid), original configuration (dashed) and

original configuration with added mass (dotted), weighted with corresponding C-weighting.
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balance between variables to maximise the overall benefits. Another way to understand the result from the optimisation
using different weighting is in an analogy to a mass-spring system which requires a softer spring to isolate low frequencies
as compared to higher frequencies. This might cause the C-weighted optimisation to result in a lower density foam; the
increase of flow resistivity is not enough to compensate for the increased transmissibility of low frequency vibrations.

Optimisations were also performed trying to minimise the C-weighted SPL for the p�foam. The material forming the
p�foam has a Young’s modulus more than three times higher than the material forming PU-foam and is slightly heavier,
about 30 percent. Such properties generally allow for thinner struts and higher porosities. The results were compared with
that of the PU-foam, see Table 3 and Fig. 11. For the p�foam the minima found had a higher porosity (and lower density)
compared to the PU-foam. Despite the lower density the p�foam was still significantly stiffer than the PU-foam. The
frequency responses for the PU-foam and the p�foam are shown in Fig. 11. Note that the p�foam tends to be better in the
high frequency range and vice versa.

An effect worth noting is that in none of the cases investigated is the optimal strut thickness found close to the
minimum strut thickness allowed. Decreasing the strut thickness would increase the flow resistivity without increasing the
stiffness, which may at first seem like a rational way to enhance the acoustic performance. But the dissipation of acoustic
energy due to flow resistivity is dependent on the relative movement between the frame and the fluid. A great increase in
flow resistivity without a corresponding increase in the stiffness may create a system where the possibility of relative
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Fig. 9. Surface velocity for outer surface (a) and inner surface (b) for: C-weighted optimal foam solution (thick solid) and sub-optimal foam solution (thin

solid).

Fig. 10. Displacement of outer and inner surfaces of the multilayered panel at 619 Hz for the worst case foam found and the two optimised foam: (a) outer

surface worst case foam, (b) outer surface for C-weighted optimal foam, (c) outer surface for A-weighted optimal foam, (d) inner surface worst case foam,

(e) inner surface for C-weighted optimal foam, (f) inner surface for A-weighted optimal foam.

Table 3

Results for PU-foam and p�foam for minimising C-weighted SPL.

Foam PU-foam p�foam

SPL 87.8 88.7

r� 20.1 15.3

ds 15:5� 10�6 42:9� 10�6

f 0.982 0.989

E 53:0� 103 3121� 103

sstatic 231 398

L 424� 10�6 1956� 10�6
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motion between the frame and the fluid is greatly reduced and the waves propagating through the frame and the fluid are
therefore forced to move in phase. This would most likely reduce the acoustic performance of the foam. On the contrary, in
none of the cases studied is the flow resistivity particularly high. This may at first appear to be suspicious and the reason is
not obvious. One possible explanation for this result may be the closed inner and outer surfaces; when air is trapped in a
void with very limited possibilities of moving it will appear to be very stiff. The total thickness of the panel is 23.3 mm and
some of the constant layers in the panel are either non-porous or have very high flow resistivity. So the fluid movement in
z-direction is indeed quite limited. The main movement of fluid within the panel probably occurs in the y-direction, i.e.
within the porous layer itself rather than between layers. Enabling good fluid movement within the porous layer may be a
reason to keep the flow resistivity fairly low. As mentioned before, the relative frame-fluid motion is an important factor
and adds to the dissipation of acoustic energy.
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Fig. 11. Frequency response function for SPL optimised PU-foam (solid) and p�foam (dashed), weighted with corresponding C-weighting.

Table 4
Results minimising mass, constraints on C-weighted SPL.

Foam PU-foam p�foam

SPL 88.8 88.8

r� 14.8 13.4

ds 5:24� 10�6 76:7� 10�6

f 0.987 0.990

E 28:6� 103 2367� 103

sstatic 1094 94.2

L 195� 10�6 4019� 10�6
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Fig. 12. Frequency response function for mass optimised PU-foam (solid) and p�foam (dashed). Maximum SPL: 88.8 dB(C), weighted with corresponding

C-weighting.
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3.2. Minimising the mass

When minimising the mass, constraints were placed on the C-weighted sound pressure level in the air filled cavity; the
SPL was not to exceed 88.8 dB(C). Minimisation was performed for the PU foam and the p�foam using the previously found
foam parameters as starting points. The result was as could have been expected: the constraint on the SPL allowed for a
slightly lower density for the foam than the one found when minimising the SPL.

The results are presented in Table 4 and Fig. 12 and as can be seen the resulting densities are quite similar, though the
effect is not due to the added mass. However, the rest of the foam parameters as well as the frequency responses suggest
that the behaviour of the two different panels have significant differences.
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4. Conclusions

Despite the limited amount of foam and layer combinations tested, the results presented above suggest realistic changes
of the microscopic properties of the foam that may be sufficient to adapt the foam to a specific environmental condition
and thereby achieve improved acoustic behaviour as well as reduced weight. The foam studied in this paper shows a non-
convex behaviour, however, the number of minima within the parameter range seems to be limited which enables a
meaningful optimisation.

These initial attempts to optimise foam on a microscopic level also show the significance of the cost function chosen to
evaluate the effectiveness of the foam. By simply using different weighting factors when minimising the sound pressure
levels, the optimisation gave very different results. This raises the question of how to formulate a cost function that in the
best way describe the characteristics sought for. Such a cost function may include surface velocity, dissipated acoustic
energy, sound power or a comparison to a frequency response spectrum chosen in advance. To further elaborate on possible
cost functions it is quite possible that an effective cost function may combine one or more of the acoustical estimations
above with values referring to weight and cost in some weighted constellation.

Rather than to optimise only one foam layer it would be natural to want to optimise an entire multilayered panel, where
the number of layers, the thickness of each layer and the foam properties of each layer are all variables to be considered.
The different layers may consist of highly diverse material types, from thin, highly viscoelastic layers to thicker weak layers.
The development of new foam material with high stiffness and the ability to form extremely thin struts, 10�8 m, may also
introduce both new difficulties and new possibilities in the area of multilayered structures.
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Appendix A

The foams used in the presented work were a polyurethane foam (PU-foam), and a polyimide foam (p�foam), Table A1.
Table A1
Material properties for reference materials.

Material property PU-foam p�foam

rs ðkg m�3Þ 1100 1400

Es (Pa) 450� 106 1400� 106

a1 [1] 1.17 1.17

r�0 ðkg m�3Þ 35.4 8

E0 (Pa) 164� 103 848� 103

s0 ðkg m�3 s�1Þ 4500 1000� 103

L0 (m) 96:1� 10�6 39� 10�6
Appendix B

The sub-layers of the panel are given in Tables B1 and B2, one for the solid layers and one for the fixed foam layer.
Table B1
Material properties for solid sub-layers.

Material property Units Outer panel sheet Solid 1 Solid 2 Interior panel sheet

Density ðkg m�3Þ 750 1510 2700 362

Young’s modulus (Pa) 8600� 109 55� 104 69� 109 6:52� 109

Poisson’s ratio [1] 0.29 0.4 0.31 0.3

Thickness (m) 0.005 0.001 0.0007 0.0036
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Table B2
Material properties for foam sub-layer.

Material property Units Foam 1

Bulk density ðkg m�3Þ 354

Bulk Young’s modulus (Pa) 550� 103

Poisson’s ratio [1] 0.39

Thickness (m) 0.005

a1 [1] 2.2

sstatic ðkg m�3 s�1Þ 1� 106

L (m) 7:7� 10�6

Porosity [1] 0:52

E. Lind-Nordgren, P. Göransson / Journal of Sound and Vibration 329 (2010) 753–767 767
References

[1] M.A. Biot, Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range, Journal of the Acoustical Society of America
28 (1) (1956) 168–178.

[2] M.A. Biot, Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range, Journal of the Acoustical Society of
America 28 (2) (1956) 179–191.

[3] M.A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics 27 (3) (1956) 459–467.
[4] F. Simon, S. Pauzin, D. Biron, Optimisation of sandwich trim panels for reducing helicopter internal noise, 30th European Rotocraft Forum, Vol. 2005,

2005, pp. 1025–1033.
[5] O. Tanneau, J.B. Casimir, P. Lamary, Optimization of multilayered panels with poroelastic components for an acoustical transmission objective, Journal

of the Acoustical Society of America 120 (3) (2006) 1227–1238.
[6] J.S. Lee, E.I. Kim, Y.Y. Kim, J.S. Kim, Y.J. Kang, Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization

method, Journal of the Acoustical Society of America 122 (4) (2007) 2097–2106.
[7] K. Svanberg, The method of moving asymptotes—a new method for structural optimization, International Journal for Numerical Methods in Engineering

24 (1987) 359–373.
[8] F. Franco, K.A. Cunefare, M. Ruzzene, Structural-acoustic optimization of sandwich panels, Journal of Vibration and Acoustics 129 (3) (2007) 330–340.
[9] C. Perrot, F. Chevillotte, R. Panneton, Bottom-up approach for microstructure optimization of sound absorbing materials, Journal of the Acoustical

Society of America 124 (2) (2008) 940–948.
[10] C. Perrot, F. Chevillotte, R. Panneton, X. Olny, Bottom-up approach for microstructure optimization of sound absorbing materials, Invited

Paper—Proceedings of the 19th International Congress on Acoustics, ICA 2007, Madrid, Spain, 2007 (ISBN 84-87985-12-2).
[11] C. Perrot, R. Panneton, X. Olny, From microstructure to acoustic behaviour of porous materials, Canadian Acoustics—Acoustique Canadienne 32 (3)

(2004) 18–19.
[12] X. Olny, F. Sgard, C. Perrot, R. Panneton, Microscopic and mesoscopic approaches for describing and building sound absorbing porous materials,

Proceedings of the Second TUL-ENTPE Workshop: 187-206, 2004 (ISBN 2 86834 121 7).
[13] C. Perrot, R. Panneton, X. Olny, R. Bouchard, Mesostructural approach for characterising macroscopic parameters of open cell foams with computed

microtomography, Proceedings of the Institute of Acoustics 25 (2003) 169–175 (ISBN 1 901656 56 X).
[14] C. Zwikker, C.W. Kosten, Sound Absorbing Materials, Elsevier Publishing Company, Amsterdam, 1949 (Chapters II and III).
[15] K. Dovstam, Augmented Hooke’s law in frequency domain. A three dimensional material damping formulation, International Journal of Solids and

Structures 32 (19) (1995) 2835–2852.
[16] J.F. Allard, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Elsevier Applied Science, 1993.
[17] D. Lafarge, P. Lemarnier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies, Journal of the Acoustical

Society of America 102 (4) (1997) 1995–2006.
[18] S.R. Pride, A.F. Gangi, F.D. Morgan, Deriving the equations of motion for porous isotropic media, Journal of the Acoustical Society of America 92 (6)

(1992) 3278–3290.
[19] D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, The Journal of Fluid Mechanics 176

(1987) 379–402.
[20] W.E. Warren, A.M. Kraynik, The linear elastic properties of open cell foams, Journal of Applied Mechanics 55 (2) (1988) 341–346.
[21] W.E. Warren, A.M. Kraynik, Linear elastic behavior of a low-density Kelvin foam with open cells, Journal of Applied Mechanics 64 (4) (1997) 787–794.
[22] L.J. Gibson, M.F. Ashby, Cellular Solids—Structure and Properties, second ed., Cambridge University Press, Cambridge, 1997 First published by

Pergamont Press Ltd., 1988.
[23] P. Göransson, Acoustic and vibrational damping in porous solids, Philosophical Transactions of the Royal Society A 364 (2006) 89–108.
[24] J.F. Allard, Y. Champoux, New empirical equations for sound propagation in rigid frame fibrous materials, Journal of the Acoustical Society of America 6

(91) (1992) 3346–3353.
[25] N.E. Hörlin, M. Nordström, P. Göransson, A 3-D hierarchical FE formulation of Biot’s equations for elasto-acoustic modelling of porous media, Journal

of Sound and Vibration 254 (4) (2001) 633–652.
[26] N.E. Hörlin, 3-D hierarchical hp-FEM applied to elasto-acoustic modelling of layered porous media, Journal of Sound and Vibration 285 (4) (2005)

341–363.


	Optimising open porous foam for acoustical and vibrational performance
	Introduction
	Related work

	Modelling aspects
	Biot’s equations
	Mechanical properties and scaling laws
	FE-modelling
	System response
	Formulating the optimisation problem
	Parameter space
	Effects of the weighting function
	Non-convexity


	Results
	Minimising the sound pressure
	Minimising the mass

	Conclusions
	Acknowledgements
	References




